(10x – 23)

WHAT IS THE VALUE OF X?

137

Answers

Answer 1

x=16

1st you add 23 to 137

Then you divide 160 by 10, then you get 16.


Related Questions

Solve the initial value problem. Give the explicit solution \( y=f(x) \) \[ \left(y^{3}-1\right) e^{x} d x+3 y^{2}\left(e^{x}+1\right) d y=0, y(0)=2 \]

Answers

The explicit solution to the initial value problem is:

[tex]\[y = -1 \pm e^{(x + 2\ln(3))/2}\][/tex]

To solve the initial value problem [tex](IVP) \((y^3 - 1)e^x dx + 3y^2(e^x + 1)dy = 0\) with \(y(0) = 2\)[/tex], we can rearrange the equation and separate variables.

Starting with [tex]\((y^3 - 1)e^x dx + 3y^2(e^x + 1)dy = 0\)[/tex], we divide both sides by \((y^3 - 1)e^x\) to separate variables:

[tex]\[\frac{dx}{e^x} + \frac{3y^2 + 3y^2e^x}{y^3 - 1}dy = 0\][/tex]

Now, we integrate both sides:

[tex]\[\int \frac{dx}{e^x} + \int \frac{3y^2 + 3y^2e^x}{y^3 - 1}dy = 0\][/tex]

The integral on the left side with respect to \(x\) is simply \(x + C_1\), where \(C_1\) is the constant of integration.

For the integral on the right side, we can use a partial fraction decomposition to simplify it. The denominator \(y^3 - 1\) can be factored as \((y - 1)(y^2 + y + 1)\), and we can express the fraction as:

[tex]\[\frac{3y^2 + 3y^2e^x}{y^3 - 1} = \frac{A}{y - 1} + \frac{By + C}{y^2 + y + 1}\][/tex]

Multiplying both sides by [tex]\((y - 1)(y^2 + y + 1)\)[/tex]and simplifying, we get:

[tex]\[3y^2 + 3y^2e^x = A(y^2 + y + 1) + (By + C)(y - 1)\][/tex]

Expanding and matching coefficients, we find[tex]\(A = 2\), \(B = 1\)[/tex], and[tex]\(C = -1\).[/tex]

Now, we can integrate the right side:

[tex]\[\int \frac{2}{y - 1} + \frac{y - 1}{y^2 + y + 1}dy = 0\][/tex]

This yields:

[tex]\[2\ln|y - 1| + \frac{1}{2}\ln|y^2 + y + 1| - \ln|y - 1| = \ln|y^2 + y + 1|\][/tex]

Combining the integrals, we have:

[tex]\[x + C_1 = \ln|y^2 + y + 1|\][/tex]

To find the explicit solution \(y = f(x)\), we can exponentiate both sides:

[tex]\[e^{x + C_1} = y^2 + y + 1\][/tex]

Simplifying, we get:

[tex]\[e^{x + C_1} = (y + 1)^2\][/tex]

Taking the square root, we obtain:

[tex]\[y + 1 = \pm e^{(x + C_1)/2}\][/tex]

Finally, subtracting 1 from both sides gives:

[tex]\[y = -1 \pm e^{(x + C_1)/2}\][/tex]

Considering the initial condition [tex]\(y(0) = 2\),[/tex] we substitute [tex]\(x = 0\) and \(y = 2\)[/tex] into the equation:

[tex]\[2 = -1 \pm e^{C_1/2}\][/tex]

Solving for [tex]\(C_1\)[/tex], we find:

[tex]\[C_1 = 2\ln(3)\][/tex]

Learn more about solution here :-

https://brainly.com/question/15757469

#SPJ11

Ifwe take the following list of functions f1,f2,f},f4, and f5. Arrange them in ascending order of growth rate. That is, if function g(n) immediately follows function f(n) in your list, then it should be the case that f(n) is O(g(n)). 1) f1(n)=10n 2)f2(n)=n1/3 3) 73(n)=nn 4) f4(n)=log2​n 5)(5(n)=2log2n

Answers

Arranging the given functions in ascending order of growth rate, we have:

f4(n) = log2(n)

f5(n) = 2log2(n)

f2(n) = n^(1/3)

f1(n) = 10n

f3(n) = n^n

The function f4(n) = log2(n) has the slowest growth rate among the given functions. It grows logarithmically, which is slower than any polynomial or exponential growth.

Next, we have f5(n) = 2log2(n). Although it is a logarithmic function, the coefficient 2 speeds up its growth slightly compared to f4(n).

Then, we have f2(n) = n^(1/3), which is a power function with a fractional exponent. It grows slower than linear functions but faster than logarithmic functions.

Next, we have f1(n) = 10n, which is a linear function. It grows at a constant rate, with the growth rate directly proportional to n.

Finally, we have f3(n) = n^n, which has the fastest growth rate among the given functions. It grows exponentially, with the growth rate increasing rapidly as n increases.

Therefore, the arranged list in ascending order of growth rate is: f4(n), f5(n), f2(n), f1(n), f3(n).

Learn more about functions here: brainly.com/question/30660139

#SPJ11

Find An Equation Of The Line That Satisfies The Given Conditions. Through (1,−8); Parallel To The Line X+2y=6

Answers

Therefore, an equation of the line that satisfies the given conditions is y = (-1/2)x - 15/2.

To find an equation of a line parallel to the line x + 2y = 6 and passing through the point (1, -8), we can follow these steps:

Step 1: Determine the slope of the given line.

To find the slope of the line x + 2y = 6, we need to rewrite it in slope-intercept form (y = mx + b), where m is the slope. Rearranging the equation, we have:

2y = -x + 6

y = (-1/2)x + 3

The slope of this line is -1/2.

Step 2: Parallel lines have the same slope.

Since the line we are looking for is parallel to the given line, it will also have a slope of -1/2.

Step 3: Use the point-slope form of a line.

The point-slope form of a line is given by:

y - y1 = m(x - x1)

where (x1, y1) is a point on the line, and m is the slope.

Using the point (1, -8) and the slope -1/2, we can write the equation as:

y - (-8) = (-1/2)(x - 1)

Simplifying further:

y + 8 = (-1/2)x + 1/2

y = (-1/2)x - 15/2

To know more about equation,

https://brainly.com/question/28700762

#SPJ11

Consider a periodic signal (t) with a period To = 2 and C_x = 3 The transformation of x(t) gives y(t) where: y(t)=-4x(t-2)-2 Find the Fourier coefficient Cay
Select one:
C_oy=-14
C_oy=-6
C_oy= -2
C_oy = 10

Answers

The second integral can be evaluated as follows:

(1/2) ∫[0,2] 2 e^(-jnωt) dt = ∫[0,2] e^(-jnωt) dt = [(-1/(jnω)) e^(-jnωt)] [0,2] = (-1/(jnω)) (e^(-jnω(2

To find the Fourier coefficient C_ay, we can use the formula for the Fourier series expansion of a periodic signal:

C_ay = (1/To) ∫[0,To] y(t) e^(-jnωt) dt

Given that y(t) = -4x(t-2) - 2, we can substitute this expression into the formula:

C_ay = (1/2) ∫[0,2] (-4x(t-2) - 2) e^(-jnωt) dt

Now, since x(t) is a periodic signal with a period of 2, we can write it as:

x(t) = ∑[k=-∞ to ∞] C_x e^(jk(2π/To)t)

Substituting this expression for x(t), we get:

C_ay = (1/2) ∫[0,2] (-4(∑[k=-∞ to ∞] C_x e^(jk(2π/To)(t-2))) - 2) e^(-jnωt) dt

We can distribute the -4 inside the summation:

C_ay = (1/2) ∫[0,2] (-4∑[k=-∞ to ∞] C_x e^(jk(2π/To)(t-2)) - 2) e^(-jnωt) dt

Using linearity of the integral, we can split it into two parts:

C_ay = (1/2) ∫[0,2] (-4∑[k=-∞ to ∞] C_x e^(jk(2π/To)(t-2)) e^(-jnωt) dt) - (1/2) ∫[0,2] 2 e^(-jnωt) dt

Since the integral is over one period, we can replace (t-2) with t' to simplify the expression:

C_ay = (1/2) ∫[0,2] (-4∑[k=-∞ to ∞] C_x e^(jk(2π/To)t') e^(-jnωt') dt') - (1/2) ∫[0,2] 2 e^(-jnωt) dt

The term ∑[k=-∞ to ∞] C_x e^(jk(2π/To)t') e^(-jnωt') represents the Fourier series expansion of x(t') evaluated at t' = t.

Since x(t) has a period of 2, we can rewrite it as:

C_ay = (1/2) ∫[0,2] (-4x(t') - 2) e^(-jnωt') dt' - (1/2) ∫[0,2] 2 e^(-jnωt) dt

Now, notice that the first integral is -4 times the integral of x(t') e^(-jnωt'), which represents the Fourier coefficient C_x. Therefore, we can write:

C_ay = -4C_x - (1/2) ∫[0,2] 2 e^(-jnωt) dt

The second integral can be evaluated as follows:

(1/2) ∫[0,2] 2 e^(-jnωt) dt = ∫[0,2] e^(-jnωt) dt = [(-1/(jnω)) e^(-jnωt)] [0,2] = (-1/(jnω)) (e^(-jnω(2

Learn more about  integral from

https://brainly.com/question/30094386

#SPJ11

While solving the system of equations using the Method of Addition −x+2y=−15x−10y=6
​ you get to a line in your work that reads 0=1. Assuming that your work is correct, which of the following is certainly true? You can deduce that this system of equations is dependent, but you must find a parametric set of solutions before giving your answer. You can deduce that this system of equations is inconsistent, write "no solution", and move on. EUREKA! You have broken mathematics. There is a glitch in the Matrix, and this problem is definite proof of it. You can deduce that this system of equations is dependent, write "all real numbers x and y "and move on.

Answers

The presence of the equation 0 = 1 in the process of solving the system of equations indicates an inconsistency, making the system unsolvable. If during the process of solving the system of equations using the Method of Addition, we arrive at the equation 0 = 1, then we can conclude that this system of equations is inconsistent.

The statement "0 = 1" implies a contradiction, as it is not possible for 0 to be equal to 1. Therefore, the system of equations has no solution.

In this case, we cannot deduce that the system is dependent or find a parametric set of solutions. The presence of the equation 0 = 1 indicates a fundamental inconsistency in the system, rendering it unsolvable.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

The formula A=(1)/(2) bh can be used to find the area of a triangle. a. Solve the formula for b. b. If the area of the triangle is 48in^(2), what would be the appropriate units for the base?

Answers

The appropriate unit for the base would be inches (in).

The given formula is A = 1/2 bh where A represents the area of the triangle, b is the base, and h is the height. We are required to solve the formula for b.A) To solve for b, we need to isolate b on one side of the equation as follows: 2A = bh, Divide by h on both sides, we have: 2A/h = bTherefore, the formula for b is given as: b = 2A/hB) Given that the area of the triangle is 48in², we can use the formula obtained in part A to find the value of b. We know that the area A is 48in². Let us assume that the height h is also in inches. Therefore, substituting the given values into the formula for b we obtain:b = 2(48 in²)/h = 96/hSince we know that the area is in square inches, the height is in inches, therefore, the base b must also be in inches. Thus, the appropriate unit for the base would be inches (in).Hence, the appropriate unit for the base would be inches (in).

Learn more about unit :

https://brainly.com/question/19866321

#SPJ11

Find the first and second derivatives of the function. f(x) = x/7x + 2
f ' (x) = (Express your answer as a single fraction.)
f '' (x) = Express your answer as a single fraction.)

Answers

The derivatives of the function are

f'(x) = 2/(7x + 2)²f''(x) = -28/(7x + 2)³How to find the first and second derivatives of the functions

From the question, we have the following parameters that can be used in our computation:

f(x) = x/(7x + 2)

The derivative of the functions can be calculated using the first principle which states that

if f(x) = axⁿ, then f'(x) = naxⁿ⁻¹

Using the above as a guide, we have the following:

f'(x) = 2/(7x + 2)²

Next, we have

f''(x) = -28/(7x + 2)³

Read more about derivatives at

brainly.com/question/5313449

#SPJ4

the half-life of radium-226 is 1600 years. suppose we have a 22 mg sample. (a) find the relative decay rate r. (b) use r above to find a function that models the mass remaining after t years. (c) how much of the sample will remain after 4000 years?

Answers

a. the relative decay rate of radium-226 is 0.000433 per year.

b. The function that models the mass remaining after t years is [tex]m(t) = 22 * e^(-0.000433*t)[/tex]

c. After 4000 years, only 5.39 mg of the original 22 mg sample of radium-226 will remain.

How to find the relative decay rate

The relative decay rate r can be calculated using the formula:

r = ln(2) / t1/2

where t1/2 is the half-life of the substance. Substituting the value

r = ln(2) / 1600 = 0.000433

Therefore, the relative decay rate of radium-226 is 0.000433 per year.

(b) The function that models the mass remaining after t years is

[tex]m(t) = m0 * e^(-r*t)[/tex]

where m₀is the initial mass of the substance, r is the relative decay rate, and e is the base of the natural logarithm.

Substitute the given values

[tex]m(t) = 22 * e^(-0.000433*t)[/tex]

(c) To find how much of the sample will remain after 4000 years, we can substitute t = 4000 in the above function:

[tex]m(4000) = 22 * e^(-0.000433*4000)[/tex]

= 5.39 mg

Therefore, after 4000 years, only 5.39 mg of the original 22 mg sample of radium-226 will remain.

Learn more about half-life on https://brainly.com/question/1160651

#SPJ4

A coin has probability 0.7 of coming up heads. The coin is flipped 10 times. Let X be the number of heads that come up. Write out P(X=k) for every value of k from 0 to 10 . Approximate each value to five decimal places. Which value of k has the highest probability?

Answers

The values of P(X=k) for k = 0,1,2,3,4,5,6,7,8,9,10 are P(X=0) ≈ 0.00001, P(X=1) ≈ 0.00014, P(X=2) ≈ 0.00145, P(X=3) ≈ 0.00900, P(X=4) ≈ 0.03548

P(X=5) ≈ 0.10292, P(X=6) ≈ 0.20012, P(X=7) ≈ 0.26683, P(X=8) ≈ 0.23347, P(X=9) ≈ 0.12106, and  P(X=10) ≈ 0.02825. The value of k that has the highest probability is k = 7.

The probability of a coin coming up heads is 0.7.

The coin is flipped 10 times.

Let X denote the number of heads that come up.

The probability distribution is given by:

P(X=k) = nCk pk q^(n−k)

where:

n = 10k = 0, 1, 2, …,10

p = 0.7q = 0.3P(X=k)

= (10Ck) (0.7)^k (0.3)^(10−k)

For k = 0,1,2,3,4,5,6,7,8,9,10:

P(X = 0) = (10C0) (0.7)^0 (0.3)^10

= 0.0000059048

P(X = 1) = (10C1) (0.7)^1 (0.3)^9

= 0.000137781

P(X = 2) = (10C2) (0.7)^2 (0.3)^8

= 0.0014467

P(X = 3) = (10C3) (0.7)^3 (0.3)^7

= 0.0090017

P(X = 4) = (10C4) (0.7)^4 (0.3)^6

= 0.035483

P(X = 5) = (10C5) (0.7)^5 (0.3)^5

= 0.1029196

P(X = 6) = (10C6) (0.7)^6 (0.3)^4

= 0.2001209

P(X = 7) = (10C7) (0.7)^7 (0.3)^3

= 0.2668279

P(X = 8) = (10C8) (0.7)^8 (0.3)^2

= 0.2334744

P(X = 9) = (10C9) (0.7)^9 (0.3)^1

= 0.1210608

P(X = 10) = (10C10) (0.7)^10 (0.3)^0

= 0.0282475

The values of P(X=k) for k = 0,1,2,3,4,5,6,7,8,9,10 are 0.0000059048, 0.000137781, 0.0014467, 0.0090017, 0.035483, 0.1029196, 0.2001209, 0.2668279, 0.2334744, 0.1210608, and 0.0282475, respectively.

Approximating each value to five decimal places:

P(X=0) ≈ 0.00001

P(X=1) ≈ 0.00014

P(X=2) ≈ 0.00145

P(X=3) ≈ 0.00900

P(X=4) ≈ 0.03548

P(X=5) ≈ 0.10292

P(X=6) ≈ 0.20012

P(X=7) ≈ 0.26683

P(X=8) ≈ 0.23347

P(X=9) ≈ 0.12106

P(X=10) ≈ 0.02825

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

The perimeter of the rectangular playing field is 396 yards. The length of the field is 2 yards less than triple the width. What are the dimensions of the playing field?

Answers

The dimensions of the rectangular playing field are 50 yards (width) and 148 yards (length).

Let's assume the width of the rectangular playing field is "w" yards.

According to the given information, the length of the field is 2 yards less than triple the width, which can be represented as 3w - 2.

The perimeter of a rectangle is given by the formula: perimeter = 2(length + width).

In this case, the perimeter is given as 396 yards, so we can write the equation:

2((3w - 2) + w) = 396

Simplifying:

2(4w - 2) = 396

8w - 4 = 396

Adding 4 to both sides:

8w = 400

Dividing both sides by 8:

w = 50

Therefore, the width of the playing field is 50 yards.

Substituting this value back into the expression for the length:

3w - 2 = 3(50) - 2 = 148

So, the length of the playing field is 148 yards.

Therefore, the dimensions of the playing field are 50 yards by 148 yards.

See more on perimeter here: https://brainly.com/question/30536242

#SPJ11

A collection of coins contains only nickels and dimes. The collection includes 31 coins and has a face -value of $2.65. How many nickels and how many dimes are there?

Answers

There are 9 nickels and 22 dimes in the collection.

To solve this system of equations, we can multiply Equation 1 by 0.05 to eliminate N:

0.05N + 0.05D = 1.55

Now, subtract Equation 2 from this modified equation:

(0.05N + 0.05D) - (0.05N + 0.10D) = 1.55 - 2.65

0.05D - 0.10D = -1.10

-0.05D = -1.10

D = -1.10 / -0.05

D = 22

Now that we know there are 22 dimes, we can substitute this value back into Equation 1 to find the number of nickels:

N + 22 = 31

N = 31 - 22

N = 9

Therefore, there are 9 nickels and 22 dimes in the collection.

For more such questions on  collection

https://brainly.com/question/13458417

#SPJ8

y=2−4x^2;P(4,−62) (a) The slope of the curve at P is (Simplify your answer.) (b) The equation for the tangent line at P is (Type an equation.)

Answers

The equation of the tangent line at P is `y = -256x + 1026`

Given function:y = 2 - 4x²and a point P(4, -62).

Let's find the slope of the curve at P using the formula below:

dy/dx = lim Δx→0 [f(x+Δx)-f(x)]/Δx

where Δx is the change in x and Δy is the change in y.

So, substituting the values of x and y into the above formula, we get:

dy/dx = lim Δx→0 [f(4+Δx)-f(4)]/Δx

Here, f(x) = 2 - 4x²

Therefore, substituting the values of f(x) into the above formula, we get:

dy/dx = lim Δx→0 [2 - 4(4+Δx)² - (-62)]/Δx

Simplifying this expression, we get:

dy/dx = lim Δx→0 [-64Δx - 64]/Δx

Now taking the limit as Δx → 0, we get:

dy/dx = -256

Therefore, the slope of the curve at P is -256.

Now, let's find the equation of the tangent line at point P using the slope-intercept form of a straight line:

y - y₁ = m(x - x₁)

Here, the coordinates of point P are (4, -62) and the slope of the tangent is -256.

Therefore, substituting these values into the above formula, we get:

y - (-62) = -256(x - 4)

Simplifying this equation, we get:`y = -256x + 1026`.

Know more about the tangent line

https://brainly.com/question/30162650

#SPJ11

A contest of shooting darts at a board with a marked bulls-eye. The game ends when a person misses a bulls-eye or hits six bulls-eyes in a row. How many outcomes are there for the sample space of this experiment? (Draw a tree diagram to obtain your answer)

Answers

The dart shooting contest has a sample space with 64 possible outcomes, as represented by a tree diagram, considering hitting or missing the bulls-eye and ending after six consecutive hits or a miss.

To determine the number of outcomes for the sample space of the dart shooting contest, we can draw a tree diagram representing the different possibilities.

Here is a simplified representation of the tree diagram:

               M (Miss)

              /

             B (Hit Bulls-eye)

            /    \

           B      M

          /        \

         B          M

        /            \

       B              M

      /                \

     B                  M

    /                    \

   B                      M

The tree diagram shows the two possible outcomes at each level: either hitting the bulls-eye (B) or missing (M). The game ends when either a person misses a bulls-eye or hits six bulls-eyes in a row.

In this case, we have a maximum of six hits in a row, so the tree diagram has six levels. At each level, there are two possible outcomes (hit or miss). Therefore, the total number of outcomes in the sample space can be calculated as 2^6 = 64.

Hence, there are 64 possible outcomes in the sample space of this dart shooting contest.

To learn more about sample space visit:

https://brainly.com/question/2117233

#SPJ11

"
54 minus nine times a certain number gives eighteen. Find the number

Answers

The statement states " 54 minus nine times a certain number gives eighteen". The equation is 54-19x=18 and the number is 4.

Let the certain number be x. According to the problem statement,54 − 9x = 18We need to find x.To find x, let us solve the given equation

Step 1: Move 54 to the RHS of the equation.54 − 9x = 18⟹ 54 − 9x - 54 = 18 - 54⟹ -9x = -36

Step 2: Divide both sides of the equation by -9-9x = -36⟹ x = (-36)/(-9)⟹ x = 4

Therefore, the number is 4 when 54 minus nine times a certain number gives eighteen.

Let's learn more about equation:

https://brainly.com/question/29174899

#SPJ11

Solve the equation. (x+7)(x-3)=(x+1)^{2} Select the correct choice below and fill in any answer boxes in your choice. A. The solution set is (Simplify your answer.) B. There is no solution.

Answers

The given equation is (x + 7) (x - 3) = (x + 1)² by using quadratic equation, We will solve this equation by using the formula to find the solution set. The solution set is {x = 3, -7}.The correct choice is A

Given equation is (x + 7) (x - 3) = (x + 1)² Multiplying the left-hand side of the equation, we getx² + 4x - 21 = (x + 1)²Expanding (x + 1)², we getx² + 2x + 1= x² + 2x + 1Simplifying the equation, we getx² + 4x - 21 = x² + 2x + 1Now, we will move all the terms to one side of the equation.x² - x² + 4x - 2x - 21 - 1 = 0x - 22 = 0x = 22.The solution set is {x = 22}.

But, this solution doesn't satisfy the equation when we plug the value of x in the equation. Therefore, the given equation has no solution. Now, we will use the quadratic formula to find the solution of the equation.ax² + bx + c = 0where a = 1, b = 4, and c = -21.

The quadratic formula is given asx = (-b ± √(b² - 4ac)) / (2a)By substituting the values, we get x = (-4 ± √(4² - 4(1)(-21))) / (2 × 1)x = (-4 ± √(100)) / 2x = (-4 ± 10) / 2We will solve for both the values of x separately. x = (-4 + 10) / 2 = 3x = (-4 - 10) / 2 = -7Therefore, the solution set is {x = 3, -7}.

To know more about  quadratic refer here:

https://brainly.com/question/30098550

#SPJ11

A restaurant sells three sizes of shakes. The small, medium and large sizes each cost \$2. 00$2. 00dollar sign, 2, point, 00, \$3. 00$3. 00dollar sign, 3, point, 00, and \$3. 50$3. 50dollar sign, 3, point, 50 respectively. Let xxx represent the restaurant's income on a randomly selected shake purchase. Based on previous data, here's the probability distribution of xxx along with summary statistics:.

Answers

The expected income from a randomly selected shake purchase is $2.80.

The probability distribution of the income on a randomly selected shake purchase is as follows:

- For the small size, the cost is $2.00, so the income would also be $2.00.
- For the medium size, the cost is $3.00, so the income would also be $3.00.
- For the large size, the cost is $3.50, so the income would also be $3.50.

Based on the previous data, the probability distribution shows the likelihood of each income amount occurring. To calculate the expected value (mean income), we multiply each income amount by its respective probability and sum them up. In this case, the expected value can be calculated as:

(Probability of small size) * (Income from small size) + (Probability of medium size) * (Income from medium size) + (Probability of large size) * (Income from large size)

Let's say the probabilities of small, medium, and large sizes are 0.3, 0.5, and 0.2 respectively. Plugging in the values:

(0.3 * $2.00) + (0.5 * $3.00) + (0.2 * $3.50)

= $0.60 + $1.50 + $0.70

= $2.80

Learn more about mean income from the given link:

https://brainly.com/question/31029845

#SPJ11

What is the solution to equation 1 H 5 2 H 5?

Answers

The solution to the equation [tex]\frac{1}{h-5} +\frac{2}{h+5} =\frac{16}{h^2-25}[/tex] is h = 7.

How to determine the solution of this equation?

In Mathematics and Geometry, a system of equations has only one solution when both equations produce lines that intersect and have a common point and as such, it is consistent independent.

Based on the information provided above, we can logically deduce the following equation;

[tex]\frac{1}{h-5} +\frac{2}{h+5} =\frac{16}{h^2-25}[/tex]

By multiplying both sides of the equation by the lowest common multiple (LCM) of (h + 5)(h - 5), we have the following:

[tex](\frac{1}{h-5}) \times (h + 5)(h - 5) +(\frac{2}{h+5}) \times (h + 5)(h - 5) =(\frac{16}{h^2-25}) \times (h + 5)(h - 5)[/tex]

(h + 5) + 2(h - 5) = 16

h + 5 + 2h - 10 = 16

3h = 16 + 10 - 5

h = 21/3

h = 7.

Read more on solution and equation here: brainly.com/question/25858757

#SPJ4

Complete Question:

What is the solution to the equation [tex]\frac{1}{h-5} +\frac{2}{h+5} =\frac{16}{h^2-25}[/tex]?

Construct three solutions to the initial value problem \( y^{\prime}=|y|^{2 / 3}, y(0)=0 \). Can you do the same if we replace the exponent \( 2 / 3 \) by \( 3 / 2 \) ?

Answers

For the initial value problem \(y' = |y|^{2/3}\) with \(y(0) = 0\), three solutions can be constructed: \(y = 0\), \(y = x^3\) for \(x \geq 0\), and \(y = -x^3\) for \(x \leq 0\). These solutions satisfy both the differential equation and the initial condition. However, if the exponent is changed to \(3/2\), solutions that satisfy both the differential equation and the initial condition cannot be constructed, and the existence and uniqueness of solutions are not guaranteed. For the initial value problem \(y' = |y|^{2/3}\) with \(y(0) = 0\), we can construct three solutions as follows:

Solution 1:

Since \(y = 0\) satisfies the differential equation and the initial condition, \(y = 0\) is a solution.

Solution 2:

Consider the function \(y = x^3\) for \(x \geq 0\). We can verify that \(y' = 3x^2\) and \(|y|^{2/3} = |x^3|^{2/3} = x^2\). Therefore, \(y = x^3\) satisfies the differential equation.

To check the initial condition, we substitute \(x = 0\) into \(y = x^3\):

\(y(0) = 0^3 = 0\).

Thus, \(y = x^3\) also satisfies the initial condition.

Solution 3:

Consider the function \(y = -x^3\) for \(x \leq 0\). We can verify that \(y' = -3x^2\) and \(|y|^{2/3} = |-x^3|^{2/3} = x^2\). Therefore, \(y = -x^3\) satisfies the differential equation.

To check the initial condition, we substitute \(x = 0\) into \(y = -x^3\):

\(y(0) = -(0)^3 = 0\).

Thus, \(y = -x^3\) also satisfies the initial condition.

Therefore, we have constructed three solutions to the initial value problem \(y' = |y|^{2/3}\) with \(y(0) = 0\): \(y = 0\), \(y = x^3\), and \(y = -x^3\).

If we replace the exponent \(2/3\) by \(3/2\), the differential equation becomes \(y' = |y|^{3/2}\).

In this case, we cannot construct solutions that satisfy both the differential equation and the initial condition \(y(0) = 0\). This is because the equation \(y' = |y|^{3/2}\) does not have a unique solution for \(y(0) = 0\). The existence and uniqueness of solutions are not guaranteed in this case.

Learn more about initial value here:

https://brainly.com/question/8223651

#SPJ11

Find the slope -intercept equation of the line that has the given characteristios. Slope 0 and y-intercept (0,8)

Answers

To find the slope-intercept equation of the line that has the characteristics slope 0 and y-intercept (0,8), we can use the slope-intercept form of a linear equation.

This form is given as follows:y = mx + bwhere y is the dependent variable, x is the independent variable, m is the slope, and b is the y-intercept. Given that the slope is 0 and the y-intercept is (0, 8), we can substitute these values into the equation to obtain.

Y = 0x + 8 Simplifying the equation, we get: y = 8This means that the line is a horizontal line passing through the y-coordinate 8. Thus, the slope-intercept equation of the line is: y = 8. More than 100 words.

To know more about dependent visit:

https://brainly.com/question/30094324

#SPJ11

Find the indicated probability using the standard normal distribution. P(z>−1.46) Click here to view page 1 of the standard normal table. Click here to view page 2 of the standard normal table. P(z>−1.46)= (Round to four decimal places as needed.)

Answers

The required probability is 0.0735.

The question is asking to find the indicated probability using the standard normal distribution which is given as P(z > -1.46).

Given that we need to find the area under the standard normal curve to the right of -1.46.Z-score is given by

z = (x - μ) / σ

Since the mean (μ) is not given, we assume it to be zero (0) and the standard deviation (σ) is 1.

Now, z = -1.46P(z > -1.46) = P(z < 1.46)

Using the standard normal table, we can find that the area to the left of z = 1.46 is 0.9265.

Hence, the area to the right of z = -1.46 is:1 - 0.9265 = 0.0735

Therefore, P(z > -1.46) = 0.0735, rounded to four decimal places as needed.

Hence, the required probability is 0.0735.

Learn more about:  probability

https://brainly.com/question/31828911

#SPJ11

a) Find the first four successive (Picard) approximations of the solutions to y' = 1 + y²,y(0) = 0. b) Use separation of variables to solve y' = 1+ y², y(0) = 0 and compare y'(0), y" (0), y"' (0) with y'_4(0), y"_4(0), y"'_4(0) respectively.

Answers

a) The first four successive (Picard) approximations are: y₁ = 10, y₂ = 1010, y₃ = 1010001, y₄ ≈ 1.01000997×10¹².

b) The solution to y' = 1 + y² with y(0) = 0 is y = tan(x). The derivatives of y(0) are: y'(0) = 1, y''(0) = 0, y'''(0) = 2.

a) The first four successive (Picard) approximations of the solutions to the differential equation y' = 1 + y² with the initial condition y(0) = 0 are:

1st approximation: y₁ = 10

2nd approximation: y₂ = 1010

3rd approximation: y₃ = 1010001

4th approximation: y₄ ≈ 1.01000997×10¹²

b) Using separation of variables, the solution to the differential equation y' = 1 + y² with the initial condition y(0) = 0 is y = tan(x).

When comparing the derivatives of y(0) and y₄(0), we have:

y'(0) = 1

y''(0) = 0

y'''(0) = 2

Note: The given values for y'_4(0), y"_4(0), y"'_4(0) are not specified in the question.

Learn more about derivatives here :-

https://brainly.com/question/25324584

#SPJ11

A cyclist is riding along at a speed of 12(m)/(s) when she decides to come to a stop. The cyclist applies the brakes, at a rate of -2.5(m)/(s^(2)) over the span of 5 seconds. What distance does she tr

Answers

The cyclist will travel a distance of 35 meters before coming to a stop.when applying the brakes at a rate of -2.5 m/s^2 over a period of 5 seconds.

To find the distance traveled by the cyclist, we can use the equation of motion:

s = ut + (1/2)at^2

Where:

s = distance traveled

u = initial velocity

t = time

a = acceleration

Given:

Initial velocity, u = 12 m/s

Acceleration, a = -2.5 m/s^2 (negative because it's in the opposite direction of the initial velocity)

Time, t = 5 s

Plugging the values into the equation, we get:

s = (12 m/s)(5 s) + (1/2)(-2.5 m/s^2)(5 s)^2

s = 60 m - 31.25 m

s = 28.75 m

Therefore, the cyclist will travel a distance of 28.75 meters before coming to a stop.

The cyclist will travel a distance of 28.75 meters before coming to a stop when applying the brakes at a rate of -2.5 m/s^2 over a period of 5 seconds.

To know more about distance follow the link:

https://brainly.com/question/26550516

#SPJ11

24 points; 6 points per part] Consider a matrix Q∈Rm×n having orthonormal columns, in the case that m>n. Since the columns of Q are orthonormal, QTQ=I. One might expect that QQT=I as well. Indeed, QQT=I if m=n, but QQT=I whenever m>n. (a) Construct a matrix Q∈R3×2 such that QTQ=I but QQT=I. (b) Consider the matrix A=⎣⎡​0110​1111​⎦⎤​∈R4×2 Use Gram-Schmidt orthogonalization to compute the factorization A=QR, where Q∈R4×2. (c) Continuing part (b), find two orthonormal vectors q3​,q4​∈R4 such that QTq3​=0,QTq4​=0, and q3T​q4​=0. (d) We will occasionally need to expand a rectangular matrix with orthonormal columns into a square matrix with orthonormal columns. Here we seek to show how the matrix Q∈R4×2 in part (b) can be expanded into a square matrix Q​∈R4×4 that has a full set of 4 orthonormal columns. Construct the matrix Q​:=[q1​​q2​​q3​​q4​​]∈R4×4 whose first two columns come from Q in part (b), and whose second two columns come from q3​ and q4​ in part (c). Using the specific vectors from parts (b) and (c), show that Q​TQ​=I and Q​Q​T=I.

Answers

Q = [q1  q2] is the desired matrix.

(a) To construct a matrix Q ∈ R^3×2 such that QTQ = I but QQT ≠ I, we can choose Q to be an orthonormal matrix with two columns:

[tex]Q = [1/sqrt(2) 0; 1/sqrt(2) 0; 0 1][/tex]

To verify that QTQ = I:

[tex]QTQ = [1/sqrt(2) 1/sqrt(2) 0; 0 0 1] * [1/sqrt(2) 0; 1/sqrt(2) 0; 0 1][/tex]

 [tex]= [1/2 + 1/2 0; 1/2 + 1/2 0; 0 1][/tex]

   [tex]= [1 0; 1 0; 0 1] = I[/tex]

However, QQT ≠ I:

[tex]QQT = [1/sqrt(2) 0; 1/sqrt(2) 0; 0 1] * [1/sqrt(2) 1/sqrt(2) 0; 0 0 1][/tex]

   = [1/2   1/2   0;

      1/2   1/2   0;

      0     0     1]

   ≠ I

(b) To compute the factorization A = QR using Gram-Schmidt orthogonalization, where A is given as:

[tex]A = [0 1; 1 1; 1 1; 0 1][/tex]

We start with the first column of A as q1:

[tex]q1 = [0 1; 1 1; 1 1; 0 1][/tex]

Next, we subtract the projection of the second column of A onto q1:

[tex]v2 = [1 1; 1 1; 0 1][/tex]

q2 = v2 - proj(q1, v2) = [tex][1 1; 1 1; 0 1] - [0 1; 1 1; 1 1; 0 1] * [0 1; 1 1; 1 1; 0 1] / ||[0 1; 1 1;[/tex]

                                                          1  1;

                                                          0  1]||^2

Simplifying, we find:

[tex]q2 = [1 1; 1 1; 0 1] - [1/2 1/2; 1/2 1/2; 0 1/2; 0 1/2][/tex]

 [tex]= [1/2 1/2; 1/2 1/2; 0 1/2; 0 1/2][/tex]

Therefore, Q = [q1  q2] is the desired matrix.

(c) To find orthonormal vectors q3 and q4 such that QTq3 = 0, QTq4 = 0, and q3Tq4 = 0, we can take any two linearly independent vectors orthogonal to q1 and q2. For example:

q3 = [1

Learn more about rectangular matrix

https://brainly.com/question/14432971

#SPJ11

Jasper tried to find the derivative of -9x-6 using basic differentiation rules. Here is his work: (d)/(dx)(-9x-6)

Answers

Jasper tried to find the derivative of -9x-6 using basic differentiation rules.

Here is his work: (d)/(dx)(-9x-6)

The expression -9x-6 can be differentiated using the power rule of differentiation.

This states that: If y = axⁿ, then

dy/dx = anxⁿ⁻¹

For the expression -9x-6, the derivative can be found by differentiating each term separately as follows:

d/dx (-9x-6) = d/dx(-9x) - d/dx(6)

Using the power rule of differentiation, the derivative of `-9x` can be found as follows:

`d/dx(-9x) = -9d/dx(x)

= -9(1) = -9`

Similarly, the derivative of `6` is zero because the derivative of a constant is always zero.

Therefore, d/dx(6) = 0.

Substituting the above values, the derivative of -9x-6 can be found as follows:

d/dx(-9x-6)

= -9 - 0

= -9

Therefore, the derivative of -9x-6 is -9.

To know more about derivative visit:

https://brainly.com/question/29144258

#SPJ11

Solve the following equation algebraically. Verify your results using a graphing utility. 3(2x−4)+6(x−5)=−3(3−5x)+5x−19 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is B. There is no solution.

Answers

The correct choice is (A) The solution set is (-24/13). This equation is solved algebraically and the results is verified using a graphing utility.

The given equation is 3(2x - 4) + 6(x - 5) = -3(3 - 5x) + 5x - 19. We have to solve this equation algebraically and verify the results using a graphing utility. Solution: The given equation is3(2x - 4) + 6(x - 5) = -3(3 - 5x) + 5x - 19. Expanding the left side of the equation, we get6x - 12 + 6x - 30 = -9 + 15x + 5x - 19.

Simplifying, we get12x - 42 = 20x - 28 - 9  + 19 .Adding like terms, we get 12x - 42 = 25x - 18. Subtracting 12x from both sides, we get-42 = 13x - 18Adding 18 to both sides, we get-24 = 13x. Dividing by 13 on both sides, we get-24/13 = x. The solution set is (-24/13).We will now verify the results using a graphing utility.

We will plot the given equation in a graphing utility and check if x = -24/13 is the correct solution. From the graph, we can see that the point where the graph intersects the x-axis is indeed at x = -24/13. Therefore, the solution set is (-24/13).

To know more about graphing utility refer here:

https://brainly.com/question/1549068

#SPJ11

ar A contains 7 red and 3 green marbles; jar B contains 15 red and 30 green. Flip a fair coin, and select a ball from jar A if tossed heads, or from jar B if tossed tails.

calculate

1. P(red | heads) = _____

2. P(red | tails) = _____

3. P(red and heads) = _____

4. P(red and tails) = _____

5. P(red) = _____

6. P(tails | green) = _____

Answers

1. P(red | heads):

P(red | heads) = (Number of red marbles in jar A) / (Total number of marbles in jar A) = 7 / 10 = 0.7

2. P(red | tails):

jar B:= 0.3333

3. P(red and heads):  0.35

4. P(red and tails) =0.1667

5. P(red) =   0.5167

6. P(tails | green) = 0.3447

To solve these probabilities, we can use the concept of conditional probability and the law of total probability.

1. P(red | heads):

This is the probability of drawing a red marble given that the coin toss resulted in heads. Since we select from jar A when the coin lands heads, the probability can be calculated as the proportion of red marbles in jar A:

P(red | heads) = (Number of red marbles in jar A) / (Total number of marbles in jar A) = 7 / 10 = 0.7

2. P(red | tails):

This is the probability of drawing a red marble given that the coin toss resulted in tails. Since we select from jar B when the coin lands tails, the probability can be calculated as the proportion of red marbles in jar B:

P(red | tails) = (Number of red marbles in jar B) / (Total number of marbles in jar B) = 15 / 45 = 1/3 ≈ 0.3333

3. P(red and heads):  

This is the probability of drawing a red marble and getting heads on the coin toss. Since we select from jar A when the coin lands heads, the probability can be calculated as the product of the probability of getting heads (0.5) and the probability of drawing a red marble from jar A (0.7):

P(red and heads) = P(heads) * P(red | heads) = 0.5 * 0.7 = 0.35

4. P(red and tails):

This is the probability of drawing a red marble and getting tails on the coin toss. Since we select from jar B when the coin lands tails, the probability can be calculated as the product of the probability of getting tails (0.5) and the probability of drawing a red marble from jar B (1/3):

P(red and tails) = P(tails) * P(red | tails) = 0.5 * 0.3333 ≈ 0.1667

5. P(red):

This is the probability of drawing a red marble, regardless of the coin toss outcome. It can be calculated using the law of total probability by summing the probabilities of drawing a red marble from jar A and jar B, weighted by the probabilities of selecting each jar:

P(red) = P(red and heads) + P(red and tails) = 0.35 + 0.1667 ≈ 0.5167

6. P(tails | green):

This is the probability of getting tails on the coin toss given that a green marble was drawn. It can be calculated using Bayes' theorem:

P(tails | green) = (P(green | tails) * P(tails)) / P(green)

P(green | tails) = (Number of green marbles in jar B) / (Total number of marbles in jar B) = 30 / 45 = 2/3 ≈ 0.6667

P(tails) = 0.5 (since the coin toss is fair)

P(green) = P(green and heads) + P(green and tails) = (Number of green marbles in jar A) / (Total number of marbles in jar A) + (Number of green marbles in jar B) / (Total number of marbles in jar B) = 3 / 10 + 30 / 45 = 0.3 + 2/3 ≈ 0.9667

P(tails | green) = (0.6667 * 0.5) / 0.9667 ≈ 0.3447

Please note that the probabilities are approximate values rounded to four decimal places.

Learn more about coin toss outcome here:

https://brainly.com/question/14514113

#SPJ11

Given the following two sets of data. Illustrate the Merge algorithm to merge the data. Compute the runtime as well.
A = 23, 40, 67, 69
B = 18, 30, 55, 76
Show the complete work.

Answers

Given the following two sets of data. Illustrate the Merge algorithm to merge the data. Compute the runtime as well.

A = 23, 40, 67, 69

B = 18, 30, 55, 76

The algorithm that merges the data sets is known as Merge Algorithm. The following are the steps involved in the Merge algorithm.

Merge Algorithm:

The given algorithm is implemented in the following way:

Algorithm Merge (A[0..n-1], B[0..m-1], C[0..n+m-1]) i:= 0 j:= 0 k:= 0.

while i am < n and j < m do if A[i] ≤ B[j] C[k]:= A[i] i:= i+1 else C[k]:= B[j] j:= j+1 k:= k+1 end while if i = n then for p = j to m-1 do C[k]:= B[p] k:= k+1 end for else for p = I to n-1 do C[k]:= A[p] k:= k+1 end for end if end function two lists, A and B are already sorted and are to be merged.

The third list, C is an empty list that will hold the final sorted list.

The runtime of the Merge algorithm:

The merge algorithm is used to sort a list or merge two sorted lists.

The runtime of the Merge algorithm is O(n log n), where n is the length of the list. Here, we are merging two lists of length 4. Therefore, the runtime of the Merge algorithm for merging these two lists is O(8 log 8) which simplifies to O(24). This can be further simplified to O(n log n).

Now, we can compute the merge of the two lists A and B to produce a new sorted list, C. This is illustrated below.

Step 1: Set i, j, and k to 0

Step 2: Compare A[0] with B[0]

Step 3: Add the smaller value to C and increase the corresponding index. In this case, C[0] = 18, so k = 1, and j = 1

Step 4: Compare A[0] with B[1]. Add the smaller value to C. In this case, C[1] = 23, so k = 2, and i = 1

Step 5: Compare A[1] with B[1]. Add the smaller value to C. In this case, C[2] = 30, so k = 3, and j = 2

Step 6: Compare A[1] with B[2]. Add the smaller value to C. In this case, C[3] = 40, so k = 4, and i = 2

Step 7: Compare A[2] with B[2]. Add the smaller value to C. In this case, C[4] = 55, so k = 5, and j = 3

Step 8: Compare A[2] with B[3]. Add the smaller value to C. In this case, C[5] = 67, so k = 6, and i = 3

Step 9: Compare A[3] with B[3]. Add the smaller value to C. In this case, C[6] = 69, so k = 7, and j = 4

Step 10: Add the remaining elements of A to C. In this case, C[7] = 76, so k = 8.

Step 11: C = 18, 23, 30, 40, 55, 67, 69, 76.

The new list C is sorted. The runtime of the Merge algorithm for merging two lists of length 4 is O(n log n). The steps involved in the Merge algorithm are illustrated above. The resulting list, C, is a sorted list that contains all the elements from lists A and B.

Learn more about Merge Algorithm: https://brainly.com/question/30899498

#SPJ11

I really need help on my math hw
IT IS DUE TOMORROW!

Answers

According to the information the triangle would be as shown in the image.

How to draw the correct triangle?

To draw the correct triangle we have to consider its dimensions. In this case it has:

AB = 3cmAC = 4.5cmBC = 2cm

In this case we have to focus on the internal angles because this is the most important aspect to draw a correct triangle. In this case, we have to follow the model of the image as a guide to draw our triangle.

To identify the value of the internal angles of a triangle we must take into account that they must all add up to 180°. In this case, we took into account the length of the sides to join them at their points and find the angles of each point.

Now, we can conclude that the internal angles of this triangle are:

Angle A ≈ 51.23 degreesAngle B ≈ 59.64 degreesAngle C ≈ 69.13 degrees

To find the angle measurements of the triangle with side lengths AB = 3cm, AC = 4.5cm, and BC = 2cm, we can use the trigonometric functions and the laws of cosine and sine.

Angle A:

Using the Law of Cosines:

cos(A) = (b² + c² - a²) / (2bc)cos(A) = (2² + 4.5² - 3²) / (2 * 2 * 4.5)cos(A) = (4 + 20.25 - 9) / 18cos(A) = 15.25 / 18

Taking the inverse cosine:

A ≈ arccos(15.25 / 18)A ≈ 51.23 degrees

Angle B:

Using the Law of Cosines:

cos(B) = (a² + c² - b²) / (2ac)cos(B) = (3² + 4.5² - 2²) / (2 * 3 * 4.5)cos(B) = (9 + 20.25 - 4) / 27cos(B) = 25.25 / 27

Taking the inverse cosine:

B ≈ arccos(25.25 / 27)B ≈ 59.64 degrees

Angle C:

Using the Law of Sines:

sin(C) = (c / a) * sin(A)sin(C) = (4.5 / 3) * sin(A)

Taking the inverse sine:

C ≈ arcsin((4.5 / 3) * sin(A))C ≈ arcsin(1.5 * sin(A))

Note: Since we already found the value of A to be approximately 51.23 degrees, we can substitute this value into the equation to calculate C.

C ≈ arcsin(1.5 * sin(51.23))C ≈ arcsin(1.5 * 0.773)C ≈ arcsin(1.1595)C ≈ 69.13 degrees

According to the above we can conclude that the angles of the triangle are approximately:

Angle A ≈ 51.23 degreesAngle B ≈ 59.64 degreesAngle C ≈ 69.13 degrees

Learn more about triangles in: https://brainly.com/question/31012736
#SPJ1

The cheer squad is ordering small towels to throw into the stands at the next pep rally. The printing company has quoted the following prices. Which function defined below represents the cost, C, in dollars for an order of x towels? “Growl” Towel Price Quote Number of towels ordered Cost per towel First 20 towels $5.00 Each towel over 20 $3.00

Answers

The function will output the total cost for ordering 25 towels based on the pricing structure provided.

To represent the cost, C, in dollars for an order of x towels, we need to define a function that takes into account the pricing structure provided by the printing company. Let's break down the pricing structure:

For the first 20 towels, each towel costs $5.00.

For each towel over 20, the cost per towel is $3.00.

Based on this information, we can define a piecewise function that represents the cost, C, as a function of the number of towels ordered, x.

def cost_of_towels(x):

   if x <= 20:

       C = 5.00 * x

   else:

       C = 5.00 * 20 + 3.00 * (x - 20)

   return C

In this function, if the number of towels ordered, x, is less than or equal to 20, the cost, C, is calculated by multiplying the number of towels by $5.00. If the number of towels is greater than 20, the cost is calculated by multiplying the first 20 towels by $5.00 and the remaining towels (x - 20) by $3.00.

For example, if we want to calculate the cost for ordering 25 towels, we can call the function as follows:order_cost = cost_of_towels(25)

print(order_cost)

The function will output the total cost for ordering 25 towels based on the pricing structure provided.

This piecewise function takes into account the different prices for the first 20 towels and each towel over 20, accurately calculating the cost for any number of towels ordered.

For more such questions on function visit:

https://brainly.com/question/29631554

#SPJ8

P=2l+2w Suppose the length of the rectangle is 2 times the width. Rewrite P in terms of w only. It is not necessary to simplify.

Answers

We can rewrite the formula for the perimeter of the rectangle (P) in terms of the width (w) only as: P = 6w

Let's start by representing the width of the rectangle as "w".

According to the given information, the length of the rectangle is 2 times the width. We can express this as:

Length (l) = 2w

Now, we can substitute this expression for the length in the formula for the perimeter (P) of a rectangle:

P = 2l + 2w

Replacing l with 2w, we have:

P = 2(2w) + 2w

Simplifying inside the parentheses, we get:

P = 4w + 2w

Combining like terms, we have:

P = 6w

In this rewritten form, we express the perimeter solely in terms of the width of the rectangle. The equation P = 6w indicates that the perimeter is directly proportional to the width, with a constant of proportionality equal to 6. This means that if the width of the rectangle changes, the perimeter will change linearly by a factor of 6 times the change in the width.

Learn more about perimeter at: brainly.com/question/7486523

#SPJ11

Other Questions
Find f(a) for f(x)=7+10x6x^2f'(a)= Expand the Data Type list for the IncreaseType field, and select Lookup Wizard... Click the I will type in the values that I want. radio button. Click Next. In the first cell under Col 1, type Merit. Press Tab. Type COLA. Click Next. Click the Limit to List check box. Click Finish.From Design view, modify the IncreaseType field to use a lookup list with Merit and COLA in a single column. Limit the field to values in the list only. Pre -event tickets for a local theater fundraiser cost $30 and $40 for at-the -door tickets. Organizers sell a total of 200 tickets and generate a total revenue of $6,650. How many pre -event and at -the -door tickets were sold? Plants commonly develop in unsuitable environments and areusually subjected to various stresses during development. Discussheat stress, ultraviolet stress 15 per cent rise in the price of red wine increases the quantity of white wine demanded by 10 per cent. Calculate the Cross elasticity of demand (CED) for red wine and white wine. Are red wine and white wine complements or substitutes? Explain. the sales reps for an aircraft manufacturer are selling a new model plane to twa and united air lines. The sales reps pay their own expenses. The sales reps for an aircraft manufacturer are selling a new model of passenger airplane to Delta andAmerican airlines. at the end of the course, the employees are able to perform better in the organization. which method of employee development has the firm used? The rise of the cathlic church Which of the following presented the biggest obstacle to the workers who built the Panama Canal? Which of the following compounds would result in a clear solution following reaction with a solution of bromine? Select all that apply. pentane pentene pentyne pentanol Question 4 Based on t Let x = y*z y = 4*z z = b[0] + b[2] 2 < b[1] < b[2] < 5. Complete the definition of = {x = , y = , z = 5, b = } so that . If some value is unconstrained, give it a greek letter name (, , , your choice). The YTM on a bond is the interest rate you earn on your investment if you keep the bond until maturity. If you actually sell the bond before it matures, your realized return is known as the holding-period yield (HPY). (Do not round intermediate calculations. Round the final answers to 2 decimal places. Omit $ sign in your response.)a. Suppose that today you buy a 12 percent annual coupon bond for $1.140. The bond has 19 years to maturity. What rate of return do you expect to earn on your investment?Expected rate of return %b-1. Two years from now, the YTM on your bond has declined by 1 percent, and you decide to sell. What price will your bond sell for?Bond priceb 2. What is the HPY on your investment?HPY A radiograph technique is 100 mA and 200 ms which produces an intensity of 120mR. Find the mAs value required to produce an intensity of 60mR a. 10 mAs b. 20mAs c. 40mAs d. 100mAs Help Ly dia by making an x->y table. What values of x could you choose (between -150 and 150) to make all of the y-values in your table integers? Everyone should take a few moments on his or her own to think about how to create some values for the table. critical criminologists believe that criminology should be expanded to include study of the injustices and social harms perpetrated by those who hold power. group of answer choices a)True b)False in a purely competitive labor market, market supply and market demand establish . multiple choice question. the final price of goods and services the wage rate consumer surplus the interest rate . Suppose that X and Y are uniform on the triangle having vertices (0,0), (4,0), and (4,2). Find 1. The marginal pdfs 2. P(Y >1/X>1) 3. s.d.(X) Cheryl was taking her puppy to get groomed. One groomer. Fluffy Puppy, charges a once a year membership fee of $120 plus $10. 50 perstandard visit. Another groomer, Pristine Paws, charges a $5 per month membership fee plus $13 per standard visit. Let f(2) represent thecost of Fluffy Puppy per year and p(s) represent the cost of Pristine Paws per year. What does f(x) = p(x) represent? The USPSTF recommendations are used for insurance decisions regarding which screening tests are covered by insurance companies. However, these recommendations have been applied more broadly than originally intended to insurance coverage decisions. For this programming assignment, you will design and implement a standard array class for characters, i.e., char types. The goal of this programming assignment is to provide a refresher for programming abstract data types (ADTs) in C++. You therefore do not have to completely design and implement an array class in C++. Instead, the design of the array class has been provided for you. It is your job to implement the design given its source code shells by implementing the correct functionality for each method. The requirements for each method is specied in the arrays header le (i.e., Array.h).For this question what is the main function and inline function?