Answer:
Explanation:
Find the complete question attached
Using the principle of moment
Clockwise moment = Anticlockwise moment
AntiClockwise moment = M × 2.0
ACW moment = 2M
Clockwise moment = 40×4
Clockwise moment = 160kgcm
Equate both expression and calculate M
2M = 160
M = 160/2
M = 80kg
Hence the mass of his friend is 80kg
anyone to assist me on it ...especial page7 and 8
Answer:
i needed points it was an emergency sorry
Explanation:
A car travels at a velocity of 80 m/s, accelerates than stops in 250 second. What is the acceleration of the truck?
(I’ll give brainliest please someone help me on this and explain it with work I don’t get it)
am I right? be honest
Answer:
I chose c because it is the greater slope at point c
first correct answer gets brainliest
Answer:
electrical energy transforming into sound energy in speaker
Answer:
the first one. Electrical energy transforming into sound energy in a speaker
If the body with a mass of 4kg is moved by a force of 20 N, what is the rate of its acceleration?
Answer:
The answer is 5 m/s²Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
[tex]acceleration = \frac{force}{mass} \\[/tex]
From the question
force = 20 N
mass = 4 kg
We have
[tex]a = \frac{20}{4} \\ [/tex]
We have the final answer as
5 m/s²Hope this helps you
When electrical energy is used what type of energy is also produced and considered to be waste energy?
Radiant energy
Thermal energy
Mechanical energy
Nuclear energy
Answer:
Thermal Energy
Explanation:
Is the answer clockwise (CW) or counter clockwise (CCW) ?
When you place leftover food in the refrigerator, what kind of energy do you
decrease in the food?
A. Nuclear energy
B. Electromagnetic energy
C. Thermal energy
D. Chemical energy
By cooling down the food, the thermal energy in the food molecules is reduced.
What is a refridgerator?A refrigerator is an appliance that is commonly used in the home for the purpose of cooling down a substnace especially water and drinks.
Due to the fact that the molecules that compose matter are is in a state of constant random motion, the food molecules contain thermal energy. Hence, by cooling down the food, the thermal energy in the food molecules is reduced.
Learn more about thermal energy: https://brainly.com/question/11278589
what is the meaning of the word physics
Answer:
the scientific study of natural forces such as light, sound, heat, electricity, pressure, etc.
Explanation:
mark as brainliest
It takes 3.8 x 10^-5 for a pulse of the radio waves from a radar to reach a plane and bounce back. How far is the plane from the radar?
Answer: 11400 m
Explanation:
Given:
t = 3.8 x 10^-5 s
v = 3 x 10^8 m/s
d = ?
Formula:
d = vt
= (3.8 x 10^-5 s)(3 x 10^8 m/s)
= 11400 m
hope this helps :)
The uniform movement allows to find the results for the distance from the radar to the plane is: 5.7 10³ m or 5.7 km
Kinematics studies the motion of objects looking for relationships between position, velocity and acceleration, in the special case that the acceleration is zero is called uniform motion and is described by the expression
[tex]v = \frac{d}{t}[/tex]
d = v t
Where v is the velocity, d the displacement and t the time.
Radar waves are electromagnetic waves with constant velocity
v = 3 10⁸ m/s
They indicate that the time of the waves to go to the plane and return is 3.8 10⁻⁵ s, therefore if the speed is constant, the time to reach the plane is half of the total time.
t = [tex]\frac{t_{total} }{ 2}[/tex]
t = [tex]\frac{3.8 \ 10^{-5}}{2}[/tex]
t = 1.9 10⁻⁵ s
Let's calculate
d = 3 10⁸ 1.9 10⁻⁵
d = 5.7 10³
In conclusion with the uniform movement we can find the results for the distance from the radar to the plane is: 5.7 10³ m or 5.7 km
Learn more here: brainly.com/question/20369552
True.or false A railroad track runs southwest to northeast.
Answer:
ns for high-speed rail in the United States date back to the High Speed Ground Transportation Act of 1965. Various state and federal proposals have followed. Despite being one of the world's first countries to get high-speed trains (the Metroliner service in 1969), it failed to spread. Definitions of what constitutes high-speed rail vary, including a range of speeds over 110 mph (180 km/h) and dedicated rail lines. Inter-city railwith top speeds between 90 and 125 mph (140 and 200 km/h) is sometimes referred to in the United States as higher-speed rail.[1]
Amtrak's Acela Express (reaching 150 mph, 240 km/h), Silver Star, Northeast Regional, Keystone Service, Vermonter and certain MARC Penn Line express trains (all five reaching 125 mph, 201 km/h) are the only high-speed services in the country.
As of 2020, the California High-Speed Rail Authority is working on the California High-Speed Rail project and construction is under way on sections traversing the Central Valley. The Central Valley section is planned to open in 2029 and Phase I is planned for completion in 2031.[2]
Contents
1 Definitions in American context
2 History
2.1 Faster inter-city trains: 1920–1941
2.2 Post-war period: 1945–1960
2.3 First attempts: 1960–1992
2.4 Renewed interest: 1993–2008
2.5 Plans for 2008–2013
3 Current state and regional efforts
3.1 The Northeast
3.1.1 Northeast Corridor: Next Generation High-Speed Rail
3.1.1.1 Proposed routes
3.1.2 Northeast Maglev proposal
3.1.3 New Jersey–New York City upgrades
3.1.4 New York
3.1.5 Pennsylvania
3.2 Western States
3.2.1 California
3.2.2 Pacific Northwest
3.2.3 Arizona
3.3 Mid-Atlantic and the South
3.3.1 Florida
3.3.2 Southeast
3.3.3 Texas
3.4 Midwest
3.4.1 Illinois and the Midwest
3.5 The Southwest
4 Federal high-speed rail initiatives
4.1 American Recovery and Reinvestment Act of 2009
4.1.1 Strategic plan
4.2 2009 federal grant funding
4.3 2010 allocation
4.3.1 Cancellation of funds for Wisconsin, Ohio, and Florida
4.4 2011 and 2012 proposals and rejections of funding
5 See also
6 Notes
7 Further reading
8 External links
Explanation:
A soccer ball accelerates from rest and rolls 6.5m down a hill in 3.1 s. It then bumps into a tree. What is the speed of the ball just before it hits the tree.
Answer:
2.096m/s
Explanation:
The speed of this soccer ball can be calculated using the formula;
Speed = distance/time
According to this question, the distance of the ball before it hits the tree is 6.5m, the time it takes is 3.1s, hence;
Speed = 6.5/3.1
Speed of the ball = 2.096m/s
Therefore, the speed of the ball before hitting the tree is 2.096m/s
What energy transformation takes place when you stretch a bungee cord?
Answer:
potential energy
Explanation:
A soccer ball is kicked with a velocity of 8 m/s at an angle of 23°. What is the
ball's acceleration in the vertical direction as it flies through the air?
A. -7.4 m/s2
B. O m/s2
C. 3.1 m/s2
D. -9.8 m/s2
Answer: -9.8 m/s2
Explanation:
The volume of water in a water bottle, is about 398
g
cm
km/hr
Kg
g/mL
ml
km
m/s
Answer:
milliliters (ml)
Explanation:
millileters is the correct measurement for liquids
The mass of a dropped object impacts its final velocity but not its acceleration.
Explanation:
because of the acceleration due to gravity is constant which is 9.8
Answer:
TRUE
Explanation:
CUZ , IT DOSEN'T AFFECT
Mass does not affect the speed of falling objects, assuming there is only gravity acting on it. Both bullets will strike the ground at the same time.
A designer is creating an obstacle for an obstacle course where a person starts on a moveable platform of height H from the ground. The person grabs a rope of length L and swings downward. At the instant the rope is vertical, the person lets go of the rope and attempts to reach the far side of a water-filled moat. The left side of the moat is directly below the position where the person will let go of the rope. The designer runs several tests in which the rope has different lengths and moves the platform such that the rope is always initially horizontal. The designer notices that the person cannot land on the other side if the length L is very short. The designer also notices that the person also cannot land on the other side if the length L is very close to the height H.
Assume the size of the person is much smaller than the lengths L and H. Let D represent the horizontal distance from below the release point to where the person lands.
Required:
a. Why does the person land in the moat if the rope's length is very short?
b. Why does the person land in the moat if the length is nearly the same as the height of the platform?
Answer:
* when L → H chord too long
in this case we see that the speed to cross the well grows a lot (it goes towards infinity) therefore we do not have enough speed in the movement to cross
* when L → 0 very short string
the speed of the platform is very small, so we do not have the minimum required value
vox = √ (g / (2 (H)) D
Explanation:
For this exercise we are going to solve it using conservation of energy to find the velocity of the body and the launch of projectiles to find the velocity to cross the well.
Let's start with the projectile launch
as the body leaves the vertical its velocity must be horizontal
x = v₀ₓ t
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
when reaching the ground its height of zero (y = 0) and the initial vertical velocity is zero
t = √ 2 y₀ / g
we substitute
x = vox √2y₀ / g
v₀ₓ = √(g / 2y₀) x
In the exercise, it tells us that the width of the well is D (x = D) and the initial height is the height of the platform minus the length of the rope (I = H - L)
v₀ₓ = √(g /(2 (H -L)) D
this is the minimum speed to cross the well.
Now let's use conservation of energy
starting point. On the platform
[tex]Em_{o}[/tex] = U = m g H
final point. At the bottom of the swing
Em_{f} = K + U = 1 / 2m v² + m g (H -L)
as there is no friction the mechanical energy is conserved
Em_{o} = Em_{f}
m g H = 1 / 2m v² + m g (H -L)
v = √ (2gL)
let's write our two equations
the minimum speed to cross the well
v₀ₓ = √ (g /(2 (H -L)) D
the speed at the bottom of the oscillatory motion
v = √ (2g L)
we analyze the extreme cases
* when L → H chord too long
in this case we see that the speed to cross the well grows a lot (it goes towards infinity) therefore we do not have enough speed in the movement to cross
* when L → 0 very short string
the speed of the platform is very small, so we do not have the minimum required value
vox = √ (g / (2 (H)) D
From this analysis we see that there is a range of lengths that allows us to have the necessary speeds to cross the well
V₀ₓ = v
g / (2 (H -L) D² = 2g L
4 L (H- L) = D²
4 H L - 4 L2 - D² = 0
L² - H L - D² / 4 = 0
let's solve the quadratic equation
L = [H ± √ (H2-D2)] / 2
we assume that H> D
L = ½ H [1 + - RA (1 - (D / H) 2)]
The two values of La give the range of values for which the two speeds are equal
A) The person lands in the moat if the rope's length is very short because :
The speed of the platform is less than the required minimum speedB) The person lands in the moat if the rope length is similar to the height of the platform because :
The speed required to cross the moat approaches infinityFollowing the assumptions;
size of the person is much smaller than L and H
D = horizontal distance
The conditions that will cause the person to land on the moatThe person will land in the moat when the rope's length is very short because as the rope reduces in length the speed reduces as well such that the speed of the platform goes below the required minimum speed which will enable the person cross over. while As the magnitude of the length tends towards the same magnitude of the height the speed required to cross the moat increases towards infinity and this speed cannot be attained by the person hence he will land in the moat.Hence we can conclude that The person lands in the moat if the rope's length is very short because The speed of the platform is less than the required minimum speed and The person lands in the moat if the rope length is similar to the height of the platform because,the speed required to cross the moat approaches infinity.
Learn more about obstacle course : https://brainly.com/question/241926
Find the linear velocity of a point moving with uniform circular motion, if the point covers a distance s in the given amount of time t. s
Answer:
The linear velocity is represented by the following expression: [tex]v = \frac{s}{t}[/tex]
Explanation:
From Rotation Physics we know that linear velocity of a point moving with uniform circular motion is:
[tex]v = r\cdot \omega[/tex] (Eq. 1)
Where:
[tex]r[/tex] - Radius of rotation of the particle, measured in meters.
[tex]\omega[/tex] - Angular velocity, measured in radians per second.
[tex]v[/tex] - Linear velocity of the point, measured in meters per second.
But we know that angular velocity is also equal to:
[tex]\omega = \frac{\theta}{t}[/tex] (Eq. 2)
Where:
[tex]\theta[/tex] - Angular displacement, measured in radians.
[tex]t[/tex] - Time, measured in seconds.
By applying (Eq. 2) in (Eq. 1) we get that:
[tex]v = \frac{r\cdot \theta}{t}[/tex] (Eq. 3)
From Geometry we must remember that circular arc ([tex]s[/tex]), measured in meters, is represented by:
[tex]s = r\cdot \theta[/tex]
[tex]v = \frac{s}{t}[/tex]
The linear velocity is represented by the following expression: [tex]v = \frac{s}{t}[/tex]
Two charged objects are separated by distance, d. The first charge has a larger magnitude (size) than the second charge. Which one exerts the most force?
One airplane is approaching an airport from the north at 181 kn/hr. A second airplane approaches from the east at 278 km/hr. Find the rate at which the distance between the planes changes when the southbound plane is 30 km away from the airport and the westbound plane is 15 km from airport.
Answer:
The value is [tex] \frac{dR}{dt} = -286.2 \ km/hr [/tex]
Explanation:
From the question we are told that
The speed of the airplane from the north is [tex]\frac{dN}{dt} = -181 \ km /hr[/tex]
The negative sign is because the direction is towards the south
The speed of the airplane from the east is [tex]\frac{dE}{dt} = -278 \ km/hr[/tex]
The negative sign is because the direction is towards the west
The distance of the southbound plane from the airport is [tex]N = 30 \ km[/tex]
The distance of the westbound plane is [tex]E = 15 \ km[/tex]
Generally the distance between the plane is mathematically represented using Pythagoras theorem as
[tex]R^2 = N^2 + E^2[/tex]
Next differentiate implicitly this equation to obtain the rate at which the distance between the planes changes
So
[tex]2R\frac{dR}{dt} = 2N \frac{dN}{dt} + 2E\frac{dE}{dt}[/tex]
Here
[tex]R = \sqrt{N^2 + E^2}[/tex]
=> [tex]R = \sqrt{30^2 + 15^2}[/tex]
=> [tex]R = \sqrt{30^2 + 15^2}[/tex]
=> [tex]R =33.54 \ m [/tex]
[tex]2(33.54) * \frac{dR}{dt} = 2( 30)*(-181) + 2*15*(-278)[/tex]
=> [tex] 67.08 * \frac{dR}{dt} = -19200[/tex]
=> [tex] \frac{dR}{dt} = -286.2 \ km/hr [/tex]
The rate of change of the distance between the planes is 286.23 km/hr.
The given parameters;
speed of the airplane from North, dn/dt = 181 Km/hspeed of the airplane from the East, de/dt = 278 km/hnorth distance, n = 30 kmeast distance, e= 15 kmThe distance between the two planes is calculated by applying Pythagoras theorem as shown below;
[tex]d^2 = n^2 + e^2\\\\d = \sqrt{n^2 + e^2} \\\\d = \sqrt{30^2 + 15^2} \\\\d = 33.54 \ km[/tex]
The rate of change of the distance between the planes is calculated as follows;
[tex]d^2 = e^2 + n^2\\\\2\frac{dd}{dt} = 2e\frac{de}{dt} + 2n\frac{dn}{dt} \\\\d\frac{dd}{dt} = e\frac{de}{dt} + n\frac{dn}{dt}\\\\(33.54) \frac{dd}{dt} = (15)(278) \ + (30)(181)\\\\(33.54) \frac{dd}{dt} = 9600\\\\\frac{dd}{dt} = \frac{9600}{33.54} \\\\\frac{dd}{dt} = 286.23 \ km/hr[/tex]
Thus, the rate of change of the distance between the planes is 286.23 km/hr.
Learn more here:https://brainly.com/question/11488002
An empty cup weighs 14 g. The same cup filled with ice cream weighs 120 g. All of the ice cream melts before anyone eats it.
What is the weight of the melted ice cream?
A.0 g
B. 14 g
C. 106 g
D. 134 g
Answer:
D
Explanation:
The horizontal surface on which the block slides is frictionless. The speed of the block before it touches the spring is 6.0 m/s. How fast is the block moving at the instant the spring has been compressed 15 cm
Answer:
The final speed of the block moving at the instant the spring has been compressed is approximately 3.674 meters per second.
Explanation:
The spring constant is 2000 newtons per meter. Let consider the spring-block system, from Principle of Energy Conservation we can represent it by the following model:
[tex]U_{k,1}+K_{1} = U_{k,2}+K_{2}[/tex]
[tex]K_{2} = K_{1}+(U_{k,1}-U_{k,2})[/tex] (Eq. 1)
Where:
[tex]K_{1}[/tex], [tex]K_{2}[/tex] - Initial and final kinetic energies of the block, measured in joules.
[tex]U_{k,1}[/tex], [tex]U_{k,2}[/tex] - Initial and final elastic potential energy, measured in joules.
And we expand the equation above by definitions of elastic potential energy and kinetic energy:
[tex]\frac{1}{2}\cdot m \cdot v_{2}^{2} = \frac{1}{2}\cdot m\cdot v_{1}^{2} + \frac{1}{2}\cdot k\cdot (x_{1}^{2}-x_{2}^{2})[/tex]
[tex]v_{2} = \sqrt{v_{1}^{2}+\frac{k}{m}\cdot (x_{1}^{2}-x_{2}^{2}) }[/tex] (Eq. 1b)
Where:
[tex]m[/tex] - Mass of the block, measured in kilograms.
[tex]k[/tex] - Spring constant, measured in newtons per meter.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Initial and final velocities of the block, measured in meters per second.
[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final positions of spring, measured in meters.
If we know that [tex]v_{1} = 6\,\frac{m}{s}[/tex], [tex]k = 2000\,\frac{N}{m}[/tex], [tex]m = 2\,kg[/tex], [tex]x_{1} = 0\,m[/tex] and [tex]x_{2} = 0.15\,m[/tex], the final speed of the block moving at the instant the spring has been compressed is:
[tex]v_{2} = \sqrt{\left(6\,\frac{m}{s} \right)^{2}+\left(\frac{2000\,\frac{N}{m} }{2\,kg} \right)\cdot [(0\,m)^{2}-(0.15\,m)^{2}]}[/tex]
[tex]v_{2}\approx 3.674\,\frac{m}{s}[/tex]
The final speed of the block moving at the instant the spring has been compressed is approximately 3.674 meters per second.
21. A toy car starts from rest and begins to accelerate at 11.0 m/s2. What is the toy
car's final velocity after 6.0 seconds?
Answer:
Explanation:
Given parameters:
Initial velocity = 0
Acceleration = 11m/s²
Time = 6s
Unknown:
Final velocity = ?
Solution:
From the given parameters, we use one of the appropriate equations of motion to solve this problem.
V = U + at
V is the final velocity
U is the initial velocity
a is the acceleration due to gravity
t is the time taken
Input the parameters and solve;
V = 0 + 11 x6
V = 66m/s
The final velocity is 66m/s
A marathon is 26 mi and 385 yd long. Estimate how many strides would be required to run a marathon. Assume a reasonable value for the average number of feet/stride.
Answer:
According to the University of Iowa, the average length of a stride is 5ft.
Now, the total distance of the marathon is:
26mi and 385yd.
Let's transform that distance into ft.
1mi = 5280ft
Then:
26mi = 26*5280ft = 137,280ft
1yd = 3ft
then:
385yd = 385*3ft = 1,155ft.
Then the total distance of the marathon, in ft, is:
D = 137,280ft + 1,155ft = 138,435 ft.
Now the average number of strides needed will be equal to the quotient between the total distance of the marathon and the distance traveled in each stride.
N = 138,435ft/5ft = 27,687.
Derivation 1.2 showed how to calculate the work of reversible, isothermal expansion of a perfect gas. Suppose that the expansion is reversible but not isothermal and that the temperature decreases as the expansion proceeds. (a) Find an expression
Answer:
(a) The work done by the gas on the surroundings is, 17537.016 J
(b) The entropy change of the gas is, 73.0709 J/K
(c) The entropy change of the gas is equal to zero.
Explanation:
(a) The expression used for work done in reversible isothermal expansion will be,
where,
w = work done = ?
n = number of moles of gas = 4 mole
R = gas constant = 8.314 J/mole K
T = temperature of gas = 240 K
= initial volume of gas =
= final volume of gas =
Now put all the given values in the above formula, we get:
The work done by the gas on the surroundings is, 17537.016 J
(b) Now we have to calculate the entropy change of the gas.
As per first law of thermodynamic,
where,
= internal energy
q = heat
w = work done
As we know that, the term internal energy is the depend on the temperature and the process is isothermal that means at constant temperature.
So, at constant temperature the internal energy is equal to zero.
Thus, w = q = 17537.016 J
Formula used for entropy change:
The entropy change of the gas is, 73.0709 J/K
(c) Now we have to calculate the entropy change of the gas when the expansion is reversible and adiabatic instead of isothermal.
As we know that, in adiabatic process there is no heat exchange between the system and surroundings. That means, q = constant = 0
So, from this we conclude that the entropy change of the gas must also be equal to zero.
Explanation:
A studious physics student is interrupted by a swarm of bees and chased off a cliff. Since she has her calculator in hand she quickly punches in numbers to figure out the initial velocity she needs to make it into the lake below. The cliff is 10 m high and the lake is 15 m away from the edge of the cliff. Find the time it takes her to drop. Find her initial velocity,
Answer:
The time is 1.4 sec
The initial velocity is 10.7 m/s.
Explanation:
Given that,
Height = 10 m
Distance = 15 m
We need to calculate the time
Using equation of motion
[tex]s=ut-\dfrac{1}{2}gt^2[/tex]
Put the value into the formula
[tex]10=0+\dfrac{1}{2}\times9.8\times t^2[/tex]
[tex]t^2=\dfrac{2\times10}{9.8}[/tex]
[tex]t=\sqrt{\dfrac{2\times10}{9.8}}[/tex]
[tex]t=1.4\ sec[/tex]
We need to calculate the initial velocity
Using formula of velocity
[tex]v=\dfrac{d}{t}[/tex]
Put the value into the formula
[tex]v=\dfrac{15}{1.4}[/tex]
[tex]v=10.7\ m/s[/tex]
Hence, The time is 1.4 sec
The initial velocity is 10.7 m/s.
You have made a simple circuit with one bulb. If you wanted to add an
extra bulb without the first bulb dimming. What would you need to
design?
A. A series circuit
B. A complex circuit
C. A parallel circuit
D. An incomplete circuit
Answer:
[tex]A. \: A \: series \: circuit[/tex]
Explanation:
♨Rage♨
Answer:
C. A parallel circuit
Explanation:
Adding a bulb in parallel with the existing bulb will apply the same voltage to both bulbs. They will light equally bright.
You would design a parallel circuit.
_____
In a series circuit the same current would flow in both bulbs, but that current would be at half the original current level. Both bulbs would be dimmer than the first bulb was.
It is difficult to create a "complex" circuit with only two components. An "incomplete" circuit would result in no light at all.
A tower crane has a hoist motor rated at 159 hp. If the crane is limited to using 72.0 % of its maximum hoisting power for safety reasons, what is the shortest time in which the crane can lift a 5550 kg load over a distance of 89.0 m
Answer:
The value is [tex]t = 56.68 \ s [/tex]
Explanation:
From the question we are told that
The rating of the hoist motor is [tex]k = 159hp = 159 *746 =118614 \ W[/tex]
The percentage of it power used is [tex]z = 0.72 * 118614=85402.08 \ W[/tex]
The mass of the load is m = 5550 kg
The distance is h = 89.0 m
The potential energy required to lift the load through that distance is
[tex]E = m * g * h[/tex]
=> [tex]E = 5550 * 9.8 * 89.0[/tex]
=> [tex]E = 4840710 \ J[/tex]
Generally the time taken is mathematically represented as
[tex]t = \frac{E}{ z}[/tex]
=> [tex]t = \frac{4840710}{ 85402.08}[/tex]
=> [tex]t = 56.68 \ s [/tex]
when hydrogen shares electrons with oxygen the outermost shell of the hydrogen atoms are full with how many electrons? and oxygens valence shell is full with how many electrons? because the valence shells of these atoms are full,the atoms are stable.
Answer:
2 and 8
Explanation:
please mark me brainiest I would really appreciate it.
A disc at rest without slipping, rolls down a hill of height (3×9.8)m.What is its speed when it reaches at the bottom?
Answer:
The speed as it reaches the bottom is 24m/s
Explanation:
Given parameters:
Height of hill = (3 x 9.8)m = 29.4m
Unknown:
Final speed as it reaches the bottom = ?
Solution:
To solve this problem, we apply;
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity = 9.8m/s²
h is the height
note, the initial speed of the body is 0;
Input the parameters and solve;
v² = 0² + 2 x 9.8 x 29.4
v² = 576.24
v = √576.24 = 24m/s
The speed as it reaches the bottom is 24m/s