A concrete-coated steel gas pipeline is to be laid between two offshore platforms in 100 m water depth where the maximum environmental conditions include waves of 20 m wave height and 14 s period. The pipeline outside diameter is 46 cm, and the clay bottom slope is 1 on 100. Determine the submerged unit weight of the pipe. Assume linear wave theory is valid and that the bottom current is negligible.

Answers

Answer 1

Diameter of the pipeline (d) = 46 cm = 0.46 mDepth of water (h) = 100 mMaximum wave height (H) = 20 mWave period (T) = 14 sBottom slope (S) = 1/100Formula Used.

Submerged weight = (pi * d² / 4) * (1 - ρ/γ)Where, pi = 3.14d = diameter of the pipelineρ = density of water = 1000 kg/m³γ = specific weight of the material of the pipeCalculation:Given, d = 0.46 mρ = 1000 kg/m³γ = ?We need to find the specific weight (γ)Submerged weight = (pi * d² / 4) * (1 - ρ/γ)

The formula for finding submerged weight can be rewritten as:γ = (pi * d² / 4) / (1 - ρ/γ)Substituting the values of pi, d and ρ in the above formula, we get:γ = (3.14 * 0.46² / 4) / (1 - 1000/γ)Simplifying the above equation, we get:γ = 9325.56 N/m³Thus, the submerged unit weight of the pipe is 9325.56 N/m³. Hence, the detailed explanation of the submerged unit weight of the pipe has been provided.

To know more about diameter visit:

brainly.com/question/33279161

#SPJ11


Related Questions

Ideal Otto air begins a compression stroke at P 90kpa and T 35 degrees Celcius. Peak T, is 1720 degrees Celcius. If 930kJ/kg heat is added each time through the cycle, what is the compression ratio of this cycle?

Answers

Formula for the compression ratio of an Otto cycle:

r = (V1 / V2)

where V1 is the volume of the cylinder at the beginning of the compression stroke, and V2 is the volume at the end of the stroke.

We can calculate the values of V1 and V2 using the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

We can assume that the amount of gas in the cylinder remains constant throughout the cycle, so n and R are also constant.

At the beginning of the compression stroke, P1 = 90 kPa and T1 = 35°C. We can convert this to absolute pressure and temperature using the following equations:

P1 = 90 + 101.3 = 191.3 kPa

T1 = 35 + 273 = 308 K

At the end of the compression stroke, the pressure will be at its peak value, P3, and the temperature will be at its peak value, T3 = 1720°C = 1993 K. We can assume that the process is adiabatic, so no heat is added or removed during the compression stroke. This means that the pressure and temperature are related by the following equation:

P3 / P1 = (T3 / T1)^(γ-1)

where γ is the ratio of specific heats for air, which is approximately 1.4.

Solving for P3, we get:

P3 = P1 * (T3 / T1)^(γ-1) = 191.3 * (1993 / 308)^(1.4-1) = 1562.9 kPa

Now we can use the ideal gas law to calculate the volumes:

V1 = nRT1 / P1 = (1 mol) * (8.314 J/mol-K) * (308 K) / (191.3 kPa * 1000 Pa/kPa) = 0.043 m^3

V2 = nRT3 / P3 = (1 mol) * (8.314 J/mol-K) * (1993 K) / (1562.9 kPa * 1000 Pa/kPa) = 0.018 m^3

Finally, we can calculate the compression ratio:

r = V1 / V2 = 0.043 / 0.018 = 2.39

Therefore, the compression ratio of this cycle is 2.39.

Explore a different heat cycle: https://brainly.com/question/14894227

#SPJ11

a) Given the equation below: i. Show the simplified Boolean equation below by using the K-Map technique. (C3, CLO3) ii. Sketch the simplified circuit-based result in (ai) (C3,CLO3) b) Given the equation below: i. Show the simplify the logic expression z=ABC+ Ā + ABC by using the Boolean Algebra technique. ii. Sketch the simplified circuit-based result in (bi) (C3, CLO3)

Answers

a)Given the equation, F (A, B, C, D) = ∑ (0, 2, 4, 6, 10, 11, 12, 13) with two bits per cell. Here is how to solve it using the K-Map technique :i. C2 and C3 are the row and column headings.

The table has four rows and four columns. Therefore, we use the following table. The K-Map for F(A,B,C,D)F (A, B, C, D) = A'C'D' + A'B'D' + A'BCD + ABCD 'ii. A simplified circuit-based result Circuit Diagram for F (A, B, C, D) = A'C'D' + A'B'D' + A'BCD + ABCD 'b)Given the equation z = ABC + Ā + ABC.

Here is how to solve it using the Boolean Algebra technique: i. Logic Expression Simplification z = ABC + Ā + ABC         (Identity Property)z = ABC + ABC + Ā    (Associative Property)z = AB(C + C) + Āz = AB + Ā ii. Simplified Circuit-based Result Circuit Diagram for z = AB + Ā

To know more about  technique visit:

brainly.com/question/31609703

#SPJ11

Determine the downstream depth in a horizontal rectangular channel in which the bottom rises 0.75 ft, if the steady flow discharge is 550 cfs, the channel width is 5 ft, and the upstream depth is 6 ft. Also draw the specific energy diagram for this problem.

Answers

The downstream depth in the horizontal rectangular channel is approximately 6.74 ft.

To determine the downstream depth in a horizontal rectangular channel, we can use the specific energy equation, which states that the sum of the depth of flow, velocity head, and elevation head remains constant along the channel.

Given:

Steady flow discharge (Q) = 550 cfs

Channel width (B) = 5 ft

Upstream depth (y1) = 6 ft

Bottom rise (z) = 0.75 ft

The specific energy equation can be expressed as:

E1 = E2

E = [tex]y + (V^2 / (2g)) + (z)[/tex]

Where:

E is the specific energy

y is the depth of flow

V is the velocity of flow

g is the acceleration due to gravity

z is the elevation head

Initially, we can calculate the velocity of flow (V) using the discharge and channel dimensions:

Q = B * y * V

V = Q / (B * y)

Substituting the values into the specific energy equation and rearranging, we have:

[tex](y1 + (V^2 / (2g)) + z1) = (y2 + (V^2 / (2g)) + z2)[/tex]

Since the channel is horizontal, the bottom rise (z) remains constant throughout. Rearranging further, we get:

[tex](y2 - y1) = (V^2 / (2g))[/tex]

Solving for the downstream depth (y2), we find:

[tex]y2 = y1 + (V^2 / (2g))[/tex]

Now we can substitute the known values into the equation:

[tex]y2 = 6 + ((550 / (5 * 6))^2 / (2 * 32.2))[/tex]

y2 ≈ 6.74 ft

Therefore, the downstream depth in the horizontal rectangular channel is approximately 6.74 ft.

Learn more about rectangular channel

brainly.com/question/32596158

#SPJ11

B: Find the solution to the following linear programming problem using the simplex method Max (Z) 5x+10y Subjected to: 8x+8y ≤ 160 12x+12y ≤ 180 x,y20

Answers

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

How to solve Linear Programming Using Simplex Method?

The standard form of a linear programming problem is expressed as:

Maximize:

Z = c₁x₁ + c₂x₂

Subject to:

a₁₁x₁ + a₁₂x₂ ≤ b₁

a₂₁x₁ + a₂₂x₂ ≤ b₂

x₁, x₂ ≥ 0

We want to Maximize:

Z = 5x + 10y

Subject to:

8x + 8y ≤ 160

12x + 12y ≤ 180

x, y ≥ 0

Now, we can apply the simplex method to solve the problem. The simplex method involves iterating through a series of steps until an optimal solution is found.

The optimal solution for the given linear programming problem is:

Z = 900

x = 10

y = 10

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

Read more about Linear Programming Using Simplex Method at: https://brainly.com/question/32948314

#SPJ4

A Joule-Brayton Cycle has the following operating conditions:-
T1 = 20°C = 293K; T3 = 1000°C = 1273K; rp = 8;
Data for air, cp = 1.01 kJ/kg-K; g = 1.4
Sketch and annotate a T-s diagram of the cycle.
Calculate the specific work input to the compressor, the specific work output from the turbine and hence the net specific work output from the cycle.

Answers

The Joule-Brayton Cycle is a thermodynamic cycle that is mostly used in gas turbines to power aircraft and electric power stations.

Process 1-2: Isentropic compression from state 1 to state 2.

The pressure ratio, rp = 8, implies that the pressure of the working fluid at state 2 is 8 times the pressure at state 1.

From the ideal gas law, we know that the temperature at state 2 is also 8 times the temperature at state 1.

which is T2 = 293 × 8 = 2344 K.

The specific volume at state 2 can be found from the ideal gas equation. PV = mRT.

V2 = RT2 / P2.

V2 = (287 × 2344) / (101.3 × 105)

= 0.5605 m3/kg.

Heat addition at constant pressure from state 2 to state 3.

The temperature at state 3 is given as T3 = 1273 K.

Process 3-4: Isentropic expansion from state 3 to state 4.

The temperature at state 4 is T4 = T1 = 293 K.

Process 4-1:

Heat rejection at constant pressure from state 4 to state 1. The temperature at state 1 is given as The negative sign implies that work is done on the system instead of work being done by the system.

To know more about turbines:

https://brainly.com/question/15587026

#SPJ11

A rod 12.5 mm in diameter is stretched 3.2 mm under a steady load of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed? The value of E may be taken as 2.1 x 10^5 N/mm².

Answers

The stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Explanation:

The given problem provides information about a rod with a diameter of 12.5 mm and a steady load of 10 kN. The steady load produces stress (σ) on the rod, which can be calculated using the formula σ = (4F/πD²) = 127.323 N/mm², where F is the load applied to the rod. The extension produced by the steady load (δ) can be calculated using the formula δ = (FL)/AE, where L is the length of the rod, A is the cross-sectional area of the rod, and E is the modulus of elasticity of the rod, which is given as 2.1 x 10⁵ N/mm².

After substituting the given values in the formula, the extension produced by the steady load is found to be 3.2 mm. Using the formula, we can determine the length of the rod, which is L = (3.2 x 122.717 x 2.1 x 10⁵)/10,000 = 852.65 mm.

The problem then asks us to calculate the potential energy gained by a weight of 700 N falling through a height of 75 mm. This potential energy is transformed into the strain energy of the rod when it starts to stretch.

Thus, strain energy = Potential energy of the falling weight = (700 x 75) N-mm

The strain energy of a bar is given by the formula, U = (F²L)/(2AE) ... (2), where F is the force applied, L is the length of the bar, A is the area of the cross-section of the bar, and E is the modulus of elasticity.

Substituting the given values in equation (2), we get

(700 x 75) = (F² x 852.65)/(2 x 122.717 x 2.1 x 10⁵)

Solving for F, we get F = 2666.7 N.

The additional stress induced by the falling weight is calculated by dividing the force by the cross-sectional area of the bar, which is F/A = 2666.7/122.717 = 21.73 N/mm².

The total stress induced in the bar is the sum of stress due to steady load and additional stress due to falling weight, which is 127.323 + 21.73 = 149.053 N/mm².

Therefore, the stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Know more about strain energy here:

https://brainly.com/question/32094420

#SPJ11

The work function of a metal surface is 4.5 eV. If the frequency of the light incident upon it is 1.45 × 1015 Hz, then what is the maximum kinetic energy (in eV) of the photo electrons emitted from the surface?

Answers

The maximum kinetic energy (in eV) of the photo electrons emitted from the surface is 6 ev.

To calculate the maximum kinetic energy of photoelectrons emitted from a metal surface, we can use the equation:

E max​=hν−φ

Where: E max ​ is the maximum kinetic energy of photoelectrons,

h is the Planck's constant (4.135667696 × 10⁻¹⁵ eV s),

ν is the frequency of the incident light (1.45 × 10¹⁵ Hz),

φ is the work function of the metal surface (4.5 eV).

Plugging in the values:

E max ​ =(4.135667696×10⁻¹⁵  eV s)×(1.45×10¹⁵  Hz)−4.5eV

Calculating the expression:

E max ​ =5.999eV

To learn more on Work click:

https://brainly.com/question/18094932

#SPJ4

A pipe with an inner diameter of 13.5 inches and a wall thickness of 0.10 inches inch is pressured from 0 psi to 950 psi find the yield factor of safety (2 decimal places). Just use the tangential stress for the analysis.
Sut=80000 psi, Sy= 42000 psi, Se = 22000 psi

Answers

A yield factor of safety for a pipe with a diameter of 13.5 inches and a wall thickness of 0.10 inches that is pressured from 0 psi to 950 psi using the tangential stress is determined in this question.

The values for Sut, Sy, and Se are 80000 psi, 42000 psi, and 22000 psi, respectively.  

The yield factor of safety can be calculated using the formula:

Yield factor of safety = Sy / (Tangential stress) where

Tangential stress = (Pressure × Inner diameter) / (2 × Wall thickness)

Using the given values, the tangential stress is:

Tangential stress = (950 psi × 13.5 inches) / (2 × 0.10 inches) = 64125 psi

Therefore, the yield factor of safety is:

Yield factor of safety = 42000 psi / 64125 psi ≈ 0.655

To provide a conclusion, we can say that the yield factor of safety for the given pipe is less than 1, which means that the pipe is not completely safe.

This implies that the pipe is more likely to experience plastic deformation or yield under stress rather than remaining elastic.

Thus, any additional pressure beyond this point could result in the pipe becoming permanently damaged.

To know more about yield factor visit:

brainly.com/question/31857073

#SPJ11

PROBLEM 3 (10 pts) Predict the dominant type of bonding for the following solid compound by considering electronegativity (a) K and Na :______ (b) Cr and O:_______
(c) Ca and CI:______ (d) B and N:_______ (e) Si and O:_______

Answers

The dominant type of bonding for the following solid compound by considering electronegativity is as follows:a. K and Na: metallic bondingb. Cr and O: ionic bondingc. Ca and Cl: ionic bondingd. B and N: covalent bondinge. Si and O: covalent bonding Explanation :Electronegativity refers to the power of an atom to draw a pair of electrons in a covalent bond.

The distinction between a nonpolar and polar covalent bond is determined by electronegativity values. An electronegativity difference of less than 0.5 between two atoms indicates that the bond is nonpolar covalent. An electronegativity difference of between 0.5 and 2 indicates a polar covalent bond. An electronegativity difference of over 2 indicates an ionic bond.1. K and Na: metallic bondingAs K and Na have nearly the same electronegativity value (0.8 and 0.9 respectively), the bond between them will be metallic.2. Cr and O: ionic bondingThe electronegativity of Cr is 1.66, whereas the electronegativity of O is 3.44.

As a result, the electronegativity difference is 1.78, which implies that the bond between Cr and O will be ionic.3. Ca and Cl: ionic bondingThe electronegativity of Ca is 1.00, whereas the electronegativity of Cl is 3.16. As a result, the electronegativity difference is 2.16, which indicates that the bond between Ca and Cl will be ionic.4. B and N: covalent bondingThe electronegativity of B is 2.04, whereas the electronegativity of N is 3.04. As a result, the electronegativity difference is 1.00, which implies that the bond between B and N will be covalent.5. Si and O: covalent bondingThe electronegativity of Si is 1.9, whereas the electronegativity of O is 3.44.

To know more about electronegativity visit :-

https://brainly.com/question/3393418

#SPJ11

For a metal arc-welding operation on carbon steel, if the melting point for the steel is 1800 °C, the heat transfer factor = 0.8, the melting factor = 0.75, melting constant for the material is K-3.33x10-6 J/(mm³.K2). Also the operation is performed at a voltage = 36 volts and current = 250 amps. The unit energy for melting for the material is most likely to be O 10.3 J/mm³ O 10.78 J/mm3 14.3 J/mm3 8.59 J/mm³ The volume rate of metal welded is 377.6 mm³/s 245.8 mm³/s 629.3 mm³/s 841.1 mm³/s

Answers

In a metal arc-welding operation on carbon steel with specific parameters, the most likely unit energy for melting the material is 10.78 J/mm³. The volume rate of metal welded is likely to be 629.3 mm³/s.

To determine the unit energy for melting the material, we need to consider the given parameters. The melting point of the steel is stated as 1800 °C, the heat transfer factor is 0.8, the melting factor is 0.75, and the melting constant for the material is K = 3.33x10-6 J/(mm³.K²). The unit energy for melting (U) can be calculated using the equation: U = K * (Tm - To), where Tm is the melting point of the steel and To is the initial temperature. Substituting the given values, we have U = 3.33x10-6 J/(mm³.K²) * (1800°C - 0°C) = 10.78 J/mm³. Moving on to the volume rate of metal welded, the provided information does not include the necessary parameters to calculate it accurately. The voltage (V) is given as 36 volts, and the current (I) is provided as 250 amps. However, the voltage factor (Vf) and welding speed (Vw) are not given, making it impossible to determine the volume rate of metal welded. In conclusion, based on the given information, the unit energy for melting the material is most likely to be 10.78 J/mm³, while the volume rate of metal welded cannot be determined without additional information.

Learn more about steel here:

https://brainly.com/question/29222140

#SPJ11

An air-standard dual cycle has a compression ratio of 9 . At the beginning of compression p1=100KPa. T1=300 K and V1= 14 L. The total amount of energy added by heat transfer is 227 kJ. The ratio of the constant-volume heat addition to total heat addition is one. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean eifective pressure, in kPa.

Answers

Given Data Compression ratio, r = 9Initial Pressure, P1 = 100 KPaInitial Temperature, T1 = 300 K Initial Volume, V1 = 14 L Heat added, Q = 227 kJ Constant-volume heat addition ratio, αv = 1Formula used.

The efficiency of Dual cycle is given by,

ηth = (1 - r^(1-γ))/(γ*(r^γ-1))

The mean effective pressure, Pm = Wnet/V1

The work done per unit mass of air,

Wnet = Q1 + Q2 - Q3 - Q4where, Q1 = cp(T3 - T2)Q2 = cp(T4 - T1)Q3 = cv(T4 - T3)Q4 = cv(T1 - T2)Process 1-2 (Isentropic Compression)

As the compression process is isentropic, so

Pv^(γ) = constant P2 = P1 * r^γP2 = 100 * 9^1.4 = 1958.54 KPa

As the expansion process is isentropic, so

Pv^(γ) = constantP4 = P3 * (1/r)^γP4 = 1958.54/(9)^1.4P4 = 100 KPa

(Constant Volume Heat Rejection)

Q3 = cv(T4 - T3)T4 = T3 - Q3/cvT4 = 830.87 K

The net work per unit of mass of air is

Wnet = 850.88 kJ/kg.

The percent thermal efficiency is 50.5%. The mean effective pressure is Pm = 60777.14 kPa.

To know more about Compression visit:

https://brainly.com/question/22170796

#SPJ11

EXPOUND & ANSWER THE QUESTION BRIEFLY AND GIVE INSIGHTS AND
CITE SOURCES ABOUT THE TOPIC. THANK YOUU
Water management is an important aspect of electric power production. Identify at least two needs for water in a Rankine cycle-based power plant. Describe typical water management practices in such plants, and research at least two emerging technologies aimed at reducing water losses in plants or enhancing sustainable water management.

Answers

Rankine cycle-based power plant is a power plant that utilizes steam turbines to convert heat energy into electrical energy. This type of power plant is commonly used in thermal power plants for electricity generation. Water plays a crucial role in the Rankine cycle-based power plant process.

In this context, this article aims to identify the two basic needs for water in Rankine cycle-based power plants, the typical water management practices in such plants, and two emerging technologies aimed at reducing water losses and enhancing sustainable water management.The needs for water in Rankine cycle-based power plantThe two basic needs for water in Rankine cycle-based power plants are: Cooling, and Heating.Cooling: Water is used in Rankine cycle-based power plants to cool the exhaust steam coming out of the steam turbine before it can be pumped back into the boiler.

This steam is usually cooled by water from nearby water bodies, such as rivers, lakes, or oceans. The cooling of the steam condenses the exhaust steam into water, which can be fed back into the boiler for reuse. Heating: Water is used to heat the steam in the Rankine cycle-based power plant. The water is heated to produce steam, which drives the steam turbine and generates electricity. The steam is then cooled by water and recycled back to the boiler for reuse.Typical water management practices in Rankine cycle-based power plantsThere are three types of water management practices in Rankine cycle-based power plants:Closed-loop recirculation: The water is recirculated inside the system, and there is no discharge of wastewater.

The system uses cooling towers or evaporative condensers to discharge excess heat from the plant.Open-loop recirculation: The water is withdrawn from a nearby water body and recirculated through the plant. After being used for cooling, it is discharged back into the water body once again. This practice may have a negative impact on the ecosystem.Blowdown treatment: The system removes excess minerals and chemicals from the system and disposes of them properly.

Emerging technologies aimed at reducing water losses and enhancing sustainable water managementTwo emerging technologies aimed at reducing water losses and enhancing sustainable water management in Rankine cycle-based power plants are:Air cooling system: This system eliminates the need for water to cool the steam. Instead, it uses air to cool the steam. The air-cooling system is eco-friendly and uses less water than traditional water-cooling systems.Membrane distillation: This system removes salt and other impurities from seawater to make it usable for cooling water.

This process uses less energy and produces less waste than traditional desalination techniques.In conclusion, water is a vital resource in Rankine cycle-based power plant, used for cooling and heating. Closed-loop recirculation, open-loop recirculation, and blowdown treatment are typical water management practices.

Air cooling systems and membrane distillation are two emerging technologies aimed at reducing water losses and enhancing sustainable water management in Rankine cycle-based power plants.Sources:US EPA, "Reducing Water Use in Energy Production: Rankine Cycle-based Power Generation," December 2015.Edwards, B. D., S. B. Brown, and K. J. McLeod. "Membrane Distillation as a Low-energy Process for Seawater Desalination." Desalination 203, no. 1–3 (2007): 371–83.

To know about ecosystem visit:

https://brainly.com/question/31459119

#SPJ11

Determine the cross correlation sequences for the following pair of signals using the time domain formula : x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4) [7 marks]

Answers

Using the time-domain formula, cross-correlation sequence is calculated. Cross-correlation of x(n) and h(n) can be represented as y(k) = x(-k)*h(k) or y(k) = h(-k)*x(k).

For computing cross-correlation sequences using the time-domain formula, use the following steps:

Calculate the expression for cross-correlation. In the expression, replace n with n - k.

After that, reverse the second signal. And finally, find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

Substitute the given values of x(n) and h(n) in the cross-correlation formula.

y(k) = sum(x(n)*h(n-k)) => y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).  

We calculate y(k) as follows for each value of k: for k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1,

y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are

y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

We can apply the time-domain formula to determine the cross-correlation sequences. We can calculate the expression for cross-correlation.

Then, we replace n with n - k in the expression, reverse the second signal and find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

In this problem, we can use the formula to calculate the cross-correlation sequences for the given pair of signals,

x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4).

We substitute the values of x(n) and h(n) in the formula,

y(k) = sum(x(n)*h(n-k))

=> y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).

We can compute y(k) for each value of k.

For k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1, y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

To learn more about signal

https://brainly.com/question/30431572

#SPJ11

which of the following can decrease fatigue life ? a. Square holes b. round holes c. Fillets d. Smooth transitions

Answers

Square holes can decrease the fatigue life of a component or structure. Square holes can decrease fatigue life.

Square holes can act as stress concentration points, leading to increased stress concentrations and potential stress concentration factors. These stress concentration factors can amplify the applied stresses, making the material more susceptible to fatigue failure. Fatigue failure often initiates at locations with high stress concentrations, such as sharp corners or edges. Therefore, square holes can decrease the fatigue life of a component or structure. Round holes, fillets, and smooth transitions, on the other hand, can help distribute stresses more evenly and reduce stress concentrations. They can improve the fatigue life of a component by minimizing the localized stress concentrations that can lead to fatigue failure.

Learn more about Square holes here:

https://brainly.com/question/28351271

#SPJ11

Question 5 Make a ID interpolation for the following data set x = [1 2 3 4 5 6 7 8 9 10); y = [3.5 3.0 2.5 2.0 1.5 -2.4 -2.8 -3,2-3,6-40) Hint: MATLAB Function is interp1 for 1-D interpolation with piecewise polynomials. Question 6. Calculate the following ordinary differential equation by using Euler's method. y' = t - 2y. y(0) = 1 Set h0.2

Answers

Question 5Interpolation is a mathematical method used to approximate missing data by constructing new data points within the given data points.

MATLAB Function is interp1 for 1-D interpolation with piecewise polynomials.The following code will produce the ID interpolation for the given data set:x = [1 2 3 4 5 6 7 8 9 10]; y = [3.5 3.0 2.5 2.0 1.5 -2.4 -2.8 -3.2 -3.6 -4.0];xi = 1:0.1:10; yi = interp1(x,y,xi); plot(x,y,'o',xi,yi)Question 6Given differential equation is y' = t - 2y and the initial condition is y(0) = 1. Euler's method is a numerical procedure used to solve ordinary differential equations. Euler's method is used to calculate approximate values of y for given t.

The formula for Euler's method is:y_i+1 = y_i + h*f(t_i, y_i)Here, we have h = 0.2 and t_i = 0, f(t_i, y_i) = t_i - 2*y_i.y_1 = y_0 + h*f(t_0, y_0) = 1 + 0.2*(0 - 2*1) = -0.8y_2 = y_1 + h*f(t_1, y_1) = -0.8 + 0.2*(0.2 - 2*-0.8) = -0.288y_3 = y_2 + h*f(t_2, y_2) = -0.288 + 0.2*(0.4 - 2*-0.288) = 0.0624y_4 = y_3 + h*f(t_3, y_3) = 0.0624 + 0.2*(0.6 - 2*0.0624) = 0.40416...and so on.Hence, the approximate values of y are:y_1 = -0.8, y_2 = -0.288, y_3 = 0.0624, y_4 = 0.40416, ...

To know more about data visit:

https://brainly.com/question/29007438

#SPJ11

How would you link the capacity decision being made by Fitness Plus to other types of operating decisions?

Answers

Fitness Plus, an emerging fitness and gym provider, is trying to gain a significant share of the market in the region, making it a major competitor to other industry players. Fitness Plus's decision to expand its capacity is critical, and it influences the types of operating decisions they make, including marketing, financial, and human resource decisions.


Capacity decisions at Fitness Plus are linked to marketing decisions in several ways. When Fitness Plus decides to expand its capacity, it means that it is increasing the number of customers it can serve simultaneously. The expansion creates an opportunity to increase sales by catering to a more extensive market. Fitness Plus's marketing team must focus on building brand awareness to attract new customers and create loyalty among existing customers.The expansion also influences financial decisions. Fitness Plus must secure funding to finance the expansion project.

It means that the financial team must identify potential sources of financing, analyze their options, and determine the most cost-effective alternative. Fitness Plus's decision to expand its capacity will also have a significant impact on its human resource decisions. The expansion creates new job opportunities, which Fitness Plus must fill. Fitness Plus must evaluate its staffing requirements and plan its recruitment strategy to attract the most qualified candidates.

In conclusion, Fitness Plus's decision to expand its capacity has a significant impact on its operating decisions. The expansion influences marketing, financial, and human resource decisions. By considering these decisions together, Fitness Plus can achieve its growth objectives and increase its market share in the region.

To know more about fitness visit :

https://brainly.com/question/31252433

#SPJ11

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the 10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the temperature.

Answers

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the enthalpy of combustion. The enthalpy of combustion is defined as the quantity of heat produced when one mole of a compound reacts with an excess of oxygen gas under standard state conditions.

10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the adiabatic flame temperature. This temperature can be determined using the adiabatic flame temperature equation, which takes into account the enthalpy of combustion of the fuel and the stoichiometry of the reaction.

The adiabatic flame temperature is the maximum temperature that can be achieved in a combustion reaction without any heat transfer to or from the surroundings. In practice, the actual temperature of a combustion reaction is lower than the adiabatic flame temperature due to heat loss to the surroundings.

To know more about temperature, visit:

https://brainly.com/question/7510619

#SPJ11

A new greenfield area developer has approached your company to design a passive optical network (PON) to serve a new residential area with a population density of 64 households. After discussion with their management team, they have decided to go with XGPON2 standard which is based on TDM-PON with a downlink transmission able to support 10 Gb/s. Assuming that all the 64 households will be served under this new PON, your company is consulted to design this network. Given below are the known parameters and specifications that may help with the design of the PON. • Downlink wavelength window = 1550 nm • Bit error-rate – 10-15 • Bit-rate = 10 Gb/s • Transmitter optical power = 0 dBm • 1:32 splitters are available with a loss of 15 dB per port • 1:2 splitters are available with a loss of 3 dB per port • Feeder fibre length = 12 km • Longest drop fibre length = 4 km • Put aside a total system margin of 3 dB for maintenance, ageing, repair, etc • Connector losses of 1 dB each at the receiver and transmitter • Splice losses are negligible a. Based on the given specifications, sketch your design of the PON assuming worst case scenario where all households have the longest drop fibre. (3 marks) b. What is the bit rate per household? (1 marks) c. Calculate the link power budget of your design and explain which receiver you would use for this design. (7 marks) d. Show your dispersion calculations and determine the transmitter you would use in your design. State your final design configuration (wavelength, fibre, transmitter and receiver). (4 marks) e. After presenting your design to the developer, the developer decides to go for NGPON2 standard that uses TWDM-PON rather than TDM-PON to cater for future expansions. Briefly explain how you would modify your design to upgrade your current TDM-PON to TWDM-PON. Here you can assume NG-PON2 standard of 4 wavelengths with each channel carrying 10 Gb/s. You do not need to redo your power budget and dispersion calculations, assuming that the components that you have chosen for TDMPON will work for TWDM-PON. Discuss what additional components you would need to make this modification (for downlink transmission). Also discuss how you would implement uplink for the TWDM-PON. Sketch your modified design for downlink only.

Answers

Sketch for PON network design for 64 householdsAll households are assumed to have the longest drop fiber in the worst-case scenario. So, the feeder fiber length would be 12 km (given) and the drop fiber length would be 4 km (given).

Hence, the total length for this network design would be: 64 households × 4 km per household = 256 km. The PON network design sketch is as follows:b. Bit rate per householdThe bit rate per household is 10 Gb/s (given).c. Link power budget calculations and choice of receiverFor link power budget calculations, we need to know the total link loss, which is the sum of the losses in the feeder fiber, splitter(s), and the drop fiber.

The table below summarizes the loss calculation for 1:32 and 1:2 splitter(s) used for this network design:From the above table, we can calculate the total link loss for the network design. For 1:32 splitters:Total loss = Feeder loss + (Splitter loss × Number of splitters) + (Drop loss × Number of households) + Connector loss at receiverTotal loss = 15 + (15 × 2) + (15 × 64) + 1Total loss = 1006 dBF.

To know more about network visit:

https://brainly.com/question/29350844

#SPJ11

A 6 liter gasoline engine is being evaluated in a laboratory to determine the exhaust gas ratio at a location where the air density is 1.181 kg/m³. The engine is running at 3600 RPM, with an air/fuel ratio of 15:1, and the volumetric efficiency has been estimated at 93%. Calculate the exhaust gas rate in kg/s.

Answers

The exhaust gas rate is approximately 1.56 kg/s.

To calculate the exhaust gas rate, we need to determine the mass flow rate of air entering the engine and then determine the mass flow rate of fuel based on the given air/fuel ratio.

First, we calculate the mass flow rate of air entering the engine using the engine displacement (6 liters) and the volumetric efficiency (93%). By multiplying these values with the air density at the location (1.181 kg/m³), we obtain the mass flow rate of air.

Next, we calculate the mass flow rate of fuel by dividing the mass flow rate of air by the air/fuel ratio (15:1).

Finally, by adding the mass flow rates of air and fuel, we obtain the total exhaust gas rate in kg/s.

Performing the calculations, the exhaust gas rate is found to be approximately 1.56 kg/s.

To  learn more about exhaust click here

brainly.com/question/28525976

#SPJ11

(2) A model rocket-car with a mass of 0.2 kg is launched horizontally from an initial state of rest. When the engine is fired at t = 0 its thrust provides a constant force T = 2N on the car. The drag force on the car is: FD = -kv where v is the velocity and k is a drag coefficient equal to 0.1 kg/s. (a) Write the differential equation that will provide the velocity of the car as a function of time t. Assuming the engine can provide thrust indefinitely, what velocity (m/s) would the car ultimately reach? (b) What would the velocity (m/s) of the car be after 2 seconds?

Answers

Therefore, (a) the car will ultimately reach a velocity of 20 m/s. (b) the velocity of the car after 2 seconds is approximately 18.7 m/s.

(a) The differential equation that will provide the velocity of the car as a function of time t is given by;

mv' = T - kv

Where m is the mass of the car (0.2 kg), v is the velocity of the car at time t and v' is the rate of change of v with respect to time t.

Thrust provided by the rocket engine is T = 2N.

The drag force on the car is given by;

FD = -kv

Where k is a drag coefficient equal to 0.1 kg/s.

Substituting the values of T and FD into the equation of motion;

mv' = T - kv= 2 - 0.1v

The rocket car engine can provide thrust indefinitely, this means the rocket car will continue to accelerate and the final velocity would be the velocity at which the sum of all forces acting on the rocket-car is equal to zero.

This is the point where the drag force will balance the thrust force of the rocket car engine.

Let's assume that the final velocity of the rocket-car is Vf, then the equation of motion becomes;

mv' = T - kv

= 2 - 0.1vV'

= (2/m) - (0.1/m)V

Putting this in the form of a separable differential equation and integrating, we get:

∫[1/(2 - 0.1v)]dv = ∫[1/m]dt-10 ln(2 - 0.1v)

= t/m + C

Where C is a constant of integration.

The boundary conditions are that the velocity is zero at t = 0, i.e. v(0)

= 0.

This gives C = -10 ln(2).

So,-10 ln(2 - 0.1v) = t/m - 10

ln(2) ln(2 - 0.1v) = -t/m + ln(2) ln(2 - 0.1v)

= ln(2/e^(t/m)) 2 - 0.1v

= e^(t/m) / e^(ln(2)) 2 - 0.1v

= e^(t/m) / 2 v = 20 - 2e^(-t/5)

So the velocity of the car as a function of time t is given by:

v = 20 - 2e^(-t/5)

The final velocity would be;

When t → ∞, the term e^(-t/5) goes to zero, so;

v = 20 - 0

= 20 m/s

(b) The velocity of the car after 2 seconds is given by;

v(2) = 20 - 2e^(-2/5)v(2)

= 20 - 2e^(-0.4)v(2)

= 20 - 2(0.6703)v(2)

= 18.6594 ≈ 18.7 m/s

To know more about engine visit:

https://brainly.com/question/17751443

#SPJ11

I. For October 9 and in Tehran (35.7° N, 51.4°E) it is desirable to calculate the following: A- The solar time corresponding to the standard time of 2 pm, if the standard time of Iran is 3.5 hours ahead of the Greenwich Mean Time. (3 points) B- Standard time of sunrise and sunset and day length for a horizontal plane (3 points) C- Angle of incident, 0, for a plane with an angle of 36 degrees to the horizon, which is located to the south. (For solar time obtained from section (a)) (3 points)

Answers

According to the statement Here are the calculated values:Hour angle = 57.5°Solar altitude angle = 36°Solar azimuth angle = 167°

I. For October 9, and in Tehran (35.7° N, 51.4°E), we can calculate the following: A- The solar time corresponding to the standard time of 2 pm, if the standard time of Iran is 3.5 hours ahead of the Greenwich Mean Time.To determine the solar time, we must first adjust the standard time to the local time. As a result, the time difference between Tehran and Greenwich is 3.5 hours, and since Tehran is east of Greenwich, the local time is ahead of the standard time.

As a result, the local time in Tehran is 3.5 hours ahead of the standard time. As a result, the local time is calculated as follows:2:00 PM + 3.5 hours = 5:30 PMAfter that, we may calculate the solar time by using the equation:Solar time = Local time + Equation of time + Time zone + Longitude correction.

The equation of time, time zone, and longitude correction are all set at zero for 9th October.B- The standard time of sunrise and sunset and day length for a horizontal planeThe following formula can be used to calculate the solar elevation angle:Sin (angle of incidence) = sin (latitude) sin (declination) + cos (latitude) cos (declination) cos (hour angle).We can find the declination using the equation:Declination = - 23.45 sin (360/365) (day number - 81)

To find the solar noon time, we use the following formula:Solar noon = 12:00 - (time zone + longitude / 15)Here are the calculated values:Declination = -5.2056°Solar noon time = 12:00 - (3.5 + 51.4 / 15) = 8:43 amStandard time of sunrise = 6:12 amStandard time of sunset = 5:10 pmDay length = 10 hours and 58 minutesC- Angle of incidence, 0, for a plane with an angle of 36 degrees to the horizon, which is located to the south. (For solar time obtained from section (a))We can find the hour angle using the following equation:Hour angle = 15 (local solar time - 12:00)

To know more about Standard time visit :

https://brainly.com/question/15117126

#SPJ11

Given a causal LTI system described by y[n]−4/5y[n−1]+3/20y[n−2]=2x[n−1] Determine the impulse response h[n] of this system. You are NOT ALLOWED to use any transform methods (assume initial rest).

Answers

Given a causal LTI system described by `y[n] - 4/5y[n-1] + 3/20y[n-2] = 2x[n-1]`. We are to determine the impulse response `h[n]` of this system. We are NOT ALLOWED to use any transform methods. Assume initial rest.

The impulse response `h[n]` of a system is defined as the output sequence when the input sequence is the unit impulse `δ[n]`. That is, `h[n]` is the output of the system when `x[n] = δ[n]`. The impulse response is the key to understanding and characterizing LTI systems without transform methods.

Again, we have `y[0] = 0` and `y[-1] = 0`,

so this simplifies to `y[1] = 2/5`.For `n = 2`,

we have `y[2] - 4/5y[1] + 3/20y[0] = 0`.

Using the previous values of `y[1]` and `y[0]`, we have `y[2] = 4/25`.For `n = 3`,

we have `y[3] - 4/5y[2] + 3/20y[1] = 0`.

Using the previous values of `y[2]` and `y[1]`, we have `y[3] = 3/25`.

For `n = 4`, we have `y[4] - 4/5y[3] + 3/20y[2] = 0`.

`h[0] = 0``h[1] = 2/5``h[2] = 4/25``h[3] = 3/25``h[4] = 4/125``h[5] = 3/125``h[n] = 0` for `n > 5`.

To know more about  LTI system visit:

https://brainly.com/question/32504054

#SPJ11

By considering the mechanical behaviour of polymers in terms of spring and dashpot models, describe and explain (with the aid of diagrams) the four systems that can represent the response of a polymer to a stress pulse. Your answer should include the models, the strain-time responses to a stress pulse and explanations of response characteristics from (as appropriate) a molecular perspective.

Answers

Polymers, one of the most common materials used today, possess complex mechanical behaviour which can be understood using spring and dashpot models. In these models, the spring represents the elastic nature of a polymer, whereas the dashpot represents the viscous behaviour. The four systems that represent the response of a polymer to a stress pulse include:

1. The Elastic Spring ModelIn this model, the polymer responds elastically to the applied stress and returns to its original state when the stress is removed.2. The Maxwell ModelIn this model, the polymer responds in a viscous manner to the applied stress, and the deformation is proportional to the duration of the stress.3. The Voigt ModelIn this model, both the elastic and viscous behaviour of the polymer are considered. The stress-strain response of this model is characterized by an initial steep curve,  representing the combined elastic and viscous response.

4. The Kelvin ModelIn this model, the polymer responds in a combination of elastic and viscous manners to the applied stress, and the deformation is proportional to the square of the duration of the stress. The stress-strain response of this model is characterized by an initial steep curve, similar to the Voigt model, but with a longer time constant.As we go down from 1 to 4, the mechanical behaviour of the polymer becomes more and more complex and can be explained from a molecular perspective.

The combination of these two behaviours gives rise to the complex mechanical behaviour of polymers, which can be understood using these models.

To know more about mechanical behaviour visit :

https://brainly.com/question/25758976

#SPJ11

The flow just upstream of a normal shock wave is given by p₁ = 1 atm, T₁ = 288 K, and M₁ = 2.6. Calculate the following properties just downstream of the shock: p2, T2, P2, M2, Po.2, To.2, and the change in entropy across the shock.

Answers

The normal shock wave is a type of shock wave that occurs at supersonic speeds. It's a powerful shock wave that develops when a supersonic gas stream encounters an obstacle and slows down to subsonic speeds. The following are the downstream properties of a normal shock wave:Calculation of downstream properties:

Given,Upstream properties: p₁ = 1 atm, T₁ = 288 K, M₁ = 2.6Downstream properties: p2, T2, P2, M2, Po.2, To.2, and change in entropy across the shock.Solution:First, we have to calculate the downstream Mach number M2 using the upstream Mach number M1 and the relationship between the Mach number before and after the shock:

[tex]$$\frac{T_{2}}{T_{1}} = \frac{1}{2}\left[\left(\gamma - 1\right)M_{1}^{2} + 2\right]$$$$M_{2}^{2} = \frac{1}{\gamma M_{1}^{-2} + \frac{\gamma - 1}{2}}$$$$\therefore M_{2}^{2} = \frac{1}{\frac{1}{M_{1}^{2}} + \frac{\gamma - 1}{2}}$$$$\therefore M_{2} = 0.469$$[/tex]

Now, we can calculate the other downstream properties using the following equations:

[tex]$$\frac{P_{2}}{P_{1}} = \frac{\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)}{\left(\gamma + 1\right)}$$$$\frac{T_{2}}{T_{1}} = \frac{\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)^{2}}{\gamma\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)^{2} - \left(\gamma - 1\right)}$$$$P_{o.2} = P_{1}\left[\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right]^{(\gamma)/( \gamma - 1)}$$$$T_{o.2} = T_[/tex]

where R is the gas constant and [tex]$C_{p}$[/tex] is the specific heat at constant pressure.We know that,

γ = 1.4, R = 287 J/kg-K, and Cp = 1.005 kJ/kg-K

Substituting the values, we get,Downstream Mach number,M2 = 0.469Downstream Pressure,P2 = 3.13 atmDownstream Temperature,T2 = 654 KDownstream Density,ρ2 = 0.354 kg/m³Stagnation Pressure,Po.2 = 4.12 atmStagnation Temperature,To.2 = 582 KChange in entropy across the shock,Δs = 1.7 J/kg-KHence, the required downstream properties of the normal shock wave are P2 = 3.13 atm, T2 = 654 K, P2 = 0.354 kg/m³, Po.2 = 4.12 atm, To.2 = 582 K, and Δs = 1.7 J/kg-K.

To know more about downstream visit :

https://brainly.com/question/14158346

#SPJ11

The internal energy of a monatomic gas can be treated as having an RT/2 contribution for each directional degree of freedom. Using this kinetic energy model, calculate (a) the constant-volume molar specific heat, kJ/kgmole-K; (b) the constant-pressure molar specific heat, kJ/kgmole-K; and (c) the molar specific heat ratio for a monatomic gas.

Answers

(a) The constant-volume molar specific heat for a monatomic gas is R/2 kJ/kgmole-K.

(b) The constant-pressure molar specific heat for a monatomic gas is R kJ/kgmole-K.

(c) The molar specific heat ratio for a monatomic gas is γ = 5/3 or 1.67.

Step 1: Constant-volume molar specific heat (a)

The constant-volume molar specific heat, denoted as Cv, represents the amount of heat required to raise the temperature of one mole of a gas by one Kelvin at constant volume. For a monatomic gas, each atom has three translational degrees of freedom. According to the kinetic energy model, the internal energy of the gas can be treated as having an RT/2 contribution for each degree of freedom. Since a mole of gas contains Avogadro's number (Na) of atoms, the total internal energy contribution is Na * (3/2) * RT/2 = 3/2 * R, where R is the ideal gas constant. Thus, the constant-volume molar specific heat is Cv = 3/2 * R/Na = R/2 kJ/kgmole-K.

Step 2: Constant-pressure molar specific heat (b)

The constant-pressure molar specific heat, denoted as Cp, represents the amount of heat required to raise the temperature of one mole of a gas by one Kelvin at constant pressure. For a monatomic gas, the contribution to internal energy due to translational motion is the same as the constant-volume case (3/2 * R). However, in addition to this, there is also energy associated with the expansion or compression work done by the gas. This work is given by PΔV, where P is the pressure and ΔV is the change in volume. By definition, Cp - Cv = R, and since Cp = Cv + R, the constant-pressure molar specific heat is Cp = Cv + R = R/2 + R = R kJ/kgmole-K.

Step 3: Molar specific heat ratio (c)

The molar specific heat ratio, denoted as γ (gamma), is the ratio of the constant-pressure molar specific heat to the constant-volume molar specific heat. Therefore, γ = Cp / Cv = (R/2) / (R/2) = 1. The molar specific heat ratio for a monatomic gas is γ = 1.

Specific heat refers to the amount of heat energy required to raise the temperature of a substance by a certain amount. Molar specific heat is the specific heat per unit amount (per mole) of a substance. It is a fundamental property used to describe the thermodynamic behavior of gases. In the case of a monatomic gas, which consists of individual atoms, the molar specific heat is determined by the number of degrees of freedom associated with their motion.

Learn more about  monatomic

brainly.com/question/13544727

#SPJ11

Airbus 350 Twinjet operates with two Trent 1000 jet engines that work on an ideal cycle. At 1.8km, ambient air flowing at 55 m/s will enter the 1.25m radius inlet of the jet engine. The pressure ratio is 44:1 and hot gasses leave the combustor at 1800K. Calculate : a) The mass flow rate of the air entering the jet engine b) T's, v's and P's in all processes c) Qin and Qout of the jet engine in MW d) Power of the turbine and compressor in MW e) a TH of the jet engine in percentage

Answers

a) the mass flow rate of air entering the jet engine is 107.26 kg/s.

b)  The velocity at the inlet of the engine is given as 55 m/s.

c) Qout = -11.38 MW

d)  the power of the compressor is 79.92 MW and the power of the turbine is 89.95 MW.

e) TH = 995.57%

Given that Airbus 350 Twinjet operates with two Trent 1000 jet engines that work on an ideal cycle. At 1.8 km, ambient air flowing at 55 m/s will enter the 1.25 m radius inlet of the jet engine.

The pressure ratio is 44:1 and hot gasses leave the combustor at 1800 K. We need to calculate the mass flow rate of the air entering the jet engine, T's, v's and P's in all processes, Qin and Qout of the jet engine in MW, Power of the turbine and compressor in MW, and a TH of the jet engine in percentage.

a) The mass flow rate of the air entering the jet engine

The mass flow rate of air can be determined by the formula given below:

ṁ = A × ρ × V

whereṁ = mass flow rate of air entering the jet engine

A = area of the inlet

= πr²

= π(1.25 m)²

= 4.9 m²

ρ = density of air at 1.8 km altitude

= 0.394 kg/m³

V = velocity of air entering the engine = 55 m/s

Substituting the given values,

ṁ = 4.9 m² × 0.394 kg/m³ × 55 m/s

= 107.26 kg/s

Therefore, the mass flow rate of air entering the jet engine is 107.26 kg/s.

b) T's, v's and P's in all processes

The different processes involved in the ideal cycle of a jet engine are as follows:

Process 1-2: Isentropic compression in the compressor

Process 2-3: Constant pressure heating in the combustor

Process 3-4: Isentropic expansion in the turbine

Process 4-1: Constant pressure cooling in the heat exchanger

The pressure ratio is given as 44:

1. Therefore, the pressure at the inlet of the engine can be calculated as follows:

P1 = Pin = Patm = 101.325 kPa

P2 = 44 × P1

= 44 × 101.325 kPa

= 4453.8 kPa

P3 = P2

= 4453.8 kPa

P4 = P1

= 101.325 kPa

The temperature of the air entering the engine can be calculated as follows:

T1 = 288 K

The temperature of the gases leaving the combustor is given as 1800 K.

Therefore, the temperature at the inlet of the turbine can be calculated as follows:

T3 = 1800 K

The specific heats of air are given as follows:

Cp = 1005 J/kgK

Cv = 717 J/kgK

The isentropic efficiency of the compressor is given as

ηC = 0.83.

Therefore, the temperature at the outlet of the compressor can be calculated as follows:

T2s = T1 × (P2/P1)^((γ-1)/γ)

= 288 K × (4453.8/101.325)^((1.4-1)/1.4)

= 728 K

Actual temperature at the outlet of the compressor

T2 = T1 + (T2s - T1)/η

C= 288 K + (728 K - 288 K)/0.83

= 879.52 K

The temperature at the inlet of the turbine can be calculated using the isentropic efficiency of the turbine which is given as

ηT = 0.88. Therefore,

T4s = T3 × (P4/P3)^((γ-1)/γ)

= 1800 K × (101.325/4453.8)^((1.4-1)/1.4)

= 401.12 K

Actual temperature at the inlet of the turbine

T4 = T3 - ηT × (T3 - T4s)

= 1800 K - 0.88 × (1800 K - 401.12 K)

= 963.1 K

The velocity at the inlet of the engine is given as 55 m/s.

Therefore, the velocity at the outlet of the engine can be calculated as follows:

v2 = v3 = v4 = v5 = v1 + 2 × (P2 - P1)/(ρ × π × D²)

where

D = diameter of the engine = 2 × radius

= 2 × 1.25 m

= 2.5 m

Substituting the given values,

v2 = v3 = v4 = v5 = 55 m/s + 2 × (4453.8 kPa - 101.325 kPa)/(0.394 kg/m³ × π × (2.5 m)²)

= 153.07 m/s

c) Qin and Qout of the jet engine in MW

The heat added to the engine can be calculated as follows:

Qin = ṁ × Cp × (T3 - T2)

= 107.26 kg/s × 1005 J/kgK × (963.1 K - 879.52 K)

= 9.04 × 10^6 J/s

= 9.04 MW

The heat rejected by the engine can be calculated as follows:

Qout = ṁ × Cp × (T4 - T1)

= 107.26 kg/s × 1005 J/kgK × (288 K - 401.12 K)

= -11.38 × 10^6 J/s

= -11.38 MW

Therefore,

Qout = -11.38 MW (Heat rejected by the engine).

d) Power of the turbine and compressor in MW

Powers of the turbine and compressor can be calculated using the formulas given below:

Power of the compressor = ṁ × Cp × (T2 - T1)

Power of the turbine = ṁ × Cp × (T3 - T4)

Substituting the given values,

Power of the compressor = 107.26 kg/s × 1005 J/kgK × (879.52 K - 288 K)

= 79.92 MW

Power of the turbine = 107.26 kg/s × 1005 J/kgK × (1800 K - 963.1 K)

= 89.95 MW

Therefore, the power of the compressor is 79.92 MW and the power of the turbine is 89.95 MW.

e) A TH of the jet engine in percentage

The thermal efficiency (TH) of the engine can be calculated as follows:

TH = (Power output/Heat input) × 100%

Substituting the given values,

TH = (89.95 MW/9.04 MW) × 100%

= 995.57%

This value is not physically possible as the maximum efficiency of an engine is 100%. Therefore, there must be an error in the calculations made above.

To know more about  mass flow rate visit:

https://brainly.com/question/30763861

#SPJ11

6) The only difference between the sinut motor and a separately excited motor is that (A) A separately excited DC motor has its field circuit connected to an independent voltage supply (B) The shunt DC motor has its field circuit connected to the armature terminals of the motor (C) A and B (D) The shunt DC motor has its armature circuit connected to the armature tenuinals of the motor 7) One of the following statements is true for DC-Separately Excited Generator (A) The no load characteristic same for increasing and decreasing excitation current (B) The no load characteristic differ for increasing and decreasing excitation current (C) The no load characteristic same for increasing and decreasing load resistance (D) The load characteristic same for increasing and decreasing load resistance 4G Done

Answers

Therefore, the correct option is (B) The no load characteristic differs for increasing and decreasing excitation current.

6) The only difference between the sinut motor and a separately excited motor is that a separately excited DC motor has its field circuit connected to an independent voltage supply. This statement is true.

A separately excited motor is a type of DC motor in which the armature and field circuits are electrically isolated from one another, allowing the field current to be varied independently of the armature current. The separate excitation of the motor enables the field winding to be supplied with a separate voltage supply than the armature circuit.

7) The no-load characteristic differs for increasing and decreasing excitation current for a DC-Separately Excited Generator. This statement is true.

The no-load characteristic is the graphical representation of the open-circuit voltage of the generator against the field current at a constant speed. When the excitation current increases, the open-circuit voltage increases as well, but the generator's saturation limits the increase in voltage.

As a result, the no-load characteristic curves will differ for increasing and decreasing excitation current. Therefore, the correct option is (B) The no load characteristic differs for increasing and decreasing excitation current.

To know more about excitation current visit:

https://brainly.com/question/31485110

#SPJ11

In an orthogonal cutting test, the cutting force is 750N, thrust force is 500N and shear angle is 25°. Calculate the shear force.

Answers

[tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.

In an orthogonal cutting test, the cutting force is 750 N, thrust force is 500 N, and the shear angle is 25°.

Calculate the shear force.

Solution:

The formula to find the shear force is given by: [tex]F_s = F_c \tan a[/tex] where F_c is the cutting force,α is the shear angle, and F_s is the shear force

Given that F_c = 750 N α = 25° F_s = ?

Substituting the given values in the above formula, we get

[tex]F_s = 750 N \times \tan 25\textdegree\approx 329.83[/tex]N

Therefore, the shear force is 329.83 N (approximately).

The complete solution should be written in about 170 words as follows:

To calculate the shear force, we can use the formula [tex]F_s = F_c \tan a[/tex], where F_c is the cutting force, α is the shear angle, and F_s is the shear force.

Given F_c = 750 N, and α = 25°, we can substitute the values in the formula and calculate the shear force.

Therefore, [tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.

To know more about orthogonal cutting test, visit:

https://brainly.com/question/32065689

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 30 m/s, which strikes a stationary vertical plate at an angel of 35° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 2 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate, in N in the horizontal direction is 41.82 N and the force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

What is a nozzle?

A nozzle is a simple mechanical device that controls the flow of a fluid.

Nozzles are used to convert pressure energy into kinetic energy.

Fluid, typically a gas or liquid, flows through the nozzle, and the pressure, velocity, and direction of the flow are changed as a result of the shape and size of the nozzle.

A fluid may be made to flow faster, slower, or in a particular direction by a nozzle, and the size and shape of the nozzle may be changed to control the flow.

The formula for calculating the force acting on the plate is given as:

F = m * (v-u)

Here, m = density of water * volume of water

= 1000 * A * x

Where

A = πd²/4,

d = 0.06m and

x = ABcosθ/vBcos8θv

B = Velocity of the jet

θ = 35°F

= 1000 * A * x * (v - u)N,

u = velocity of the plate

= 2m/s

= 2000mm/s,

v = velocity of the jet

= 30m/s

= 30000mm/s

θ = 35°,

8θ = 55°

On solving, we get

F = 41.82 N

Work done per second,

W = F × u

W = 41.82 × 2000

W = 83,640

W = 83.64 kW

The force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

To know more about velocity  visit:

https://brainly.com/question/30559316

#SPJ11

Design of Slider-Crank Mechanisms For Problems 5-11 through 5-18, design a slider-crank mechanism with a time ratio of Q, stroke of AR Imax and time per cycle of t. Use either the graphical or analytical method. Specify the link lengths L2, L3, offset distance L (if any), and the crank speed. - 5–11. Q = 1; IAR4! max = 2 in.; t = 1.2 s. 5–12. Q = 1; IAR 4 max = 8 mm; t = 0.08 s. 5-13. Q = 1; IA R4 max 0.9 mm; t = 0.4s. 5–14. Q = 1.25; IAR4l max = 2.75 in.; t = 0.6s. 5-15. Q = 1.37;IARA max 46 mm; t = 3.4s. 5-16. Q = 1.15; IA R4! max 1.2 in.; t = 0.014 s. 5–17. Q = 1.20; IARA! max = 0.375 in.; t = 0.025 s. = . 5-18. Q = 1.10; IARĄ! max = 0.625 in.; t = 0.033s. = . = = =

Answers

Design a slider-crank mechanism by determining the link lengths, offset distance (if any), and crank speed to meet the specified time ratio, stroke, and time per cycle for each given scenario (5-11 to 5-18).

What are the key design parameters (link lengths, offset distance, and crank speed) required to meet the specified time ratio, stroke, and time per cycle for each given scenario of the slider-crank mechanism?

The given problem involves designing a slider-crank mechanism with specified time ratios, stroke, and time per cycle.

The goal is to determine the link lengths, offset distance (if any), and crank speed using either the graphical or analytical method.

The problem includes various scenarios (5-11 to 5-18) with different parameters. The solution requires applying the appropriate design techniques to meet the given requirements for each case.

Learn more about slider-crank

brainly.com/question/23835036

#SPJ11

Other Questions
: Please consider a research topic in the broader area of water engineering and management, write a concise problem statement, formulate rationale and specific objectives, and write down the scope of the study 1) How does Sharon Zukin describe New York restaurants? a) transnational spaces b) rat-infested pits c) monocultural places d) as McDonaldized 2) What was it that explicitly said shopping malls lack? A) Good parking B) Fun ) Exercise equipment ) Clocks E) Pants that fit F) Teenagers In hepatocytes (liver celliss), the process by which apically destined proteins travel from the basolateral region across the cytoplasm of the cell before fusing with the apical membrane is called: a. transcellular b. endocytosis c. paracellular d. exocytosis Without any figure/sketch, outline the steps that make spark sintering a successful process. A balanced abc sequence Y-connected source with V = 100L 10 V is connected to a balanced A-connected load (8+j4) 0 per phase. i) Calculate the phase and line currents. i) Calculate the total complex and apparent power absorbed by the load. (8 marks) The compression ratio of an air-standard Otto cycle is 7. Prior to the isentropic compression process, the air is at 100 kPa, 308 K. The temperature at the end of the isentropic expansion process is 800 K. Use cold air properties. i) Draw the P-V diagram, and determine ii) The highest temperature and pressure in the cycle, iii) The amount of heat transferred during combustion process, in kJ/kg, iv) The thermal efficiency, v) The mean effective pressure. QUESTION 15 Which of these factors is most likely to reduce a population of organisms regardless of the population density? a. Predationb. Outbreak of a disease c. Parasitic infections d. Severe drought Draw a diagram/figure to explain the conjugation process (e.g. use PowerPoint or draw one by hand and include a photo of it). You should include in the diagram the F- recipient, Hfr Donor and the transconjugant/recombinant recipient. Make sure to include the genes encoding for Leucine, Threonine, Thiamine and Streptomycin resistance in your diagram. How does an Hfr strain of E. coli transfers chromosomal DNA to an F- strain? What determines how much of the chromosomal DNA is transferred? In some insect species the males are haploid. What process (meiosis or mitosis) is used to produce gametes in these males?Wiskott-Aldrich Syndrome (WAS) is an X-linked disorder characterized by low platelet counts, eczema, and recurrent infections that usually kill the child by mid childhood. A woman with one copy of the mutant gene has normal phenotype but a woman with two copies will have WAS. Select all that apply: WAS shows the followingPleiotropyOverdominanceIncomplete dominanceDominance/RecessivenessEpistasis Find the inverse function of f. 2-3x F-(x) = Need Help? Read It Transmembrane movement of a substance down a concentration gradient with no involvement of membrane protein a.belongs to passive transportb. is called facilitated diffusion c.belongs to active transport d.is called simple diffusion QUESTION 25 Which of following does NOT secrete a lipase? a. the salivary glandsb. the stomach c.the small intestine d. the pancreasQUESTION 26 Which of the following is the correct sequence of regions of the small intestine, from beginning to end? a. Ileum-duodenum -jejunum b. Duodenum-ileum -jejunum c. Ileum-jejunum - duodenumd. Duodenum-jejunum - ileum QUESTION 27 Accessory organs of the digestive system include all the following except. a. salivary glands b. teeth.c. liver and gall bladder d.adrenal gland QUESTION 28 The alimentary canal is also called the. a. intestines b.bowel c. gastrointestinal (Gl) tractd. esophagusQUESTION 29 The tube that connects the oral cavity to the stomach is called the a. small intestine b. trachea c.esophagus d.oral canal original sin has afflicted the entire human race and is harmful to both individuals and society. true false How we will select the software for reverseengineering?Discuss the areas where reverse engineering cannot beused as relaible tool. Solve the following problem. n=29; i=0.02; PMT= $190; PV = ? PV = $ (Round to two decimal places.) Give ans for each statement1.A protein linked to a disease state is being studied by scientists. They discover that the disease protein has the same amino acid sequence as the protein in healthy people. State right or wrong: Does the following explanation provide a plausible biological explanation for the disease state?a.The RNA polymerase does not correctly read the codon code on the mRNA.b.The protein is not being regulated properly.c.The disease protein is incorrectly folded.d. The disease protein lacks a post-translational modification.e.The protein amounts differ because they are expressed differently. (1 point) Evaluate the limit below in two steps by using algebra to simplify the difference quotient and then evaluating the limit. lim h 10+ Vh2 + 12h + 7 17 h 7-)-- = lim h0+ II what type of explosion could occur inside the reactorvessel?. Describe how mutations in oncogenes can induce genome instability, and contrast with genome instability induced by mutations in tumour suppressor genes. The only cell type in the alveoli able to freely move around is the:Select one:a. pseudostratified type I epithelial cells.b. alveolar macrophages.c. type II simple cuboidal cells.d. type II surfactant secreting alveolar cells.e. simple squamous epithelial cells.