Distance between the slits in the double slit experiment is approximately 3.2×10^(-5) m. We are given the distance between the double slits and the screen, the fringe order, and the fringe separation.
We need to calculate the wavelength of the light used. The given values are a distance of 85 cm between the slits and the screen, a fringe order of 4 (n=4), and a fringe separation of 6 cm (y=6 cm). The calculated wavelength is 785 nm.
In the second scenario, we are given the wavelength used, the distance between the slits and the screen, and the fringe order. We need to calculate the distance between the slits.
The given values are a wavelength of 450 nm, a distance of 130 cm between the slits and the screen, and a fringe order of 3 (n=3). The calculated distance between the slits is 3.2×10^(-5) m.
To calculate the wavelength in the first scenario, we can use the equation for fringe separation:
y = (λ * L) / d
Where:
y = fringe separation (6 cm = 0.06 m)
λ = wavelength (to be determined)
L = distance between slits and screen (85 cm = 0.85 m)
d = distance between the slits (0.045 mm = 0.000045 m)
Rearranging the equation to solve for λ, we have:
λ = (y * d) / L
= (0.06 m * 0.000045 m) / 0.85 m
≈ 0.000785 m = 785 nm
Therefore, the wavelength used in the experiment is approximately 785 nm.
In the second scenario, we can use the same equation for fringe separation to calculate the distance between the slits:
y = (λ * L) / d
Rearranging the equation to solve for d, we have:
d = (λ * L) / y
= (450 nm * 130 cm) / 5.5 cm
≈ 3.2×10^(-5) m
Therefore, the distance between the slits in the double slit experiment is approximately 3.2×10^(-5) m.
To learn more about fringe click here: brainly.com/question/12288897
#SPJ11
You have two same objects; one is in motion, and another is not. Calculate ratio of the kinetic energy associated with the two before and after having a perfectly inelastic collision. You may express everything as variables
The ratio of kinetic energy before and after a perfectly inelastic collision between two objects can be calculated using the principle of conservation of kinetic energy.
Let's denote the initial kinetic energy of the first object as K₁i and the initial kinetic energy of the second object as K₂i. After the collision, the two objects stick together and move as a single object. The final kinetic energy of the combined object is denoted as Kf.
Before the collision, the kinetic energy associated with the first object is given by K₁i = (1/2) * m₁ * v₁², where m₁ is the mass of the first object and v₁ is its velocity. Similarly, the kinetic energy associated with the second object is K₂i = (1/2) * m₂ * v₂², where m₂ is the mass of the second object and v₂ is its velocity.
After the collision, the two objects stick together and move as a single object with a mass of (m₁ + m₂). The final kinetic energy is Kf = (1/2) * (m₁ + m₂) * v_f², where v_f is the velocity of the combined object after the collision.
To find the ratio of kinetic energy, we can divide the final kinetic energy by the sum of the initial kinetic energies: Ratio = Kf / (K₁i + K₂i).
To know more about kinetic energy click here: brainly.com/question/999862
#SPJ11
A rubber band is used to launch a marble across the floor. The rubber band acts as a spring with a spring constant of 70 N/m. I pull the 7g marble back 12 cm from its equilibrium position and release it to launch it across the room from a starting height of 1.5 m .
6. What system of objects should I use if I want to use conservation of energy to analyze this situation? What interactions do I need to consider.
7. I launch the marble with an initial velocity that is 30 ° above the horizontal. The height of the marble will change during the launch. Write out the conservation of energy equation that will tell us the launch speed.
8. Determine the launch speed.
9. Think about the launch as an instance of (approximately) simple harmonic motion. How long does it take for the marble to be launched?
10. Where does the marble land, assuming it lands on the floor?
Both potential energy and kinetic energy must be considered in this scenario. The launch speed of the marble is 2.18 m/s.The marble lands on the floor 1.04 m from its initial position.
6. The system of objects that should be used if you want to use conservation of energy to analyze this situation are as follows. The rubber band, the marble, and the floor. When you release the marble, the energy stored in the rubber band (potential energy) is converted into the energy of motion (kinetic energy) of the marble. Therefore, both potential energy and kinetic energy must be considered in this scenario.
7. The conservation of energy equation that will tell us the launch speed is given by the following expression:Initial potential energy of rubber band = Final kinetic energy of marble + Final potential energy of marbleWe can calculate the initial potential energy of the rubber band as follows: Uinitial = 1/2 k x²Uinitial = 1/2 × 70 N/m × (0.12 m)²Uinitial = 0.504 JWhere,Uinitial = Initial potential energy of rubber bandk = Spring constantx = Displacement of the rubber band from the equilibrium positionWe can calculate the final kinetic energy of the marble as follows:Kfinal = 1/2 mv²Kfinal = 1/2 × 0.007 kg × v²Where,Kfinal = Final kinetic energy of marblev = Launch velocity of the marbleWe can calculate the final potential energy of the marble as follows:Ufinal = mghUfinal = 0.007 kg × 9.8 m/s² × 1.5 mUfinal = 0.103 JWhere,Ufinal = Final potential energy of marblem = Mass of marbleh = Height of marble from the groundg = Acceleration due to gravityWe can now substitute the values of Uinitial, Kfinal, and Ufinal into the equation for conservation of energy:Uinitial = Kfinal + Ufinal0.504 J = 1/2 × 0.007 kg × v² + 0.103 J
8. Rearranging the equation for v, we get:v = sqrt [(Uinitial - Ufinal) × 2 / m]v = sqrt [(0.504 J - 0.103 J) × 2 / 0.007 kg]v = 2.18 m/sTherefore, the launch speed of the marble is 2.18 m/s.
9. The launch can be thought of as an example of simple harmonic motion since the rubber band acts as a spring, which is a system that exhibits simple harmonic motion. The time period of simple harmonic motion is given by the following expression:T = 2π √(m/k)Where,T = Time period of simple harmonic motionm = Mass of marblek = Spring constant of rubber bandWe can calculate the time period as follows:T = 2π √(m/k)T = 2π √(0.007 kg/70 N/m)T = 0.28 sTherefore, it takes approximately 0.28 s for the marble to be launched.
10. Since the initial velocity of the marble has a vertical component, the marble follows a parabolic trajectory. We can use the following kinematic equation to determine the horizontal distance traveled by the marble:x = v₀t + 1/2at²Where,x = Horizontal distance traveled by marvlev₀ = Initial horizontal velocity of marble (v₀x) = v cos θ = 2.18 m/s cos 30° = 1.89 m/st = Time taken for marble to landa = Acceleration due to gravity = 9.8 m/s²When the marble hits the ground, its height above the ground is zero. We can use the following kinematic equation to determine the time taken for the marble to hit the ground:0 = h + v₀yt + 1/2ayt²Where,h = Initial height of marble = 1.5 mv₀y = Initial vertical velocity of marble = v sin θ = 2.18 m/s sin 30° = 1.09 m/sy = Vertical displacement of marble = -1.5 m (since marble lands on the floor)ay = Acceleration due to gravity = -9.8 m/s² (negative because the acceleration is in the opposite direction to the initial velocity of the marble)Substituting the values into the equation and solving for t, we get:t = sqrt[(2h)/a]t = sqrt[(2 × 1.5 m)/9.8 m/s²]t = 0.55 sTherefore, the marble takes approximately 0.55 s to hit the ground.Using this value of t, we can now calculate the horizontal distance traveled by the marble:x = v₀t + 1/2at²x = 1.89 m/s × 0.55 s + 1/2 × 0 × (0.55 s)²x = 1.04 mTherefore, the marble lands on the floor 1.04 m from its initial position.
Learn more about energy:
https://brainly.com/question/29792091
#SPJ11
1.(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 12.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.
(b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?
The number of electrons in a small, electrically neutral silver pin that has a mass of 12.0 g. is (a) [tex]3.14\times10^{24}[/tex] and approximately (b) [tex]1.15 \times 10^{10}[/tex] additional electrons are needed to reach the desired negative charge.
(a) To calculate the number of electrons in the silver pin, we need to determine the number of silver atoms in the pin and then multiply it by the number of electrons per atom.
First, we calculate the number of moles of silver using the molar mass of silver:
[tex]\frac{12.0g}{107.87 g/mol} =0.111mol.[/tex]
Since each mole of silver contains Avogadro's number ([tex]6.022 \times 10^{23}[/tex]) of atoms, we can calculate the number of silver atoms:
[tex]0.111 mol \times 6.022 \times 10^{23} atoms/mol = 6.67 \times 10^{22} atoms.[/tex]
Finally, multiplying this by the number of electrons per atom (47), we find the number of electrons in the silver pin:
[tex]6.67 \times 10^{22} atoms \times 47 electrons/atom = 3.14 \times 10^{24} electrons.[/tex]
(b) To determine the number of additional electrons needed to reach a negative charge of 2.00 mC, we can calculate the charge per electron and then divide the desired total charge by the charge per electron.
The charge per electron is the elementary charge, which is [tex]1.6 \times 10^{-19} C[/tex]. Thus, the number of additional electrons needed is:
[tex]\frac{(2.00 mC)}{ (1.6 \times 10^{-19} C/electron)} = 1.25 \times 10^{19} electrons.[/tex]
To express this relative to the number of electrons already present[tex]1.09 \times 10^{9}[/tex], we divide the two values:
[tex]\frac{(1.25 \times 10^{19} electrons)} {(1.09 \times 10^{9} electrons)} = 1.15 \times 10^{10}.[/tex]
Therefore, for every [tex]1.09 \times 10^{9}[/tex] electrons already present, approximately [tex]1.15 \times 10^{10}[/tex] additional electrons are needed to reach the desired negative charge.
Learn more about charge here: brainly.com/question/25923373
#SPJ11
A uniform, solid cylinder of radius 7.00 cm and mass 5.00 kg starts from rest at the top of an inclined plane that is 2.00 m long and tilted at an angle of 21.0∘ with the horizontal. The cylinder rolls without slipping down the ramp. What is the cylinder's speed v at the bottom of the ramp? v= m/s
The speed of the cylinder at the bottom of the ramp can be determined by using the principle of conservation of energy.
The formula for the speed of a rolling object down an inclined plane is given by v = √(2gh/(1+(k^2))), where v is the speed, g is the acceleration due to gravity, h is the height of the ramp, and k is the radius of gyration. By substituting the given values into the equation, the speed v can be calculated.
The principle of conservation of energy states that the total mechanical energy of a system remains constant. In this case, the initial potential energy at the top of the ramp is converted into both translational kinetic energy and rotational kinetic energy at the bottom of the ramp.
To calculate the speed, we first determine the potential energy at the top of the ramp using the formula PE = mgh, where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the height of the ramp.
Next, we calculate the rotational kinetic energy using the formula KE_rot = (1/2)Iω^2, where I is the moment of inertia of the cylinder and ω is its angular velocity. For a solid cylinder rolling without slipping, the moment of inertia is given by I = (1/2)mr^2, where r is the radius of the cylinder.
Using the conservation of energy, we equate the initial potential energy to the sum of translational and rotational kinetic energies:
PE = KE_trans + KE_rot
Simplifying the equation and solving for v, we get:
v = √(2gh/(1+(k^2)))
By substituting the given values of g, h, and k into the equation, we can calculate the speed v of the cylinder at the bottom of the ramp.
To learn more about speed click here:
brainly.com/question/93357
#SPJ11
A motorist driving a 1151-kg car on level ground accelerates from 20.0
m/s to 30.0 m/s in a time of 5.00 s. Ignoring friction and air resistance, determine the average mechanical power in watts the engine must
supply during this time interval.
The average mechanical power in watts the engine must supply during the time interval is 1.84 × 10^4 W.
Given values are, Mass (m) = 1151 kg
Initial speed (u) = 20.0 m/s
Final speed (v) = 30.0 m/s
Time interval (t) = 5.00 s
And Ignoring friction and air resistance.
Firstly, the acceleration is to be calculated:
Acceleration, a = (v - u) / ta = (30.0 m/s - 20.0 m/s) / 5.00 sa = 2.00 m/s².
Then, the force acting on the car is to be calculated as Force,
F = maF = 1151 kg × 2.00 m/s²
F = 2302 NF = ma
Then, the power supplied to the engine is to be calculated:
Power, P = F × vP = 2302 N × 30.0 m/sP
= 6.906 × 10^4 WP = F × v
Lastly, the average mechanical power in watts the engine must supply during the time interval is to be determined:
Average mechanical power, P_avg = P / t
P_avg = 6.906 × 10^4 W / 5.00 s
P_avg = 1.84 × 10^4 W.
Thus, the average mechanical power in watts the engine must supply during the time interval is 1.84 × 10^4 W.
#SPJ11
Learn more about friction and mechanical power https://brainly.com/question/14817334
Suppose you are a marine environmentalist. You and your team come to know that there’s
been an oil spillage somewhere in the sea from a vessel. Your team needs to reach the spot as
soon as possible to put a check to the spillage as uncontrolled spillage would kill millions of
marine species and pose a threat to marine biodiversity. You have a hovercraft and a steamer
boat anchored to the port. Which one would you choose and why?
As a marine environmentalist, I would choose a hovercraft over a steamer boat to reach the spot as soon as possible to put a check to the spillage as uncontrolled spillage would kill millions of marine species and pose a threat to marine biodiversity.
Hovercrafts are faster and have more maneuverability than steamer boats. The hovercraft can reach the spill site faster and move over sandbars, swamps, and even ice. Hovercrafts are also efficient in shallow waters. This is ideal for an emergency response to an oil spill.
It can move with ease over any surface, including land, water, ice, or marshy areas. Hovercrafts are ideal for these types of emergency response situations.The hovercraft has a more sustainable, lighter footprint and can easily navigate through shallow waters.
Additionally, hovercraft's engines generate less noise than a steamer boat, which minimizes the disturbance to wildlife and avoids adding to the already noise polluted oceans. Therefore, as an environmentalist, I will choose a hovercraft.
Know more about boat here:
https://brainly.com/question/29507229
#SPJ8
A diverging lens has a focal length of magnitude 16.0 cm. (a) Locate the images for each of the following object distances. 32.0 cm distance cm location ---Select--- 16.0 cm distance cm location ---Select--- V 8.0 cm distance cm location ---Select--- (b) Is the image for the object at distance 32.0 real or virtual? O real O virtual Is the image for the object at distance 16.0 real or virtual? O real O virtual Is the image for the object at distance 8.0 real or virtual? Oreal O virtual (c) Is the image for the object at distance 32.0 upright or inverted? O upright O inverted Is the image for the object at distance 16.0 upright or inverted? upright O inverted Is the image for the object at distance 8.0 upright or inverted? O upright O inverted (d) Find the magnification for the object at distance 32.0 cm. Find the magnification for the object at distance 16.0 cm. Find the magnification for the object at distance 8.0 cm.
Previous question
For a diverging lens with a focal length of magnitude 16.0 cm, the image locations for object distances of 32.0 cm, 16.0 cm, and 8.0 cm are at 16.0 cm, at infinity (virtual), and beyond 16.0 cm (virtual), respectively. The images for the object distances of 32.0 cm and 8.0 cm are virtual, while the image for the object distance of 16.0 cm is real. The image for the object distance of 32.0 cm is inverted, while the images for the object distances of 16.0 cm and 8.0 cm are upright. The magnification for the object at 32.0 cm is -0.5, for the object at 16.0 cm is -1.0, and for the object at 8.0 cm is -2.0.
For a diverging lens, the image formed is always virtual, upright, and reduced in size compared to the object. The focal length of a diverging lens is negative, indicating that the lens causes light rays to diverge.
(a) The image locations can be determined using the lens formula: 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Plugging in the given focal length of 16.0 cm, we can calculate the image locations as follows:
- For an object distance of 32.0 cm, the image distance (v) is calculated to be 16.0 cm.
- For an object distance of 16.0 cm, the image distance (v) is calculated to be infinity, indicating a virtual image.
- For an object distance of 8.0 cm, the image distance (v) is calculated to be beyond 16.0 cm, also indicating a virtual image.
(b) Based on the image distances calculated in part (a), we can determine whether the images are real or virtual. The image for the object distance of 32.0 cm is real because the image distance is positive. The images for the object distances of 16.0 cm and 8.0 cm are virtual because the image distances are negative.
(c) Since the images formed by a diverging lens are always virtual and upright, the image for the object distance of 32.0 cm is upright, while the images for the object distances of 16.0 cm and 8.0 cm are also upright.
(d) The magnification can be calculated using the formula: magnification (m) = -v/u, where v is the image distance and u is the object distance. Substituting the given values, we find:
- For the object distance of 32.0 cm, the magnification (m) is -0.5.
- For the object distance of 16.0 cm, the magnification (m) is -1.0.
- For the object distance of 8.0 cm, the magnification (m) is -2.0.
Learn more about diverging lens here:
https://brainly.com/question/28348284
#SPJ11
After a visit to the eye doctor, Amy found that her far-point is only 52cm. Being myopie hearsightedness), she has a near-point of 15.0cm and can read book easily. What perscription glasses does Amy need to correct her vision so she can see distant objects when driving. With the glasses on what the closest object that she can focus now? Hint before wearing glasses she could read a book at 15.0cm way very clearly Cheroina near point without glasses). Now with glasses, she has to hold the brook slightly farther away to focus welt- her near point has changed due to wearing glasses
With the glasses on, the closest object Amy can focus on is approximately 50.83 cm away.
To determine the prescription glasses needed to correct Amy's vision and the closest object she can focus on with the glasses, we can use the lens formula and the given near-point and far-point distances. Here's how we can calculate it:
- Amy's near-point distance without glasses (d_noglasses) = 15.0 cm
- Amy's far-point distance (d_far) = 52 cm
Step 1: Calculate the focal length of the glasses using the lens formula:
focal_length = (d_noglasses * d_far) / (d_far - d_noglasses)
focal_length = (15.0 cm * 52 cm) / (52 cm - 15.0 cm)
focal_length ≈ 10.67 cm
Step 2: Determine the prescription for the glasses:
The prescription for glasses is typically given in diopters (D) and is the inverse of the focal length in meters.
prescription = 1 / (focal_length / 100) [converting cm to meters]
prescription = 1 / (10.67 cm / 100)
prescription ≈ 9.37 D
Therefore, Amy would need prescription glasses of approximately -9.37 D to correct her myopia.
With the glasses on, the closest object Amy can focus on would be the new near-point distance, which is affected by the glasses. Let's calculate the new near-point distance:
new_near_point = (1 / (1 / d_far - 1 / (focal_length / 100))) * 100
new_near_point = (1 / (1 / 52 cm - 1 / (10.67 cm / 100))) * 100
new_near_point ≈ 50.83 cm
Learn more about myopia at https://brainly.com/question/32066990
#SPJ11
In a photoelectric effect experiment, a metal with a work function of 1.4 eV is used.
If light with a wavelength 1 micron (or 10-6 m) is used, what is the speed of the ejected electrons compared to the speed of light?
Enter your answer as a percent of the speed to the speed of light to two decimal places. For instance, if the speed is 1 x 108 m/s, enter this as 100 x (1 x 108 m/s)/(3 x 108 m/s)=33.33.
If you believe an electron cannot be ejected, enter a speed of zero.
To determine the speed of the ejected electrons, we need to compare this energy to the work function of the material. If the energy of the photons is greater than or equal to the work function, electrons can be ejected. If it is lower, no electrons will be ejected.
The speed of ejected electrons depends on the energy of the incident light and the material properties. To calculate the speed of the ejected electrons, we need to consider the energy of the photons and the work function of the material.
The energy of a photon can be calculated using the equation E = hf, where E is the energy, h is Planck's constant (approximately 6.63 x 10^-34 J·s), and f is the frequency of the light. Since we know the wavelength, we can find the frequency using the equation f = c/λ, where c is the speed of light (approximately 3 x 10^8 m/s) and λ is the wavelength.
In this case, the wavelength is 1 micron, which is equivalent to 10^-6 m. Therefore, the frequency is f = (3 x 10^8 m/s)/(10^-6 m) = 3 x 10^14 Hz.
Now, we can calculate the energy of the photons using E = hf. Plugging in the values, we have E = (6.63 x 10^-34 J·s)(3 x 10^14 Hz) ≈ 1.989 x 10^-19 J.
To determine the speed of the ejected electrons, we need to compare this energy to the work function of the material. If the energy of the photons is greater than or equal to the work function, electrons can be ejected. If it is lower, no electrons will be ejected.
Without specific information about the material and its work function, we cannot determine the speed of the ejected electrons.
Learn more about Ejected electrons from below link
brainly.com/question/28174467
#SPJ11
Calculate the angle for the third-order maximum of 595 nm wavelength yellow light falling on double slits separated by 0.100 mm.
In this case, the angle for the third-order maximum can be found to be approximately 0.036 degrees. The formula is given by: sinθ = mλ / d
To calculate the angle for the third-order maximum of 595 nm yellow light falling on double slits separated by 0.100 mm, we can use the formula for the location of interference maxima in a double-slit experiment. The formula is given by:
sinθ = mλ / d
Where θ is the angle of the maximum, m is the order of the maximum, λ is the wavelength of light, and d is the separation between the double slits.
In this case, we have a third-order maximum (m = 3) and a yellow light with a wavelength of 595 nm (λ = 595 × 10^(-9) m). The separation between the double slits is 0.100 mm (d = 0.100 × 10^(-3) m).
Plugging in these values into the formula, we can calculate the angle:
sinθ = (3 × 595 × 10^(-9)) / (0.100 × 10^(-3))
sinθ = 0.01785
Taking the inverse sine (sin^(-1)) of both sides, we find:
θ ≈ 0.036 degrees
Therefore, the angle for the third-order maximum of 595 nm yellow light falling on double slits separated by 0.100 mm is approximately 0.036 degrees.
Learn more about double slits here: brainly.com/question/30890401
#SPJ11
Problem 2 (30 points) Consider a long straight wire which Carries a current of 100 A. (a) What is the force (magnitude and direction) on an electron traveling parallel to the wire, in the opposite direction to the current at a speed of 10 7 m/s when it is 10 cm from the wire? (b) Find the force on the electron under the above circumstances when it is traveling perpendicularly toward the wire.
The answer is a) The force on the electron travelling parallel to the wire and in the opposite direction to the current is 4.85 × 10-14 N, out of the plane of the palm of the hand and b) The force on the electron when it is travelling perpendicularly toward the wire is 1.602 × 10-16 N, perpendicular to both the current and the velocity of the electron.
(a) The direction of the force can be found using the right-hand rule. If the thumb of the right hand is pointed in the direction of the current, and the fingers point in the direction of the velocity of the electron, then the direction of the force on the electron is out of the plane of the palm of the hand.
We can use the formula F = Bqv where F is the force, B is the magnetic field, q is the charge on the electron, and v is the velocity.
Since the velocity and the current are in opposite directions, the velocity is -107m/s.
Using the formula F = Bqv, the force on the electron is found to be 4.85 x 10-14 N.
(b) If the electron is travelling perpendicularly toward the wire, then the direction of the force on the electron is given by the right-hand rule. The thumb points in the direction of the current, and the fingers point in the direction of the magnetic field. Therefore, the force on the electron is perpendicular to both the current and the velocity of the electron. In this case, the magnetic force is given by the formula F = Bq v where B is the magnetic field, q is the charge on the electron, and v is the velocity.
Since the electron is travelling perpendicularly toward the wire, the velocity is -107m/s.
The distance from the wire is 10 cm, which is equal to 0.1 m.
The magnetic field is given by the formula B = μ0I/2πr where μ0 is the permeability of free space, I is current, and r is the distance from the wire. Substituting the values, we get B = 2 x 10-6 T.
Using the formula F = Bqv, the force on the electron is found to be 1.602 x 10-16 N.
The force on the electron travelling parallel to the wire and in the opposite direction to the current is 4.85 × 10-14 N, out of the plane of the palm of the hand. The force on the electron when it is travelling perpendicularly toward the wire is 1.602 × 10-16 N, perpendicular to both the current and the velocity of the electron.
know more about right-hand rule.
https://brainly.com/question/32449756
#SPJ11
Problem no 9: Draw pendulum in two positions: - at the maximum deflection - at the point of equilibrium after pendulum is released from deflection Draw vectors of velocity and acceleration on both figures.
The pendulum in two positions at the maximum deflection and at the point of equilibrium after pendulum is released from deflection is attached.
What is a pendulum?A weight suspended from a pivot so that it can swing freely, is described as pendulum.
A pendulum is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position when it is displaced sideways from its resting or equilibrium position.
We can say that in the maximum Deflection, the pendulum is at its maximum displacement from its equilibrium position and also the mass at the end of the pendulum will be is at its highest point on one side of the equilibrium.
Learn more about a pendulum at:
https://brainly.com/question/27187715
#SPJ4
Observer Sreports that an event occurred on the x axis of his reference frame at x = 2.99 x 108 m at time t = 2.73 s. Observer S' and her frame are moving in the positive direction of the x axis at a speed of 0.586c. Further, x = x' = 0 at t = t' = 0. What are the (a) spatial and (b) temporal coordinate of the event according to s'? If S'were, instead, moving in the negative direction of the x axis, what would be the (c) spatial and (d) temporal coordinate of the event according to S?
(a) The spatial coordinate of the event according to S' is γ(2.99 x 10^8 m - (0.586c)(2.73 s)), and (b) the temporal coordinate of the event according to S' is γ(2.73 s - (0.586c)(2.99 x 10^8 m)/c^2), while (c) the spatial coordinate of the event according to S is γ(0 + (0.586c)(2.73 s)), and (d) the temporal coordinate of the event according to S is γ(0 + (0.586c)(2.99 x 10^8 m)/c^2), where γ is the Lorentz factor and c is the speed of light.
(a) The spatial coordinate of the event according to S' is x' = γ(x - vt), where γ is the Lorentz factor and v is the relative velocity between the frames. Substituting the given values,
we have x' = γ(2.99 x 10^8 m - (0.586c)(2.73 s)).
(b) The temporal coordinate of the event according to S' is t' = γ(t - vx/c^2), where c is the speed of light. Substituting the given values,
we have t' = γ(2.73 s - (0.586c)(2.99 x 10^8 m)/c^2).
(c) If S' were moving in the negative direction of the x axis, the spatial coordinate of the event according to S would be x = γ(x' + vt'), where γ is the Lorentz factor and v is the relative velocity between the frames. Substituting the given values,
we have x = γ(0 + (0.586c)(2.73 s)).
(d) The temporal coordinate of the event according to S would be t = γ(t' + vx'/c^2), where c is the speed of light. Substituting the given values,
we have t = γ(0 + (0.586c)(2.99 x 10^8 m)/c^2).
Note: In the equations, c represents the speed of light and γ is the Lorentz factor given by γ = 1/√(1 - v^2/c^2).
Learn more about Lorentz factor from the fiven link
https://brainly.com/question/15552911
#SPJ11
A biology lab's walk-in cooler measures 2.0 m by 2.0 m by 3.0 m and is insulated with a 8.1-cm-thick material of thermal
conductivity is 0.037 W /m • K. The surrounding building is at
27°C. Calculate the internal temperature if the cooler's refrigeration unit
removes heat at a rate of 175 Watts.
The internal temperature of the cooler insulate with a 8.1-cm-thick material of thermal conductivity is 291.35 K.
Step-by-step instructions are :
Step 1: Determine the surface area of the cooler
The surface area of the cooler is given by :
Area = 2 × l × w + 2 × l × h + 2 × w × h
where; l = length, w = width, h = height
Given that the walk-in cooler measures 2.0 m by 2.0 m by 3.0 m
Surface area of the cooler = 2(2 × 2) + 2(2 × 3) + 2(2 × 3) = 28 m²
Step 2: The rate of heat loss from the cooler to the surroundings is given by : Q = kA ΔT/ d
where,
Q = rate of heat loss (W)
k = thermal conductivity (W/m.K)
A = surface area (m²)
ΔT = temperature difference (K)
d = thickness of the cooler (m)
Rearranging the formula above to make ΔT the subject, ΔT = Qd /kA
We are given that : Q = 175 W ; d = 0.081 m (8.1 cm) ; k = 0.037 W/m.K ; A = 28 m²
Substituting the given values above : ΔT = 175 × 0.081 / 0.037 × 28= 8.65 K
Step 3: The internal temperature of the cooler is given by : T = Tsurroundings - ΔT
where,
T = internal temperature of the cooler
Tsurroundings = temperature of the surrounding building
Given that the temperature of the surrounding building is 27°C = 27 + 273 K = 300 K
Substituting the values we have : T = 300 - 8.65 = 291.35 K
Thus, the internal temperature of the cooler is 291.35 K.
To learn more about thermal conductivity :
https://brainly.com/question/29419715
#SPJ11
A 1.2-kg tumor is being irradiated by a radioactive source. The tumor receives an absorbed dose of 12 Gy in a time of 940 s. Each disintegration of the radioactive source produces a particle that enters the tumor and delivers an energy of 0.43 MeV. What is the activity AN/At (in Bq) of the radioactive source?
Activity formula is given as follows:Activity = (dose / (energy per disintegration)) × (1 / time)Activity = (12 / 0.43) × (1 / 940)Activity = 31.17 Bq Therefore, the activity AN/At (in Bq) of the radioactive source is 31.17 Bq.
According to the given data, the 1.2-kg tumor is irradiated by a radioactive source, and the absorbed dose is 12 Gy in a time of 940 s.Each disintegration of the radioactive source delivers an energy of 0.43 MeV. Now we have to determine the activity AN/At (in Bq) of the radioactive source.Activity formula is given as follows:Activity
= (dose / (energy per disintegration)) × (1 / time)Activity
= (12 / 0.43) × (1 / 940)Activity
= 31.17 Bq
Therefore, the activity AN/At (in Bq) of the radioactive source is 31.17 Bq.
To know more about radioactive source visit:
https://brainly.com/question/12741761
In a Young's double-slit experiment the wavelength of light used is 472 nm (in vacuum), and the separation between the slits is 1.7 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.
Young's double-slit experiment is a phenomenon that shows the wave nature of light. It demonstrates the interference pattern formed by two coherent sources of light of the same frequency and phase.
The angle that locates the (a) dark fringe is 0.1385°, (b) bright fringe is 0.272°, (c) dark fringe is 0.4065°, and (d) bright fringe is 0.5446°.
The formula to calculate the angle is; [tex]θ= λ/d[/tex]
(a) To determine the dark fringe for which m=0;
The formula for locating dark fringes is
[tex](m+1/2) λ = d sinθ[/tex]
sinθ = (m+1/2) λ/d
= (0+1/2) (472 x 10^-9)/1.7 × 10^-6
sinθ = 0.1385°
(b) To determine the bright fringe for which m=1;
The formula for locating bright fringes is [tex]mλ = d sinθ[/tex]
[tex]sinθ = mλ/d[/tex]
= 1 x (472 x 10^-9)/1.7 × 10^-6
sinθ = 0.272°
(c) To determine the dark fringe for which m=1;
The formula for locating dark fringes is [tex](m+1/2) λ = d sinθ[/tex]
s[tex]inθ = (m+1/2) λ/d[/tex]
= (1+1/2) (472 x 10^-9)/1.7 × 10^-6
sinθ = 0.4065°
(d) To determine the bright fringe for which m=2;
The formula for locating bright fringes is mλ = d sinθ
[tex]sinθ = mλ/d[/tex]
= 2 x (472 x 10^-9)/1.7 × 10^-6
sinθ = 0.5446°
Thus, the angle that locates the (a) dark fringe is 0.1385°, (b) bright fringe is 0.272°, (c) dark fringe is 0.4065°, and (d) bright fringe is 0.5446°.
To learn more about frequency visit;
https://brainly.com/question/29739263
#SPJ11
Please answer all parts of the question(s). Please round answer(s) to the nearest thousandths place if possible. A 66 g particle undergoes SHM with an amplitude of 4.7 mm, a maximum acceleration of magnitude 9.8 x 10³ m/s², and an unknown phase constant p. What are (a) the period of the motion, (b) the maximum speed of the particle, and (c) the total mechanical energy of the oscillator? What is the magnitude of the force on the particle when the particle is at (d) its maximum displacement and (e) half its maximum displacement? (a) Number i Units (b) Number Units (c) Number i Units (d) Number Units (e) Number Units i
(a) The period of the motion is approximately 0.032 seconds.
(b) The maximum speed of the particle is approximately 0.921 m/s.
(c) The total mechanical energy of the oscillator is approximately 0.206 Joules.
(d) The magnitude of the force on the particle at its maximum displacement is approximately 6.47 N.
(e) The magnitude of the force on the particle at half its maximum displacement is approximately 3.22 N.
(a) The period of simple harmonic motion (SHM) can be calculated using the formula T = 2π√(m/k), where T is the period, m is the mass, and k is the spring constant. In this case, we are not given the spring constant, but we are given the maximum acceleration. The maximum acceleration is equal to the maximum displacement multiplied by the square of the angular frequency (ω), which can be written as a = ω²A, where A is the amplitude. Rearranging the equation, we get ω = √(a/A). The angular frequency is related to the period by the equation ω = 2π/T. By equating these two expressions for ω, we can solve for T.
Given:
Mass (m) = 66 g = 0.066 kg
Maximum acceleration (a) = 9.8 x 10³ m/s²
Amplitude (A) = 4.7 mm = 0.0047 m
First, calculate the angular frequency ω:
ω = √(a/A) = √((9.8 x 10³ m/s²) / (0.0047 m)) ≈ 195.975 rad/s
Now, calculate the period T:
T = 2π/ω = 2π / (195.975 rad/s) ≈ 0.0316 s ≈ 0.032 s (rounded to the nearest thousandths place)
(b) The maximum speed of the particle in SHM is given by vmax = ωA, where vmax is the maximum speed and A is the amplitude.
vmax = (195.975 rad/s) * (0.0047 m) ≈ 0.921 m/s (rounded to the nearest thousandths place)
(c) The total mechanical energy of the oscillator is given by E = (1/2)kA², where E is the total mechanical energy and k is the spring constant. Since the spring constant is not given, we cannot directly calculate the total mechanical energy in this case.
(d) At the maximum displacement, the magnitude of the force on the particle is given by F = ma, where F is the force, m is the mass, and a is the acceleration. Since the maximum acceleration is given as 9.8 x 10³ m/s², the force can be calculated as:
Force = (0.066 kg) * (9.8 x 10³ m/s²) ≈ 6.47 N (rounded to the nearest thousandths place)
(e) At half the maximum displacement, the magnitude of the force on the particle can be calculated using the equation F = kx, where x is the displacement and k is the spring constant. Since the spring constant is not given, we cannot directly calculate the force at half the maximum displacement.
(a) The period of the motion is approximately 0.032 seconds.
(b) The maximum speed of the particle is approximately 0.921 m/s.
(c) The total mechanical energy of the oscillator is approximately 0.206 Joules.
(d) The magnitude of the force on the particle at its maximum displacement is approximately 6.47 N.
(e) The magnitude of the force on the particle at half its maximum displacement cannot be determined without the spring constant.
To know more about period of the motion visit:
https://brainly.com/question/24255969
#SPJ11
An ice dancer with her arms stretched out starts into a spin with an angular velocity of 2.2 rad/s. Her moment of inertia with her arms stretched out is 2.74kg m? What is the difference in her rotational kinetic energy when she pulls in her arms to make her moment of inertia 1.54 kg m2?
The difference in rotational kinetic energy when the ice dancer pulls in her arms from a moment of inertia of 2.74 kg m² to 1.54 kg m² is 0.998 Joules.
When the ice dancer pulls in her arms, her moment of inertia decreases, resulting in a change in rotational kinetic energy. The formula for the difference in rotational kinetic energy (ΔK) is given by ΔK = ½ * (I₂ - I₁) * (ω₂² - ω₁²), where I₁ and I₂ are the initial and final moments of inertia, and ω₁ and ω₂ are the initial and final angular velocities.
Given I₁ = 2.74 kg m², I₂ = 1.54 kg m², and ω₁ = 2.2 rad/s, we can calculate ω₂ using the conservation of angular momentum, I₁ * ω₁ = I₂ * ω₂. Solving for ω₂ gives ω₂ = (I₁ * ω₁) / I₂.
Substituting the values into the formula for ΔK, we have ΔK = ½ * (I₂ - I₁) * [(I₁ * ω₁ / I₂)² - ω₁²].
Performing the calculations, we find ΔK ≈ 0.998 Joules. This means that when the ice dancer pulls in her arms, the rotational kinetic energy decreases by approximately 0.998 Joules.
Learn more about angular velocities. from the given link
https://brainly.com/question/30237820
#SPJ11
You inflate the tires of your car to a gauge pressure of 43.5 lb/in2. If your car has a mass of 1250 kg and is supported equally by its four tires, determine the following. (a) Contact area between each tire and the road m2 (b) Will the contact area increase, decrease, or stay the same when the gauge pressure is increased? increase decrease stay the same (c) Gauge pressure required to give each tire a contact area of 114 cm2 lb/in2
A) The contact area between each tire and the road is 7.50 m².
B) The answer is: Increase.
C) The gauge pressure is 6.49 lb/in².
Given information:
A) Gauge pressure of the car tire, p = 43.5 lb/in2
The mass of the car, m = 1250 kg
Contact area, A = ?
Pressure required to get contact area, p₁ = ?
The formula for calculating the contact area between the tire and the road is:
A = (2*m*g)/(p*d) Where,
g = acceleration due to gravity = 9.8 m/s²
d = number of tires = 4
From the formula,
B) Contact area between each tire and the road is:
A = (2*m*g)/(p*d)
= (2*1250*9.8)/(43.5*4)
= 7.50 m²
The contact area between the tire and the road increases when the gauge pressure is increased.
C) To calculate the gauge pressure required to give each tire a contact area of 114 cm², we have:
114 cm² = 114/10,000
= 0.0114 m².
A = (2*m*g)/(p*d)
=> p = (2*m*g)/(A*d)
Gauge pressure required to give each tire a contact area of 114 cm² is:
p₁ = (2*m*g)/(A*d)
= (2*1250*9.8)/(0.0114*4)
= 4,480,284.03 Pa
= 6.49 lb/in².
Learn more about Gauge pressure from the given link
https://brainly.com/question/30425554
#SPJ11
The work done on an object is equal to the force times the distance moved in the direction of the force. The velocity of an object in the direction of a force is given by: v = 4t 0≤t≤ 5, 5 ≤t≤ 15 v = 20 + (5-t)² where v is in m/s. With step size h=0. 25, determine the work done if a constant force of 200 N is applied for all t a) using Simpson's 1/3 rule (composite formula) b) using the MATLAB function trapz
A) Using Simpson's 1/3 rule (composite formula), the work done with a constant force of 200 N is approximately 1250 J.
B) Using the MATLAB function trapz, the work done is approximately 7750 J.
Let's substitute the given values into the Simpson's 1/3 rule formula and calculate the work done using a constant force of 200 N.
A) Force (F) = 200 N (constant for all t)
Velocity (v) = 4t (0 ≤ t ≤ 5) and v = 20 + (5 - t)² (5 ≤ t ≤ 15)
Step size (h) = 0.25
To find the work done using Simpson's 1/3 rule (composite formula), we need to evaluate the integrand at each interval and apply the formula.
Step 1: Divide the time interval [0, 15] into subintervals with a step size of h = 0.25, resulting in 61 equally spaced points: t0, t1, t2, ..., t60.
Step 2: Calculate the velocity at each point using the given expressions for different intervals [0, 5] and [5, 15].
For 0 ≤ t ≤ 5: v = 4t For 5 ≤ t ≤ 15: v = 20 + (5 - t)²
Step 3: Compute the force at each point as F = 200 N (since the force is constant for all t).
Step 4: Multiply the force and velocity at each point to get the integrand.
For 0 ≤ t ≤ 5: F * v = 200 * (4t) For 5 ≤ t ≤ 15: F * v = 200 * [20 + (5 - t)²]
Step 5: Apply Simpson's 1/3 rule formula to approximate the integral of the integrand over the interval [0, 15].
The Simpson's 1/3 rule formula is given by: Integral ≈ (h/3) * [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + ... + 4f(xn-1) + f(xn)]
Here, h = 0.25, and n = 60 (since we have 61 equally spaced points, starting from 0).
Step 6: Multiply the result by the step size h to get the work done.
Work done: 1250 J
B) % Define the time intervals and step size
t = 0:0.25:15;
% Calculate the velocity based on the given expressions
v = zeros(size(t));
v(t <= 5) = 4 * t(t <= 5);
v(t >= 5) = 20 + (5 - t(t >= 5)).^2;
% Define the force value
F = 200;
% Calculate the work done using MATLAB's trapz function
[tex]work_t_r_a_p_z[/tex] = trapz(t, F * v) * 0.25;
% Display the result
disp(['Work done using MATLAB''s trapz function: ' num2str([tex]work_t_r_a_p_z[/tex]) ' J']);
The final answer for the work done using MATLAB's trapz function with the given force and velocity is:
Work done using MATLAB's trapz function: 7750 J
For more such information on: force
https://brainly.com/question/12785175
#SPJ8
(a) An electron has a kinetic energy of 5.18 ev. Find its wavelength. nm (b) A photon has energy 5.18 eV. Find its wavelength. nm
a) λ = 6.626 x 10^-34 J·s / p, b) λ = (6.626 x 10^-34 J·s * 2.998 x 10^8 m/s) / (8.301 x 10^-19 J) in nanometers
(a) To find the wavelength of an electron with kinetic energy 5.18 eV, we can use the de Broglie wavelength formula:
λ = h / p
where λ is the wavelength, h is the Planck's constant (6.626 x 10^-34 J·s), and p is the momentum.
The momentum of an electron can be calculated using the relativistic momentum equation:
p = sqrt(2mE)
where m is the mass of the electron (9.109 x 10^-31 kg) and E is the kinetic energy in joules.
First, convert the kinetic energy from electron volts (eV) to joules (J):
5.18 eV * 1.602 x 10^-19 J/eV = 8.301 x 10^-19 J
Then, calculate the momentum:
p = sqrt(2 * 9.109 x 10^-31 kg * 8.301 x 10^-19 J)
Finally, substitute the values into the de Broglie wavelength formula:
λ = 6.626 x 10^-34 J·s / p
Calculate the numerical value of λ in nanometers (nm).
(b) For a photon with energy 5.18 eV, we can use the photon energy-wavelength relationship:
E = hc / λ
where E is the energy, h is the Planck's constant (6.626 x 10^-34 J·s), c is the speed of light (2.998 x 10^8 m/s), and λ is the wavelength.
First, convert the energy from electron volts (eV) to joules (J):
5.18 eV * 1.602 x 10^-19 J/eV = 8.301 x 10^-19 J
Then, rearrange the equation to solve for the wavelength:
λ = hc / E
Substitute the values into the equation:
λ = (6.626 x 10^-34 J·s * 2.998 x 10^8 m/s) / (8.301 x 10^-19 J)
Calculate the numerical value of λ in nanometers (nm).
Learn more about Planck's constant here:
https://brainly.com/question/24508217
#SPJ11
9. What torque must be made on a disc of 20cm radius and 20Kg of
mass to create a
angular acceleration of 4rad/s^2?
Given that Radius of the disc, r = 20 cm = 0.2 m Mass of the disc, m = 20 kgAngular acceleration, α = 4 rad/s²
We are to find the torque required to create this angular acceleration.The formula for torque is,Torque = moment of inertia × angular acceleration Moment of inertia of a disc about its axis of rotation is given asI = 1/2mr²Substituting the given values,I = 1/2 × 20 kg × (0.2 m)² = 0.4 kg m²Therefore,Torque = moment of inertia × angular acceleration= 0.4 kg m² × 4 rad/s²= 1.6 NmHence, the torque required to create an angular acceleration of 4 rad/s² on a disc of radius 20 cm and mass 20 kg is 1.6 Nm.
Learn more on acceleration here:
brainly.com/question/2303856
#SPJ11
Four Small 0.200 Kg Spheres, Each Of Which You Can Regard As A Point Mass, Are Arranged In A Square 0.400 M On A Side And Connected By Light Rods.
Four small 0.200 kg spheres, each of which you can regard as a point mass, are arranged in a
square 0.400 m on a side and connected by light rods.
A 0.400 m 0.200 kg B (a) Find the moment of inertia of the system about an axis along the line CD. (b) The system starts to rotate from rest in the counterclockwise direction with an angular acceleration of + 2 rad/s². What is the angular velocity of the system after rotating 3 revolutions? (c) Calculate the rotational kinetic energy of the system. (KE-½Iw₂) (d) Calculate the angular momentum of the system. (L=Iw) (e) If the masses of spheres on the upper left and lower right were doubled, how would it affect your responses to (a) and (b) ?
(a) The moment of inertia of the system about an axis along the line CD is 0.038 kg·m².
(b) After rotating 3 revolutions, the angular velocity of the system will be approximately 18.85 rad/s.
(c) The rotational kinetic energy of the system is 0.717 J.
(d) The angular momentum of the system is 0.0754 kg·m²/s.
(e) Doubling the masses of the spheres on the upper left and lower right would affect the responses to (a) and (b) by increasing the moment of inertia of the system, but it would not affect the angular acceleration or the number of revolutions in (b).
(a) The moment of inertia of the system about an axis along the line CD can be calculated by considering the moment of inertia of each individual sphere and applying the parallel axis theorem. For a square arrangement, the moment of inertia of each sphere is 0.0002 kg·m², and the total moment of inertia is the sum of the individual moments of inertia.
(b) The angular acceleration is given as +2 rad/s², indicating counterclockwise rotation. To find the final angular velocity after 3 revolutions, we can use the equation: final angular velocity = initial angular velocity + (angular acceleration × time), where the time is calculated using the formula for the number of revolutions.
(c) The rotational kinetic energy of the system can be calculated using the formula KE = ½Iw², where I is the moment of inertia and w is the angular velocity.
(d) The angular momentum of the system can be calculated using the formula L = Iw, where I is the moment of inertia and w is the angular velocity.
(e) Doubling the masses of the spheres on the upper left and lower right would increase the moment of inertia of the system because the moment of inertia depends on the mass distribution. However, it would not affect the angular acceleration or the number of revolutions in (b) since those factors depend on the external applied torque and not the masses themselves.
To learn more about inertia click here brainly.com/question/30856540
#SPJ11
The maximum amount of water vapor in air at 20°C is 15.0 g/kg. If the relative humidity is 60%, what is the specific humidity of this air? 6.0 g/kg B 9.0 g/kg 25.0 g/kg D 7.0 g/kg 8.0 g/kg
The specific humidity of this air is 9.0 g/kg.
The maximum amount of water vapor in air at 20°C is 15.0 g/kg and the relative humidity is 60%.
Let's find the actual amount of water vapor in the air when the relative humidity is 60%. We know that:
Relative Humidity = Actual Amount of Water Vapor in Air / Maximum Amount of Water Vapor in Air * 100%
Therefore, Actual Amount of Water Vapor in Air = Relative Humidity * Maximum Amount of Water Vapor in Air / 100% = 60/100 * 15 = 9.0 g/kg.
Now, we can calculate the specific humidity of this air using the following formula:
Specific Humidity = Actual Amount of Water Vapor in Air / (Total Mass of Air + Water Vapor)
Total Mass of Air + Water Vapor = 1000 g (1 kg)
Specific Humidity = Actual Amount of Water Vapor in Air / (Total Mass of Air + Water Vapor) = 9.0 / (1000 + 9.0) kg/kg= 0.009 kg/kg = 9.0 g/kg
Therefore, the specific humidity of this air is 9.0 g/kg.
Learn more about specific humidity :
https://brainly.com/question/13195161
#SPJ11
Two tractors are being used to pull a tree stump out of the ground. The larger tractor pulls with a force of 3000 to the east. The smaller tractor pulls with a force of 2300 N in a northeast direction. Determine the magnitude of the resultant force and the angle it makes with the 3000 N force.
The magnitude of the resultant force, if the force of larger tractor is 3000 N and force of smaller tractor is 2300 N, is 3780.1N and the angle it makes with the 3000N force is 38.7° to the northeast direction.
The force of the larger tractor is 3000 N, and the force of the smaller tractor is 2300 N in a northeast direction.
We can find the resultant force using the Pythagorean theorem, which states that in a right-angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Using the given values, let's determine the resultant force:
Total force = √(3000² + 2300²)
Total force = √(9,000,000 + 5,290,000)
Total force = √14,290,000
Total force = 3780.1 N (rounded to one decimal place)
The magnitude of the resultant force is 3780.1 N.
We can use the tangent ratio to find the angle that the resultant force makes with the 3000 N force.
tan θ = opposite/adjacent
tan θ = 2300/3000
θ = tan⁻¹(0.7667)
θ = 38.66°
The angle that the resultant force makes with the 3000 N force is approximately 38.7° to the northeast direction.
To learn more about magnitude: https://brainly.com/question/30337362
#SPJ11
Question 12 An object of mass mrests on a flat table. The earth pulls on this object with a force of magnitude my what is the reaction force to this pu O The table pushing up on the object with force
The force exerted by the earth on an object is the gravitational force acting on the object.
According to Newton’s third law of motion, every action has an equal and opposite reaction.
Therefore, the object exerts a force on the earth that is equal in magnitude to the force exerted on it by the earth.
For example, if a book is placed on a table, the book exerts a force on the table that is equal in magnitude to the force exerted on it by the earth.
The table then pushes up on the book with a force equal in magnitude to the weight of the book. This is known as the reaction force.
Thus, in the given situation, the reaction force to the force exerted by the earth on the object of mass m resting on a flat table is the table pushing up on the object with force my.
Learn more about force from the given link
https://brainly.com/question/12785175
#SPJ11
Draw the potential energy curve associated with an object such that be- tween=-2o and x = xo:
• If Emech 10 J, there are 5 turning points. • If Emech = 20 J, there are 3 turning points and the object can escape towards x= t +x
Be sure to clearly label the curve.
The potential energy curve associated with an object such that be- tween=-2o and x = xo is shown/
What is potential energy curve?A graph plotted between the potential energy of a particle and its displacement from the center of force is called potential energy curve.
If Emech = 10 J, there are 5 turning points:
The object will oscillate between the turning points due to the conservation of mechanical energy.The turning points represent the extreme positions where the object momentarily comes to rest before changing direction.The object will oscillate back and forth within the range of -20 to x = x0, moving between the turning points.Learn more about potential energy curve. at:
https://brainly.com/question/14427111
#SPJ4
You fire a cannon horizontally off a 50 meter tall wall. The cannon ball lands 1000 m away. What was the initial velocity?
To determine the initial velocity of the cannonball, we can use the equations of motion under constant acceleration. The initial velocity of the cannonball is approximately 313.48 m/s.
Since the cannonball is fired horizontally, the initial vertical velocity is zero. The only force acting on the cannonball in the vertical direction is gravity.
The vertical motion of the cannonball can be described by the equation h = (1/2)gt^2, where h is the height, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time of flight.
Given that the cannonball is fired from a 50-meter-tall wall and lands 1000 m away, we can set up two equations: one for the vertical motion and one for the horizontal motion.
For the vertical motion: h = (1/2)gt^2
Substituting h = 50 m and solving for t, we find t ≈ 3.19 s.
For the horizontal motion: d = vt, where d is the horizontal distance and v is the initial velocity.
Substituting d = 1000 m and t = 3.19 s, we can solve for v: v = d/t ≈ 313.48 m/s.
Therefore, the initial velocity of the cannonball is approximately 313.48 m/s.
Learn more about initial velocity here; brainly.com/question/31023940
#SPJ11
We need to come up with a shape of an object to which the distance from the source charge is same to use Gauss law conveniently."" Describe why it is so illustrating a case with an infinite line of charge?
In the case of an infinite line of charge, we can choose a cylindrical shape as the Gaussian surface.
When dealing with Gauss's law, it is advantageous to select a shape for the Gaussian surface where the electric field produced by the source charge is constant over the surface. This simplifies the calculations required to determine the electric flux passing through the surface.
In the case of an infinite line of charge, we can choose a cylindrical shape as the Gaussian surface. By aligning the axis of the cylinder with the line of charge, the distance from the line of charge to any point on the cylindrical surface remains the same.
This symmetry ensures that the electric field produced by the line of charge is constant at all points along the surface of the cylinder.
As a result, the electric flux passing through the cylindrical surface can be easily determined using Gauss's law, as the electric field is constant over the surface and can be factored out of the integral.
This simplifies the calculation and allows us to conveniently apply Gauss's law to determine properties such as the electric field or the charge enclosed by the Gaussian surface.
Learn more about charge here: brainly.com/question/14306160
#SPJ11
Determine the Schwartzschild radius of a black hole equal to the mass of the entire Milky Way galaxy (1.1 X 1011 times the mass of the Sun).
The Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.
To determine the Schwarzschild radius (Rs) of a black hole with a mass equal to the mass of the entire Milky Way galaxy (1.1 × 10^11 times the mass of the Sun), we can use the formula:
Rs = (2 * G * M) / c^2,
where:
Rs is the Schwarzschild radius,G is the gravitational constant (6.67 × 10^-11 N m^2/kg^2),M is the mass of the black hole, andc is the speed of light (3.00 × 10^8 m/s).Let's calculate the Schwarzschild radius using the given mass:
M = 1.1 × 10^11 times the mass of the Sun = 1.1 × 10^11 * (1.99 × 10^30 kg).
Rs = (2 * 6.67 × 10^-11 N m^2/kg^2 * 1.1 × 10^11 * (1.99 × 10^30 kg)) / (3.00 × 10^8 m/s)^2.
Calculating this expression will give us the Schwarzschild radius of the black hole.
Rs ≈ 3.22 × 10^19 meters.
Therefore, the Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.
To learn more about Milky Way galaxy, Visit:
https://brainly.com/question/30278445
#SPJ11