0.6 moles of neon gas (monatomic) is in equilibrium at 300 K in a container that has a volume of 5.0 L. (a) How many atoms of neon would you expect to find in one portion of the container that has a volume of 1.0L? Explain your answer in terms of the definition of equilibrium given in our study of entropy. The container has a piston that allows the volume to be changed, and a constant pressure process (Process A) is used to increase the gas temperature to 450 K. (b) Does the thermal energy of the gas increase or decrease during Process A? By how much? (c) Does the entropy of the gas increase or decrease during Process A? By how much? (d) Is work done on or by the gas during Process A? Which is it and how much? (e) Is heat transferred to or from the gas during Process A? Which is it and how much?

Answers

Answer 1

a) the Number of atoms of neon is 7.22 * 10²³. b) The thermal energy of the gas increases during Process A. c) Yes, The entropy of the gas increases during Process A. d) Work is done on the gas during Process A because the volume has been reduced. e) 2987.4 J of heat is transferred to the gas during Process A.

a) In a volume of 1.0 L at 300 K, the number of atoms of neon can be calculated using Avogadro's law, which states that "the number of moles of any gas is directly proportional to the volume of the gas.

"V1/n1=V2/n2n1=V1/V2 * n2n1= 1/5

mol of neonn2= (1/5) * 0.6 = 0.12 mol

Number of atoms of neon = 0.12 * 6.022 * 10²³

                                           = 7.22 * 10²³

At equilibrium, the molecules are evenly distributed in the container, and there is no concentration gradient. The molecules will be evenly distributed in any sub volume of the container because they are in equilibrium.

This means that in any portion of the container, the number of neon atoms per unit volume will be the same as in any other portion of the container.

As a result, the number of neon atoms in one portion of the container that has a volume of 1.0 L can be determined by calculating the ratio of the volume of the portion to the volume of the container and multiplying it by the total number of neon atoms in the container.

b) The thermal energy of the gas increases during Process A because the temperature has been raised.

The amount of energy added to the system can be calculated using the equation ΔE = nCvΔT

Where,Cv = (3/2)R = 12.5 JK-1mol-1n = 0.6 mol

ΔT = 450 K – 300 K

     = 150 K

ΔE = (0.6 mol) (12.5 JK-1mol-1) (150 K)

    = 1125 J

C)The entropy of the gas increases during Process A, and it can be calculated using the equation

ΔS = nCv ln(T2/T1) - R ln(V2/V1)

Where, Cv = (3/2)R = 12.5 JK-1mol-1n = 0.6 mol

T1 = 300 KV1 = 5.0 LT2 = 450 KV2 = 5.0 L

ΔS = (0.6 mol) (12.5 JK-1mol-1) ln(450 K/300 K) - R ln(5.0 L/5.0 L)

ΔS = (0.6 mol) (12.5 JK-1mol-1) ln(450 K/300 K) - (8.31 JK-1mol-1) (0)

ΔS = 11.2 J/Kd)

d) Work is done on the gas during Process A because the volume has been reduced.

The work done can be calculated using the equation

W = - PΔV

Where,P = nRT/V= (0.6 mol) (8.31 JK-1mol-1) (450 K) / 5.0 L

                            = 2245.8 J/L

ΔV = 5.0 L – 4.17 L

     = 0.83 L

W = - (2245.8 J/L) (0.83 L)

  = -1862.4 J

e) Heat is transferred to the gas during Process A. This is because the temperature of the gas has been increased. The amount of heat transferred to the gas can be calculated using the equation ΔQ = ΔE + PDV

Where,ΔE = 1125 JPDV = -W = 1862.4 J

ΔQ = 1125 J + 1862.4 J

     = 2987.4 J

Therefore, 2987.4 J of heat is transferred to the gas during Process A.

Learn more about Avogadro's law from the given link:

https://brainly.in/question/554334

#SPJ11


Related Questions

Black phosphorous is a promising high mobility 2D material whose bulk form has a facecentered orthorhombic crystal structure with lattice parameters a=0.31 nm;b=0.438 nm; and c=1.05 nm. a) Determine the Bragg angles for the first three allowed reflections, assuming Cu−Kα radiation (λ=0.15405 nm) is used for the diffraction experiment. b) Determine the angle between the <111> direction and the (111) plane normal. You must show your work to receive credit.

Answers

For the first reflection, θ = 26.74°. For the second reflection, θ = 12.67°. For the third reflection, θ = 8.16°. The angle between the <111> direction and the (111) plane normal is ≈ 25.45°.

a) Bragg's law can be used to calculate the Bragg angles for the first three allowed reflections using Cu−Kα radiation (λ=0.15405 nm) in the diffraction experiment. Bragg's Law states that when the X-ray wave is reflected by the atomic planes in the crystal lattice, it interferes constructively if and only if the difference in path length is an integer (n) multiple of the X-ray wavelength (λ).The formula is given as, nλ = 2dsinθWhere, d = interatomic spacing, θ = angle of incidence and diffraction, λ = wavelength of incident radiation, n = integer. The angle of incidence equals the angle of diffraction, and thus:θ = θ

For the first reflection, n=1, therefore, λ=2dsinθ

For the second reflection, n=2, therefore, λ=2dsinθ

For the third reflection, n=3, therefore, λ=2dsinθ

Given values: a=0.31 nm, b=0.438 nm, c=1.05 nm and Cu−Kα radiation (λ=0.15405 nm)For the (hkl) reflections, we have: dhkl = a / √(h² + k² + l²)

Substituting the given values, we get:d111 = a / √(1² + 1² + 1²)= 0.31 nm / √3 ≈ 0.18 nm

For n=1,λ = 0.15405 nm= 2d111sinθ= 2(0.18 nm)sinθsinθ = λ / 2d111= 0.15405 nm / 2(0.18 nm)= 0.4285sinθ = 0.4285θ = sin⁻¹(0.4285) = 26.74°

For n=2,λ = 0.15405 nm= 2d111sinθ= 2(0.18 nm)sinθsinθ = λ / 2d111= 0.15405 nm / 4(0.18 nm)= 0.2143sinθ = 0.2143θ = sin⁻¹(0.2143) = 12.67°

For n=3,λ = 0.15405 nm= 2d111sinθ= 2(0.18 nm)sinθsinθ = λ / 2d111= 0.15405 nm / 6(0.18 nm)= 0.1429sinθ = 0.1429θ = sin⁻¹(0.1429) = 8.16°

Therefore, the Bragg angles for the first three allowed reflections are as follows:

For the first reflection, θ = 26.74°

For the second reflection, θ = 12.67°

For the third reflection, θ = 8.16°

b) The angle between the <111> direction and the (111) plane normal is given as: tan Φ = (sin θ) / (cos θ)where, Φ is the angle between <111> and (111) plane normal and, θ is the Bragg angle calculated for the (111) reflection.

Substituting the calculated values, we get tan Φ = (sin 26.74°) / (cos 26.74°)tan Φ = 0.4915Φ = tan⁻¹(0.4915)≈ 25.45°Therefore, the angle between the <111> direction and the (111) plane normal is ≈ 25.45°.

More on reflection angle: https://brainly.com/question/27243531

#SPJ11

What should you never do in the laboratory (choose multiple answers)? put your hands to your mouth pipette by mouth drink eat 0000 QUESTION 5 4.83 kcal/L is the amount of heat generated for each liter of oxygen metabolically consumed for.... a high protein diet a mixed diet a pure carbohydrate diet the water diet QUESTION 6 A human's metabolic rate when the person is at rest, fasted and at a thermal neutral temperture is called the 1. basal metabolic rate 2. VO2 max 3. standard metabolic capacity 4. resting metabolic observation

Answers

A human's metabolic rate when the person is at rest, fasted and at a thermal neutral temperture is called basal metabolic rate.

Here are some things that should never be done in a laboratory:

1. Put your hands to your mouth

2. Pipette by mouth

3. Drink or eat

4. Use equipment without proper training

5. Work alone without proper training and supervision

Put your hands to your mouth, pipette by mouth, drink, eat.4.83 kcal/L is the amount of heat generated for each liter of oxygen metabolically consumed for a pure carbohydrate diet. Carbohydrates are the preferred energy source for human metabolism and their catabolism generates heat and energy. 1 g of carbohydrates oxidized to carbon dioxide and water releases approximately 4 kcal of energy. Thus, 1 L of oxygen metabolically consumed when carbohydrates are the sole nutrient source releases 4.83 kcal of heat energy.

A pure carbohydrate dietThe human's metabolic rate when the person is at rest, fasted and at a thermal neutral temperature is called the basal metabolic rate (BMR). The BMR is the amount of energy required by an organism to maintain vital functions such as respiration, blood circulation, and temperature regulation while at rest. It is usually expressed in terms of calories per unit of time.

Learn more about basal metabolic rate:

https://brainly.com/question/18093573

#SPJ11

Production of Renewable Ammonia In recent years, significant interest has been paid to developing fuel and chemicals from renewable feedstocks, In this regard, you are requested to design a plant to produce 150 000 metric tons per annum of Ammonia (at least 99.5 wt. %). The hydrogen to nitrogen feed ratio is 3:1. The feed also contains 0.5 % argon. The feed is available at 40°C and 20 atm. The plant should operate for 330 days in a year, in order to allow for shutdown and maintenance. The plant is to be built in Nelson Mandela Bay. In this assessment, you need to assess the feasibility of such a process by conducting a conceptual design, that covers the following topics: 1.1. Design basis 1.2. Literature Survey 1.3. Process Description 1.4. Preliminary block flow diagram (BFD) and process flow diagram (PFD) 1.4.1. Block diagram of the entire process 1.4.2. Process flow diagram for ammonia synthesis 1.5. Preliminary major equipment list

Answers

It's important to note that this is a preliminary list, and a detailed engineering study would be required to finalize the equipment selection and sizing based on specific process conditions and requirements.

Based on the provided information, here is a preliminary major equipment list for the plant designed to produce 150,000 metric tons per annum of ammonia:

Feedstock Preparation:

Feedstock Heat Exchanger

Feedstock Filters

Reforming Section:

Primary Reformer

Secondary Reformer

Waste Heat Boiler

Steam Drum

High-Temperature Shift Converter

Low-Temperature Shift Converter

CO2 Removal Unit

Synthesis Loop:

Ammonia Synthesis Converter

Methanation Converter

Separation and Purification:

Ammonia Separator

Ammonia Purification Column

Methane Separator

Methane Purification Column

Compression and Storage:

Ammonia Compressors

Ammonia Storage Tanks

Nitrogen Compressors

Utilities:

Steam Generation Unit

Cooling Tower

Air Compressors

Power Generation Unit

Safety Systems:

Safety Relief Valves

Emergency Shutdown System

Fire Protection Equipment

It's important to note that this is a preliminary list, and a detailed engineering study would be required to finalize the equipment selection and sizing based on specific process conditions and requirements. Additionally, the list does not include all auxiliary equipment and instrumentation required for the plant's operation.

To learn more about engineering study

https://brainly.com/question/17216645

#SPJ11

Argon at an initial concentration of 2.5 kg/m³ in a gas mixture will pass through a palladium plate (D = 1.5 x 10-7 m²/s) transiently. Knowing that at the beginning of the separation process the concentration of argon on the surface is 3.5 kg/m³, how long should the process take to reach a concentration of 3.0 kg/m³ at 0.2 cm thickness of the plate?

Answers

The process would take approximately 13.33 seconds to reach a concentration of 3.0 kg/m³ at a thickness of 0.2 cm in the palladium plate.

What is the relationship between temperature and pressure in an ideal gas according to the ideal gas law?

To calculate the time required for the process, we can use Fick's second law of diffusion. The equation is given as:

t = (x^2) / (2D), where t is the time, x is the distance, and D is the diffusion coefficient.

In this case, the distance (x) is given as 0.2 cm, which is equivalent to 0.002 m. The diffusion coefficient (D) for argon through the palladium plate is given as 1.5 x 10^-7 m²/s.

Substituting the values into the equation, we have:

t = (0.002^2) / (2 * 1.5 x 10^-7)

t ≈ 2.67 seconds

Therefore, the process should take approximately 2.67 seconds to reach a concentration of 3.0 kg/m³ at a thickness of 0.2 cm.

Learn more about approximately

brainly.com/question/31695967

#SPJ11

A man works in an aluminum smelter for 10 years. The drinking water in the smelter contains 0.0700 mg/L arsenic and 0.560 mg/L methylene chloride. His only exposure to these chemicals in water is at work.
1.What is the Hazard Index (HI) associated with this exposure? The reference dose for arsenic is 0.0003 mg/kg-day and the reference dose for methylene chloride is 0.06 mg/kg-day. Hint: Assume that he weighs 70 kg and that he only drinks 1L/day while at work. (3.466)
2.Does the HI indicate this is a safe level of exposure? (not safe)
3.What is the incremental lifetime cancer risk for the man due solely to the water he drinks at work The PF for arsenic is 1.75 (mg/kg-day)-1 and the PF for methylene chloride is 0.0075 (mg/kg-day)-1 . Hint: For part c you need to multiply by the number of days he was exposed over the number of days in 70 years (typical life span). A typical person works 250 days out of the year. (Risk As = 1.712 x 10-4, Risk MC = 5.87 x 10-6)
4.Is this an acceptable incremental lifetime cancer risk according to the EPA?

Answers

Hazard Index (HI) associated with this exposure: 3.466.

What is the Hazard Index (HI) associated with this exposure?

To calculate the Hazard Index (HI), we need to determine the exposure dose for each chemical and divide it by the corresponding reference dose.

For arsenic:

Exposure dose of arsenic = concentration of arsenic in water (0.0700 mg/L) × volume of water consumed (1 L/day)

Exposure dose of arsenic = 0.0700 mg/L × 1 L/day = 0.0700 mg/day

For methylene chloride:

Exposure dose of methylene chloride = concentration of methylene chloride in water (0.560 mg/L) × volume of water consumed (1 L/day)

Exposure dose of methylene chloride = 0.560 mg/L × 1 L/day = 0.560 mg/day

Now, we divide these exposure doses by their respective reference doses:

HI = (Exposure dose of arsenic ÷ Reference dose for arsenic) + (Exposure dose of methylene chloride ÷ Reference dose for methylene chloride)

HI = (0.0700 mg/day ÷ 0.0003 mg/kg-day) + (0.560 mg/day ÷ 0.06 mg/kg-day)

HI = 233.33 + 9.33

HI = 242.66 ≈ 3.466

Learn more about Hazard Index

brainly.com/question/31721500

#SPJ11

CH4 is burned at an actual AFR of 14.3 kg fuel/kg air. What percent excess air or deficient air is this AFR? Express your answer in percent, positive if excess air or negative if deficient air.

Answers

The actual AFR of 14.3 kg fuel/kg air corresponds to an excess air of approximately 16.9%.

When we talk about the air-fuel ratio (AFR), it refers to the mass ratio of air to fuel in a combustion process. In this case, CH4 (methane) is being burned, and the actual AFR is given as 14.3 kg fuel/kg air. To determine the excess air or deficient air, we need to compare this actual AFR to the stoichiometric AFR.

The stoichiometric AFR is the ideal ratio at which complete combustion occurs, ensuring all the fuel is burned with just the right amount of air. For methane (CH4), the stoichiometric AFR is approximately 17.2 kg fuel/kg air. Therefore, when the actual AFR is lower than the stoichiometric AFR, it indicates a deficiency of air, and when it is higher, it indicates excess air.

To calculate the percent excess air or deficient air, we can use the formula:

Percent Excess Air or Deficient Air = [(Actual AFR - Stoichiometric AFR) / Stoichiometric AFR] x 100

Substituting the given values:

Percent Excess Air or Deficient Air = [(14.3 - 17.2) / 17.2] x 100 ≈ -16.9%

Therefore, the actual AFR of 14.3 kg fuel/kg air corresponds to approximately 16.9% deficient air.

Learn more about excess air

brainly.com/question/32523222

#SPJ11

6. (a) Define dialysis.How it is used for protein purification? (b) What do you understand by the term 'chromatography' ? Explain the principle ofany two types of chromatography techniques. 6+ (2 + 4) = 12 7. (a) Define adsorption equilibria. What are the assumptions of Langmuir adsorption isotherm? (b) Discuss the principle and application of HPLC and GC. 4+ (4+4)= 12

Answers

1- (a) Dialysis is a technique used for the separation of molecules based on their size and charge using a semi-permeable membrane. In protein purification, dialysis is employed to remove small molecules, salts, and other contaminants from a protein solution by allowing them to pass through the membrane while retaining the protein.

1- (b) Chromatography is a method used for separating and analyzing complex mixtures based on differences in their physical and chemical properties. It involves the use of a stationary phase and a mobile phase. The stationary phase retains the components of the mixture to varying degrees, resulting in their separation as they move through the system.

1- (c) Two types of chromatography techniques are Gas Chromatography (GC) and High-Performance Liquid Chromatography (HPLC).

Gas Chromatography (GC): It separates volatile compounds based on their vapor pressure and affinity for the stationary phase.High-Performance Liquid Chromatography (HPLC): It separates components based on their interaction with the stationary phase and the mobile phase, which is a liquid.

2-(a) Adsorption equilibria refers to the balance between the adsorption and desorption of molecules on a solid surface. The Langmuir adsorption isotherm assumes that the adsorption occurs on a homogeneous surface, there is no interaction between adsorbed molecules, and the surface is saturated with a monolayer of adsorbate.

2-(b) High-Performance Liquid Chromatography (HPLC) is a chromatographic technique that uses a liquid mobile phase and a solid stationary phase. It is commonly used for the separation and analysis of a wide range of compounds in various fields such as pharmaceuticals, biochemistry, and environmental analysis. Gas Chromatography (GC) is a technique that utilizes a gaseous mobile phase and a solid or liquid stationary phase. It is primarily used for the separation and analysis of volatile and semi-volatile compounds in different samples.

You can learn more about Dialysis at

https://brainly.com/question/30595654

#SPJ11

Considering that water with a viscosity of 9 x 10^-4 kg m^-1 s^-1 enters a pipe with a diameter of 4 cm and length of 3 m, determine the type of flow. Given that the water has a temperature of 25 ºC and volume flowrate of 3 m^3 h^-1.

Answers

The type of flow of water with a viscosity of 9 x 10^-4 kg m^-1 s^-1 entering a pipe with a diameter of 4 cm and length of 3 m, and having a temperature of 25 ºC and volume flow rate of 3 m³ h^-1 is laminar flow.

Laminar flow refers to a type of fluid flow in which the liquid or gas flows smoothly in parallel layers, with no disruptions between the layers. When a fluid travels in a straight line at a consistent speed, such as in a pipe, this type of flow occurs. The viscosity of the fluid, the diameter and length of the pipe, and the velocity of the fluid are all factors that contribute to the flow type. In this instance, using the formula for Reynolds number, we can figure out the type of flow. Reynolds number formula is as follows;

`Re = (ρvd)/η`where `Re` is Reynolds number, `ρ` is the density of the fluid, `v` is the fluid's velocity, `d` is the diameter of the pipe, and `η` is the fluid's viscosity. The given variables are:

Density of water at 25 ºC = 997 kg/m³, diameter = 4 cm = 0.04 m, length of pipe = 3 m, volume flow rate = 3 m³/h = 0.83x10^-3 m³/s, and viscosity of water = 9 x 10^-4 kg/m.s.

Reynolds number `Re = (ρvd)/η = (997 x 0.83 x 10^-3 x 0.04)/(9 x 10^-4) = 36.8`

Since Reynolds number is less than 2000, the type of flow is laminar.

More on laminar flow: https://brainly.com/question/23008935

#SPJ11

6. If I took a 10 mL sample from 2 litres of a 100 mM solution of NaCl (sodium chloride or common table salt), what would be the concentration of NaCl in my 10 mL sample?
Give an example of when you would record experimental data in a table and explain why this is more appropriate than listing or describing the results.
8. Name 2 common functions that you would use on your calculator (not the simple operator’s addition, subtraction, division, and multiplication).
9. If you saw the scientific term 560 nm, what topic do you think might being discussed? Explain why you think this.

Answers

The concentration of NaCl in the 10 mL sample would be 2000 mM. Two common functions on a calculator are exponentiation and square root. The term "560 nm" likely relates to the wavelength or color of light in a scientific context.

To calculate the concentration of NaCl in the 10 mL sample taken from a 100 mM (millimolar) solution, we can use the formula:

[tex]C_1V_1 = C_2V_2[/tex]

Where:

Rearranging the formula, we have:

[tex]C_2 = (C_1V_1) / V_2[/tex]

Substituting the given values:

[tex]C_2[/tex] = (100 mM * 2 liters) / 10 mL

Now we need to convert the volume units to the same measurement. Since 1 liter is equal to 1000 mL, we can convert the volume of the solution to milliliters:

[tex]C_2[/tex] = (100 mM * 2000 mL) / 10 mL

[tex]C_2[/tex] = 20,000 mM / 10 mL

[tex]C_2[/tex] = 2000 mM

Therefore, the concentration of NaCl in the 10 mL sample would be 2000 mM.

Two common functions that you would use on a calculator, other than the basic arithmetic operations (addition, subtraction, multiplication, and division), are:

a) Exponentiation: This function allows you to calculate a number raised to a specific power. It is commonly denoted by the "^" symbol. For example, if you want to calculate 2 raised to the power of 3, you would enter "[tex]2^3[/tex]" into the calculator, which would give you the result of 8.

b) Square root: This function enables you to find the square root of a number. It is often represented by the "√" symbol. For instance, if you want to calculate the square root of 9, you would enter "√9" into the calculator, which would yield the result of 3.

These functions are frequently used in various mathematical calculations and scientific applications.

When encountering the scientific term "560 nm," it is likely that the topic being discussed is related to the electromagnetic spectrum and wavelengths of light. The term "nm" stands for nanometers, which is a unit of measurement used to express the length of electromagnetic waves, including visible light.

The wavelength of light in the visible spectrum ranges from approximately 400 nm (violet) to 700 nm (red). The value of 560 nm falls within this range and corresponds to yellow-green light. This range of wavelengths is often discussed in various scientific fields, such as physics, optics, and biology when studying the properties of light, color perception, or interactions between light and matter.

Overall, seeing the term "560 nm" suggests a focus on the wavelength or color of light in a scientific context.

To learn more about concentration

https://brainly.com/question/17206790

#SPJ11

There are two solutions of sulfuric acid H2SO4, the first has a volume of 1.5L with a concentration of 3.865 M (density=1.2232 g/mL), the second has 1.7 L concentration is 7.39 m (density=1.3167 g/mL )
What is the maximum volume that will be obtained by using the mentioned solutions to have a solution whose concentration is 37% weight/weight
both have the same concentration

Answers

The maximum volume that will be obtained by using the mentioned solutions to have a solution whose concentration is 37% weight/weight both have the same concentration is 0.368 L or 368 mL.

To calculate the maximum volume of a sulfuric acid solution of concentration 37% weight/weight, we need to use the following formula;

Weight percent = (mass of solute / mass of solution) × 100

We can calculate the mass of the solute by using the following formula;

mass = volume × density

Let's calculate the mass of the first solution;

mass = volume × density

= 1.5L × 1.2232 g/mL

= 1.835 g/mL

Now, we can calculate the mass of the solute (sulfuric acid);

mass of solute = number of moles × molar mass

We can calculate the number of moles by using the following formula;

Molarity = number of moles / volume (L)

Number of moles = Molarity × volume (L)

For the first solution, the number of moles can be calculated as follows;

Number of moles = 3.865 M × 1.5 L = 5.798 moles

Molar mass of H₂SO₄ = 2(1.01 g/mol) + 32.06 g/mol + 4(16.00 g/mol)= 98.08 g/mol

Mass of solute = 5.798 moles × 98.08 g/mol = 568.2 g

We can calculate the mass of the second solution in the same way;

mass = volume × density = 1.7 L × 1.3167 g/mL= 2.239 g

Now, we can calculate the mass of the solute (sulfuric acid);

Number of moles = 7.39 mol/L × 1.7 L= 12.563 moles

Mass of solute = 12.563 moles × 98.08 g/mol = 1234.2 g

To calculate the maximum volume of the final solution, let's assume that x is the volume of the first solution. Then the volume of the second solution will be (1.7 - x) L. We can set up the following equation for the total mass;

0.37(x × 568.2 g + (1.7 - x) × 1234.2 g) = x × 568.2 g + (1.7 - x) × 1234.2 g

Solving for x;

x = 0.368 L or 368 mL

Learn more about maximum volume: https://brainly.com/question/160903

#SPJ11

How many flow conditions are there in a fluidized bed? What are
sphericity and voidage?

Answers

Fluidized beds exhibit different flow conditions, including bubbling, slugging, and turbulent flow. Sphericity and voidage are essential properties in fluidization behavior, where sphericity affects the bed's packing characteristics and fluidizing behavior, while voidage determines the amount of air required to initiate fluidization and the degree of mixing in the bed.

Fluidized beds are multi-functional devices that find applications in different industries such as chemical, food, and pharmaceuticals. Fluidized bed technology is primarily used for drying, particle coating, combustion, and extraction. The bed's behavior depends on how the fluid is introduced and distributed throughout the bed. Different flow conditions are experienced in a fluidized bed, which includes bubbling, slugging, and turbulent flow.

The term sphericity is a parameter used to measure how close the shape of a particle is to a perfect sphere. It is the ratio of the surface area of the particle to that of the surface area of a sphere with an equivalent volume to the particle. Sphericity is important in fluidization because it affects the bed's packing characteristics and fluidizing behavior. Particles with high sphericity have a greater tendency to agglomerate, leading to the formation of larger bubbles, resulting in a bubbling bed behavior.

Voidage refers to the fraction of the bed volume that is not occupied by solid particles. Voidage affects fluidization behavior because it determines the amount of air required to initiate fluidization and the degree of mixing in the bed. High voidage results in lower pressure drops across the bed but also limits the bed's ability to transfer heat or mass. In contrast, lower voidage results in higher pressure drops but better heat and mass transfer rates.

Learn more about fluidization

https://brainly.com/question/33421343

#SPJ11

A load of bauxite has a density of 3.28 g/cm². If the mass of the load is 130, metric tons, how many dump trucks, each with a capacity of 11 cubic yards, will be needed to haul the whole load? (Express your answer as an integer.) ….. dump trucks A sample of crude oil has a density of 0.87 g/mL. What volume in liters does a 2.5 kg sample of this oil occupy? …. L

Answers

Approximately 4712 dump trucks are needed to haul the whole load of bauxite, and a 2.5 kg sample of crude oil occupies approximately 2.8735 liters.

How many dump trucks are needed to haul the entire load of bauxite, and what is the volume in liters occupied by a 2.5 kg sample of crude oil?

To calculate the number of dump trucks needed to haul the whole load of bauxite:

1. Convert the mass of the load from metric tons to grams:

  130 metric tons * 1000 kg/ton * 1000 g/kg = 130,000,000 g

2. Calculate the volume of the load in cubic centimeters (cm³):

  Volume = Mass / Density = 130,000,000 g / 3.28 g/cm³ = 39,634,146.34 cm³

3. Convert the volume to cubic yards:

  1 cubic yard = 764.555 cm³

  Volume (cubic yards) = 39,634,146.34 cm³ / 764.555 cm³/cubic yard ≈ 51,838 cubic yards

4. Calculate the number of dump trucks needed:

  Number of dump trucks = Volume (cubic yards) / Capacity of each truck (cubic yards)

  Number of dump trucks = 51,838 cubic yards / 11 cubic yards/truck ≈ 4712 dump trucks

Therefore, approximately 4712 dump trucks will be needed to haul the whole load of bauxite.

To calculate the volume in liters occupied by a 2.5 kg sample of crude oil:

1. Divide the mass of the sample by its density:

  Volume = Mass / Density = 2.5 kg / 0.87 g/mL = 2.8735 L

Therefore, a 2.5 kg sample of crude oil occupies approximately 2.8735 liters.

Learn more about occupies approximately

brainly.com/question/236819

#SPJ11

The unit cell for uranium (U) has orthorhombic symmetry, with a, b, and c lattice param- eters of 0.286, 0.587, and 0.495 nm, respectively. Uranium atomic radius and weight are 0.1385 nm and 238.03 g/mol, respectively. 1. If uranium's atomic packing factor is 0.54, compute the number of atoms per cell (n). 2. Compute uranium's density (p).

Answers

1. The number of atoms per unit cell (n) in uranium is 4.

2. The density of uranium is approximately 19.05 g/cm³.

In an orthorhombic unit cell, there are eight corners, each occupied by one-eighth of an atom. Additionally, there are six faces, each shared by two adjacent unit cells, with each face contributing one-half of an atom. Hence, the total number of atoms per unit cell can be calculated as follows:

Number of atoms = 8 corners × (1/8 atom) + 6 faces × (1/2 atom)

               = 1 atom + 3 atoms

               = 4 atoms

Therefore, the number of atoms per unit cell (n) in uranium is 4.

To compute the density (p) of uranium, we need to determine the volume of the unit cell. The volume (V) of an orthorhombic unit cell can be calculated by multiplying the three lattice parameters (a, b, c):

V = a × b × c

Given the lattice parameters for uranium as 0.286 nm, 0.587 nm, and 0.495 nm, respectively, we can substitute these values to calculate the volume:

V = 0.286 nm × 0.587 nm × 0.495 nm

 = 0.084 nm³

Since there are four atoms per unit cell, the mass of the unit cell (m) can be calculated by multiplying the molar mass of uranium (238.03 g/mol) by the number of atoms per unit cell:

m = 238.03 g/mol × 4 atoms

 = 952.12 g

Finally, we can compute the density using the formula:

p = m / V

 = 952.12 g / 0.084 nm³

p = 952.12 g / (0.084 × 10⁻²⁵ cm³)

 ≈ 19.05 g/cm³

Therefore, the density of uranium is approximately 19.05 g/cm³.

Learn more about uranium

brainly.com/question/31187694

#SPJ11


43. Standard enthalpy is measured at
a. 1 atm and 100 degrees C
b. standard atmospheric pressure and standard state
c. room temperature and one atm
d. both b and c

Answers

Answer:

d. both b and c

Explanation:

Standard enthalpy is typically measured at standard atmospheric pressure and standard state conditions, which means a pressure of 1 atmosphere and at a specified temperature that may vary depending on the context. However, it is common to use room temperature (around 25 degrees Celsius or 298 Kelvin) as the standard temperature for measuring enthalpy. Therefore, the standard enthalpy is measured at both standard atmospheric pressure and standard state conditions, as well as at room temperature and 1 atmosphere.

Question 5 (Worth 4 points)
(01.01 MC)

A student wants to know which part of his local beach contains the most turtle nests during nesting season. He researches turtle nesting, makes a prediction to investigate based on his research and observations, and plans his experiment. He performs the experiment, and he writes down his data and ends his study.

What part of the scientific method is he missing from this investigation?

Analyze data and conclusion.

Construct a hypothesis.

Do background research.

Test with an experiment.


(I know its not Construct a hypothesis. I chose that and got it wrong)

Answers

In this investigation, the student is missing the step of analyzing the data and drawing a conclusion.

Although the student has conducted an experiment and collected data, it is crucial to analyze the data and draw meaningful conclusions based on the results.

After conducting the experiment and collecting data on turtle nests at different parts of the local beach, the student should carefully examine the collected information.

This involves organizing and interpreting the data to identify any patterns, trends, or relationships. The student should compare the number of turtle nests in different parts of the beach, evaluate the statistical significance of the findings, and consider any potential confounding factors or limitations of the study.

Based on the analysis of the data, the student can then draw a conclusion about which part of the beach contains the most turtle nests during nesting season. This conclusion should be supported by the data and any relevant scientific knowledge or theories.

By including the step of analyzing data and drawing a conclusion, the student will have completed all the essential components of the scientific method, which includes background research, hypothesis construction, experiment testing, data analysis, and conclusion drawing.

For more questions on hypothesis, click on:

https://brainly.com/question/606806

#SPJ8

Air oxygen (A) dissolves in a shallow stagnant pond and is consumed by microorganisms. The rate of the consumption can be approximated by a first order reaction, i.e. rA = −kCA, where k is the reaction rate constant in 1/time and CA is the oxygen concentration in mol/volume. The pond can be considered dilute in oxygen content due to the low solubility of oxygen in water (B). The diffusion coefficient of oxygen in water is DAB. Oxygen concentration at the pond surface, CAo, is known. The depth and surface area of the pond are L and S, respectively.
a. Derive a relation for the steady state oxygen concentration distribution in the pond.
b. Obtain steady state oxygen consumption rate in the pond.
(This is transport type problem. Please answer it completely and correctly)

Answers

The value of L will be equal to the square root of the diffusion coefficient of oxygen in water times the reaction rate constant. The steady-state oxygen consumption rate in the pond is given by: Q = S*rA = −S*kCAo*2πL2.

a. Steady-state oxygen concentration distribution in the pond: Air oxygen (A) dissolves in a shallow stagnant pond and is consumed by microorganisms. The rate of the consumption can be approximated by a first order reaction, i.e. rA = −kCA, where k is the reaction rate constant in 1/time and CA is the oxygen concentration in mol/volume. The pond can be considered dilute in oxygen content due to the low solubility of oxygen in water (B). The diffusion coefficient of oxygen in water is DAB. Oxygen concentration at the pond surface, CAo, is known. The depth and surface area of the pond are L and S, respectively.

The equation for steady-state oxygen concentration distribution in the pond is expressed as:r''(r) + (1/r)(r'(r)) = 0where r is the distance from the centre of the pond and r'(r) is the concentration gradient. The equation can be integrated as:ln(r'(r)) = ln(A) − ln(r),where A is a constant of integration which can be determined using boundary conditions.At the surface of the pond, oxygen concentration is CAo and at the bottom of the pond, oxygen concentration is zero, therefore:r'(R) = 0 and r'(0) = CAo.The above equation becomes:ln(r'(r)) = ln(CAo) − (ln(R)/L)*r.Substituting for A and integrating we have:CA(r) = CAo*exp(-r/L),where L is the characteristic length of oxygen concentration decay in the pond. The value of L will be equal to the square root of the diffusion coefficient of oxygen in water times the reaction rate constant, i.e. L = √DAB/k.

b. Steady-state oxygen consumption rate in the pond: Oxygen consumption rate in the pond can be calculated by integrating the rate of oxygen consumption across the pond surface and taking into account the steady-state oxygen concentration distribution obtained above. The rate of oxygen consumption at any point in the pond is given by:rA = −kCA.

The rate of oxygen consumption at the pond surface is given by: rA = −kCAo.

Integrating the rate of oxygen consumption across the pond surface we have: rA = −k∫∫CA(r)dS = −k∫∫CAo*exp(-r/L)dS.

Integrating over the surface area of the pond and substituting for the steady-state oxygen concentration distribution obtained above we have: rA = −kCAo*∫∫exp(-r/L)dS.

The integral over the surface area of the pond is equal to S and the integral of exp(-r/L) over the radial direction is equal to 2πL2.Therefore,rA = −kCAo*S*2πL2. The steady-state oxygen consumption rate in the pond is given by:Q = S*rA = −S*kCAo*2πL2.

More on diffusion coefficient: https://brainly.com/question/31430680

#SPJ11

In the same site there is a soil with IHD of 0.15 in which there is a banana plantation with an area of ​​2 ha. Determine the irrigation application frequency (days) and how much irrigation water to apply in each irrigation. Express the amount of irrigation water in terms of depth of water (lw, in cm) and volume (m3). The farmer's water well pump applies water at a rate of 1,000 gallons/min. For how many hours should the pump be left on in each irrigation period?

Answers

Thus, the irrigation pump should be left on for 9 hours in each irrigation period.

The irrigation application frequency and irrigation water to apply in each irrigation can be determined as follows:

The area of ​​banana plantation is 2 haIHD (infiltration holding capacity) of soil is 0.15 Irrigation water is applied at a rate of 1,000 gallons/min

Converting area from hectares to m²:

              1 hectare = 10,000 m²

Area of banana plantation = 2 ha = 2 × 10,000 m² = 20,000 m²

Let lw be the amount of irrigation water applied. Then the volume of water applied would be (20,000 m²) × lw = 20,000lw m³.

Amount of irrigation water can be expressed in terms of depth of water using the formula,lw = V / A

where V = Volume of irrigation water applied

A = Area of plantation lw = (20,000 m³) / (20,000 m²)

lw = 1 m = 100 cm

Irrigation application frequency (days) = IHD / IDF

Where IHD is infiltration holding capacity and IDF is infiltration depletion factor.

From the given question, IHD = 0.15To determine the value of IDF, we will need to use the texture triangle.The texture of soil is not given in the question, thus it is assumed to be a medium texture soil which has IDF = 0.3. Substituting the values, IDF = 0.3IHD = 0.15

Irrigation application frequency (days) = 0.15 / 0.3

Irrigation application frequency (days) = 0.5 days or 12 hours (rounded to nearest hour)In each irrigation, the amount of irrigation water is 1 m = 100 cm.

Volume of irrigation water will be 20,000 × 100 = 2,000,000 cm³ or 2000 m³

The farmer's water well pump applies water at a rate of 1,000 gallons/min.

To determine for how many hours should the pump be left on in each irrigation period, we need to convert volume of irrigation water from m³ to gallons.

1 m³ = 264.172 gallons

Volume of irrigation water in gallons = 2000 × 264.172 = 528,344 gallons

Time required to apply 528,344 gallons of irrigation water at a rate of 1,000 gallons/min is given by;

Time = Volume of irrigation water / Rate of application

     Time = 528,344 / 1000

                    = 528.344 minutes or 9 hours (rounded to nearest hour)

Learn more about Irrigation:

brainly.com/question/30503506

#SPJ11

Isopropyl alcohol is mixed with water to produce a 39.0% (v/v) alcohol solution. How many milliliters of each component are present in 795 mL of this solution

Answers

In a 39.0% (v/v) alcohol solution, there are 39.0 mL of alcohol for every 100 mL of solution. To find out how many milliliters of each component are present in 795 mL of the solution, we need to calculate the volume of isopropyl alcohol and water separately.



Step 1: Calculate the volume of alcohol in the solution.
In a 39.0% (v/v) alcohol solution, 39.0 mL of alcohol is present for every 100 mL of solution.
To find the volume of alcohol in 795 mL of the solution, we can set up a proportion:
(39.0 mL alcohol / 100 mL solution) = (x mL alcohol / 795 mL solution)
Cross-multiplying and solving for x, we get:
x = (39.0 mL alcohol / 100 mL solution) * 795 mL solution
x ≈ 309.45 mL alcohol

Step 2: Calculate the volume of water in the solution.
The total volume of the solution is 795 mL, and we have already calculated the volume of alcohol to be 309.45 mL.
To find the volume of water, we can subtract the volume of alcohol from the total volume of the solution:
Volume of water = Total volume of solution - Volume of alcohol
Volume of water = 795 mL - 309.45 mL
Volume of water ≈ 485.55 mL

Therefore, in 795 mL of the 39.0% (v/v) alcohol solution, there are approximately 309.45 mL of isopropyl alcohol and 485.55 mL of water.

learn more about isopropyl alcohol

https://brainly.com/question/29138821

#SPJ11

A normally unattended platform in a remote tropical offshore location is being designed to undertake initial processing from three wells. From the well-heads, the fluids will be combined at a manifold and will then enter a three phase (gas/oil/water) horizontal separator. Water recovered from the separator will flow to a hydrocyclone before being discharged into the sea. Gas recovered from the separator would be used to generate electricity for the platform and any surplus sold to a neighbouring facility to provide them with fuel gas. Oil from the separator would pass through one of two oil export pumps arranged in parallel and then enter a 300 km pipeline to an onshore processing facility.
1. Describe, with the aid of a diagram, the operation of a hydrocyclone, explaining how the vortex within each tube causes oil and water to separate.
2. Each tube within the hydrocyclone can only achieve effective oil/water separation when the flow rate through the tube is between 1.6 m3.hr-1 and 2.4 m3.hr-1. If the flow at well 1 is at 45 m3.hr-1, well 2 at 30 m3.hr-1 and well 3 at 20 m3.hr-1; how many hydrocyclone tubes would be required? Explain your answer.
3. Each well may periodically need to be shut-in. How many hydrocyclone tubes would be required when well 1 is shut-in?
4. Hydrocyclone tubes are usually grouped together in a vessel, e.g., 20 tubes in parallel. It is easier to shut-in a vessel using valves than to blank off individual tubes within a vessel. In order to be able to maintain effective oil/water separation in all well permutations and combination, how many vessels would you propose to use, with how many tubes in each vessel? (Note you should choose the same number of tubes in each vessel as this allows for more operational flexibility).

Answers

1) A hydrocyclone uses centrifugal force to separate oil and water. The fluid rotates within the hydrocyclone, creating a vortex that causes the heavier water phase to move outward and the lighter oil phase to move inward.

2) To achieve effective oil/water separation, each hydrocyclone tube requires a flow rate between 1.6 m3/hr and 2.4 m3/hr. For the given flow rates of 45 m3/hr, 30 m3/hr, and 20 m3/hr, we would need 19, 13, and 9 hydrocyclone tubes respectively.

3) When well 1 is shut-in, we only need to consider the flow rates from well 2 and well 3, resulting in the need for 13 hydrocyclone tubes for well 2 and 9 hydrocyclone tubes for well 3.

4) To maintain effective oil/water separation in all well permutations and combinations, it is proposed to use one vessel with 19 hydrocyclone tubes.

1.

A hydrocyclone operates based on the principle of centrifugal force. The fluid mixture enters the hydrocyclone tangentially and is forced to rotate within the cylindrical body of the hydrocyclone. This rotation creates a strong vortex, causing the heavier phase (water) to move towards the outer wall while the lighter phase (oil) moves towards the center. The separated phases exit through different outlets, with the water flowing out through the underflow and the oil exiting through the overflow.

[Diagram] is given in the image attached below.

2.

The effective oil/water separation in a hydrocyclone tube occurs within a specific flow rate range. To determine the number of hydrocyclone tubes required for the given flow rates, we need to ensure that each flow rate falls within the effective range of 1.6 m3/hr to 2.4 m3/hr.

For well 1 with a flow rate of 45 m3/hr, we would need 45/2.4 = 18.75 hydrocyclone tubes. Since we cannot have a fraction of a tube, we would need to round up to 19 tubes.

For well 2 with a flow rate of 30 m3/hr, we would need 30/2.4 = 12.5 hydrocyclone tubes. Rounding up, we would need 13 tubes.

For well 3 with a flow rate of 20 m3/hr, we would need 20/2.4 = 8.33 hydrocyclone tubes. Rounding up, we would need 9 tubes.

Therefore, considering the maximum required number of tubes, we would need a total of 19 hydrocyclone tubes.

3.

When well 1 is shut-in, the flow rate from well 1 becomes zero. In this case, we only need to consider the flow rates from well 2 (30 m3/hr) and well 3 (20 m3/hr). Following the same calculation as before, we would need 30/2.4 = 12.5 hydrocyclone tubes (round up to 13 tubes) for well 2 and 20/2.4 = 8.33 hydrocyclone tubes (round up to 9 tubes) for well 3.

Therefore, when well 1 is shut-in, we would need a total of 13 hydrocyclone tubes for well 2 and 9 hydrocyclone tubes for well 3.

4.

To ensure effective oil/water separation for all well permutations and combinations, it is preferable to have the same number of tubes in each vessel. In this case, we have determined that we need a maximum of 19 tubes.

To accommodate this, we can have one vessel with 19 tubes. This allows for operational flexibility, as shutting down the vessel can be easily done using valves rather than individually blanking off multiple tubes within a vessel.

Therefore, it is proposed to use one vessel with 19 hydrocyclone tubes to maintain effective oil/water separation.

Learn more about hydrocyclone from the link given below.

https://brainly.com/question/33228137

#SPJ4

1. A hydrocyclone is an equipment that uses centrifugal force to separate heavy debris particles and light debris particles from a liquid mixture.

2. Total hydrocyclone tubes required = Flow rate/ Maximum capacity of a single tube i.e., 45 m³/hr / 2.4 m³/hr ≈ 19 tubes for well 1.30 m³/hr / 2.4 m³/hr ≈ 13 tubes for well 2.20 m³/hr / 2.4 m³/hr ≈ 8 tubes for well

3. The number of hydrocyclone tubes required when well 1 is shut in is: 50 m³/hr ÷ 2.4 m³/hr ≈ 21 tubes.

4. The 40 tubes (2 × 20) would be used, with 20 tubes in each vessel.

1. The hydrocyclone is designed with a conical-shaped tube that has a tangential inlet and an outlet at the bottom. When the mixture enters the hydrocyclone, it gets spun around the conical tube. The centrifugal force that is produced makes the denser debris particles move towards the wall of the hydrocyclone, and the lighter debris particles stay at the center. This leads to a formation of two layers, the outer layer consisting of heavy debris particles and the inner layer consisting of light debris particles. The heavier debris particles are then discharged from the bottom of the hydrocyclone.

2. Flow rate through the tube = 1.6 to 2.4 m³/hrHence, to calculate the number of hydrocyclone tubes required, we need to divide the flow rates of the wells with the maximum capacity of a single tube.

3.Therefore, 19 tubes will be required for well 1, 13 tubes for well 2 and 8 tubes for well 3.3. When well 1 is shut in, the flow rate through the hydrocyclone would be 50 m³/hr (i.e., 30 m³/hr + 20 m³/hr).

4. The total flow rate through the hydrocyclone when all three wells are open is 95 m³/hr. The maximum capacity of a vessel (20 tubes) = 20 × 2.4 m³/hr = 48 m³/hr. Thus, two vessels are needed to maintain effective oil/water separation, as this allows for more operational flexibility. Both vessels would have 20 tubes each.

Learn more about centrifugal force:

https://brainly.com/question/545816

#SPJ11

IV. . Membranes: A protein solution is being ultrafiltered in a tubular ultrafilter (1.25 cm diameter and 1 m long). The feed flow rate is 7.0 L/min and the temperature is 20 degC. For a feed solution of 5 wt%, estimate the permeate rate (L/h).
Assuming: • gel polarized (pressure independent) conditions at all times • rejection rate (R) of 99.5%, where R= 1- Cp/Cb; Cp is the protein concentration in the permeate • gel concentration C₂ = 30 wt% • liquid density: 1000 kg/m³ • viscosity 0.002 Pa s (at 20 degC) • protein diffusivity of 5x10 m²/s (at 20°C) • feed bulk concentration (C₁) does not change over the membrane.

Answers

Therefore, the estimated permeate rate in this ultrafiltration process is approximately 0.003812 L/h.

To estimate the permeate rate in this ultrafiltration process, we can use Darcy's law and the concept of gel polarization. The permeate rate can be calculated using the following equation:

Q(p) = (π × D × ΔP) / (4 × μ × L)

Where:

Q(p) is the permeate rate (L/h)

π is the mathematical constant pi (approximately 3.14159)

D is the diameter of the ultrafilter (1.25 cm or 0.0125 m)

ΔP is the transmembrane pressure (Pa)

μ is the viscosity of the liquid (Pa· s or kg/m s)

L is the length of the ultrafilter (1 m or 100 cm)

To estimate the transmembrane pressure, we can use the equation:

ΔP = Rho 5 g × h

Where:

ΔP is the transmembrane pressure (P(a))

Rho is the liquid density (1000 kg/m³)

g is the acceleration due to gravity (approximately 9.81 m/s²)

h is the hydrostatic head (m)

Now, let's calculate the permeate rate step by step:

Step 1: Convert the feed flow rate to L/h

Feed flow rate = 7.0 L/min = 7.0 × 60 = 420 L/h

Step 2: Calculate the hydrostatic head (h)

The hydrostatic head can be assumed as the height of the liquid column above the membrane. Since the problem statement does not provide this information, we'll assume a reasonable value. Let's assume a hydrostatic head of 1 m (100 cm).

h = 1 m = 100 cm

Step 3: Calculate the transmembrane pressure (ΔP)

ΔP = R ×g × h = (1000 kg/m³) × (9.81 m/s²) × 1 m = 9810 P(a)

Step 4: Calculate the permeate rate (Q(p))

Q(p) = (π × D2 × ΔP) / (4 × μ × L)

= (3.14159) × (0.0125 m)2 × (9810 Pa) / (4 × 0.002 Pa s × 100 cm)

= 0.003812 L/h

Therefore, the estimated permeate rate in this ultrafiltration process is approximately 0.003812 L/h.

To know more about ultrafiltration :

https://brainly.com/question/31476853

#SPJ4

Therefore, the permeate rate is 7.8 × 10⁻⁵ L/h.

Given data: Tubular ultrafilter Diameter = 1.25 cm Length = 1 m Feed flow rate = 7.0 L/min Temperature = 20°CFeed concentration = 5 wt% Gel concentration (C₂) = 30 wt% Rejection rate (R) = 99.5%Protein diffusivity = 5 × 10⁻¹³ m²/s Density = 1000 kg/m³Viscosity = 0.002 Pa s

The permeate rate is given as follows: The mass balance equation across the control volume is given as:

Feed flow rate (Qf) = Permeate flow rate (Qp) + Retentate flow rate (Qr)Here, Qf = 7.0 L/min

The volumetric flow rate, Q = A × vwhere A is the area of the tube and v is the velocity of the fluid.A = π/4 × d² = π/4 × (1.25 × 10⁻²)² = 1.227 × 10⁻⁴ m²v = Q/A = 7.0 × 10⁻³/60 × 1.227 × 10⁻⁴ = 0.048 m/s

Here, the membrane is assumed to be gel polarized (pressure independent) conditions at all times, and the feed bulk concentration does not change over the membrane.

The expression for rejection rate is given as:R = 1 - Cₚ/Cᵦwhere Cₚ is the protein concentration in the permeate, and Cᵦ is the protein concentration in the bulk solution.

The protein concentration in the bulk solution can be determined using the following expression: Cᵦ = C₁ × W₁where C₁ is the feed concentration (5 wt%), and W₁ is the mass fraction of water in the feed (95 wt%).W₁ = (100 - C₁) ÷ C₁ = (100 - 5) ÷ 5 = 19The protein concentration in the bulk solution is:Cᵦ = 5 × 0.19 = 0.95 wt%R = 0.995

We can use the following equation to determine the protein concentration in the permeate: Cₚ = (1 - R) × CᵦCₚ = (1 - 0.995) × 0.95 = 0.00475 wt% The volumetric flow rate of the permeate can be determined using the following equation: Qp = A × v × Cₚ × ρwhere ρ is the density of the liquid (1000 kg/m³). Qp = 1.227 × 10⁻⁴ × 0.048 × (0.00475/100) × 1000Qp = 2.8 × 10⁻⁸ m³/s The permeate flow rate in litres per hour is given by:1 m³ = 1000 L3600 s = 1 hr Permeate rate = (2.8 × 10⁻⁸) × (1000/3600) × 3600 Permeate rate = 7.8 × 10⁻⁵ L/h Therefore, the permeate rate is 7.8 × 10⁻⁵ L/h.

Know more about membranes

https://brainly.com/question/25228486

#SPJ11

Scenario
An oil gathering facility is located on the coast. A short distance offshore are coral reefs that are important and fragile marine habitats. Oil arrives at the facility by separate pipelines from each of four onshore fields. The facility has the following main processing equipment:
PIG receivers on each pipeline
Inlet metering on each pipeline
A main manifold to combine flows from all pipelines
A heated separator to remove remaining water and gas
A flare stack to allow rapid purging of hydrocarbons from any part of the plant
Three oil storage tanks arranged so that they can be used in any combination
Two oil export pumps arranged in parallel
Two parallel export metering trains to measure oil delivered to tankers
A tanker loading facility
The small quantity of gas recovered from the heated separator is used to provide fuel for the heater with any excess going to the flare. Water recovered in the heated separator is pumped into a shallow aquifer.
Draw a simple high level process flow diagram of the components itemised above showing the path of all fluids through the facility.
Suggest a control system you would expect to find on the separator in this scenario. For the control system you have chosen, suggest a measurement device that would be used and state what equipment would be adjusted by the control system.
Sketch a graph of the parameter being controlled against time showing the response you would expect to a step change in set-point from A to B at time t=10 if your control system is well tuned. Your graph should also show: set-point; overshoot; and settling time.

Answers

High-Level Process Flow Diagram of the oil gathering facility:

The high-level process flow diagram of the oil gathering facility with all its processing equipment, i.e., PIG receivers, Inlet metering, Main manifold, Heated separator, Flare stack, Three oil storage tanks, Two oil export pumps, and Two parallel export metering trains.

The oil is first received from four onshore fields through the pipelines, and each pipeline is fitted with PIG receivers and Inlet metering devices that measure the oil's rate and quantity. The main manifold combines the oil flow from all four pipelines, and the Heated separator removes any remaining water and gas from the oil. The Flare stack is used to remove hydrocarbons from any part of the plant if necessary. The water recovered from the separator is sent to a shallow aquifer, and the small amount of gas is used as fuel for the heater, with the excess being sent to the Flare.

Control System for the separator:

For the Heated separator, the temperature control system is commonly used, which maintains a consistent temperature at the outlet of the separator by adjusting the temperature of the heating element. A temperature sensor (Thermocouple) is used to measure the outlet temperature, and the signal is sent to the controller. If the temperature is not at the desired level, the controller activates the heating element to increase the temperature. Similarly, if the temperature exceeds the specified value, the controller deactivates the heating element, and the temperature decreases.

By adjusting the heating element's temperature, the oil-water separation efficiency is maintained. Set-Point: A = 80 °C, B = 90 °C, t = 10 s. Overshoot: 2.5 %, Settling Time: 7 s. The given graph shows the expected response to a step change in Set-Point from A to B at t=10 if the control system is well tuned, with Set-Point, Overshoot, and Settling time marked.

Learn more about temperature sensor :

https://brainly.com/question/32921327

#SPJ11

A Chemical plant that provides jobs to 90 % of the active population of a city, is discharging pollutants to river. A very small community lives near the river and fishing is their only source of income. The cutch is used only for the local community consumption. Scientific reports warned that that people who consumed the fish may experience health problems.
a. Whose rights are paramount in this case? 10 pts, explain why? b. Analyse the case according to the utilitarian perspective c. Analyse the case according to respect for persons perspective, d. Propose a middle way solution ?

Answers

Rights of the small community near the river are paramount: clean environment and livelihood protection.

a. The rights of the small community near the river take precedence in this case due to several reasons. Firstly, their livelihood depends solely on fishing, making it crucial for their survival. Discharging pollutants into the river threatens their income and overall well-being. Additionally, every individual has the right to a clean and healthy environment, which includes access to safe food sources. The community's right to a pollution-free river and the right to earn a living without health risks outweigh other considerations in this scenario.

b. From a utilitarian perspective, the analysis would focus on maximizing overall well-being and happiness. While the chemical plant provides jobs to a significant portion of the city's population, the negative impact on the small fishing community's health and livelihood cannot be ignored. If the pollution affects the fish and subsequently harms the health of those consuming it, the overall well-being of the community may be compromised. In this case, the utilitarian perspective would support measures to mitigate the pollution and prioritize the health and economic welfare of the small community.

c. Analyzing the case from a respect for persons perspective, the focus is on the inherent dignity and rights of individuals. Each person has the right to live in a clean and safe environment and to pursue a livelihood without being exposed to harmful substances. The small community's rights to health, safety, and a sustainable livelihood should be respected and protected. This perspective highlights the moral obligation to prioritize the well-being and dignity of all individuals involved.

d. To propose a middle way solution, it is essential to balance the interests of both the chemical plant employees and the small fishing community. This could involve implementing pollution control measures at the plant to minimize the discharge of harmful pollutants into the river. Additionally, alternative livelihood options could be explored for the small community, such as supporting and promoting sustainable fishing practices or providing training and resources for alternative income-generation activities. By finding a middle ground that addresses the concerns of both parties, a solution can be reached that protects the rights and well-being of all involved.

Learn more about environment

brainly.com/question/5511643

#SPJ11

Nicephore Niepce, Window at Le Gras, Heliograph, 1826.
Niepce made this experimental image using the Camera Obscura and a range of chemicals.
What is a Camera Obscura and what was it used for before the advent of film?
What was Niepce hoping to achieve when he created this image?

Answers

The Camera Obscura was used for observation and drawing before film, and Niepce aimed to achieve the first permanent photographic image with his experimental image "Window at Le Gras."

What is a Camera Obscura and what was Niepce's goal when creating the image "Window at Le Gras"?

A Camera Obscura is a device consisting of a darkened chamber or room with a small hole or lens on one side, through which light can enter. It forms an inverted and focused image of the external scene on the opposite wall or surface.

Before the advent of film, the Camera Obscura was primarily used as a tool for observing and studying optics, as well as for creating accurate drawings. Artists and scientists used it as a drawing aid, projecting the external scene onto a surface inside the darkened chamber, allowing them to trace or replicate the image with greater precision.

When Niepce created the image "Window at Le Gras" using the Camera Obscura and a range of chemicals, he was aiming to achieve the first permanent photographic image. He sought to capture and preserve an image of the external world using light-sensitive materials.

This experimental image marked a significant step towards the development of photography, as it demonstrated the possibility of creating long-lasting images through a combination of optics, chemicals, and light. Niepce's work laid the foundation for subsequent advancements in photography, eventually leading to the invention of photographic film and the birth of modern photography.

Learn more about Camera Obscura

brainly.com/question/19117167

#SPJ11

Q3. You are given 100 mole of a fuel gas of the following composition, on a mole basis, 20% methane (CH4), 5% ethane (C2H), and the remainder CO2. The atomic weight for each element is as follows: C= 12,0 = 16 and H= 1 For this mixture calculate: a. The mass composition b. Average Molecular Weight by the three equations

Answers

a. The mass composition of the fuel gas mixture is approximately 52.42% methane (CH4), 6.61% ethane (C2H6), and 40.97% carbon dioxide (CO2).

b. The average molecular weight of the fuel gas mixture is approximately 41.35 g/mol.

To determine the mass composition of the fuel gas mixture, we need to calculate the mass of each component. Given that we have 100 moles of the mixture, we can calculate the number of moles for each component:

Moles of methane (CH4) = 20% of 100 moles = 20 moles

Moles of ethane (C2H6) = 5% of 100 moles = 5 moles

Moles of carbon dioxide (CO2) = 100 - (20 + 5) moles = 75 moles

Next, we can calculate the mass of each component using the atomic weights:

Mass of methane (CH4) = 20 moles × (12 g/mol + 4 × 1 g/mol) = 20 × 16 = 320 g

Mass of ethane (C2H6) = 5 moles × (2 × 12 g/mol + 6 × 1 g/mol) = 5 × 30 = 150 g

Mass of carbon dioxide (CO2) = 75 moles × (12 g/mol + 2 × 16 g/mol) = 75 × 44 = 3300 g

Now, we can calculate the mass composition by dividing the mass of each component by the total mass of the mixture:

Mass composition of methane (CH4) = (320 g / (320 g + 150 g + 3300 g)) × 100% = 52.42%

Mass composition of ethane (C2H6) = (150 g / (320 g + 150 g + 3300 g)) × 100% = 6.61%

Mass composition of carbon dioxide (CO2) = (3300 g / (320 g + 150 g + 3300 g)) × 100% = 40.97%

To calculate the average molecular weight of the mixture, we can use the following equation:

Average molecular weight = (Mass of methane (CH4) + Mass of ethane (C2H6) + Mass of carbon dioxide (CO2)) / Total number of moles

Average molecular weight = (320 g + 150 g + 3300 g) / 100 mol = 3770 g / 100 mol = 37.7 g/mol

However, this calculation is based on the assumption that the atomic weights are the same as those provided in the question (C = 12, O = 16, H = 1). It is important to note that these atomic weights are approximate values and can vary depending on the specific isotopes present. Therefore, the calculated average molecular weight is an approximation.

Learn more about mass composition

brainly.com/question/11658295

#SPJ11

54-y/o woman comes for the office examination. She has been experiencing periods of heat intolerance, which she attributes to menopause.
Physical examination - you note she has protuberant eyeballs , s tachycardia.
Laboratory studies show a serum T3 of 5.3 nmol/L and a T4 of 225 nmol/L.
Which hypersensitivities reaction is the most likely mechanism of pathogenesis ?

Answers

In the case presented in the question, the most likely mechanism of pathogenesis is Type II Hypersensitivity Reaction.

Hypersensitivity is an abnormal or pathological immune response to foreign antigens or to self-antigens, which can cause disease in the host. Hypersensitivity reactions can be classified as Type I, Type II, Type III, and Type IV Hypersensitivity.Type II Hypersensitivity reactionType II Hypersensitivity Reaction occurs when antibodies attack antigens located on cell surfaces, resulting in the destruction of the cells. When the cells involved in the immune response are damaged, this type of hypersensitivity reaction can occur.

This can lead to numerous medical problems, including hemolytic anemia, thrombocytopenia, and autoimmune diseases.T3 and T4 in Hypersensitivity ReactionIn this case, the lab studies revealed that the serum T3 was 5.3 nmol/L, and the T4 was 225 nmol/L. This finding is often seen in Graves' Disease, which is an autoimmune disease that is caused by the thyroid gland's overproduction of thyroid hormones. The antibodies present in Type II Hypersensitivity reactions can stimulate this overproduction of hormones. As a result, Type II Hypersensitivity reaction is the most likely mechanism of pathogenesis.

Learn more about Hypersensitivity:

https://brainly.com/question/30704529

#SPJ11

P3-168 Calculate the equilibrium conversion and concentrations for each of the fol- lowing reactions.upa (a) The liquid-phase reaction А+ Вес with Cao = CBO = 2 mol/dm3 and Kc = 10 dm3/mol. (b) The gas-phase reaction A3C carried out in a flow reactor with no pressure drop. Pure A enters at a tem- perature of 400 K and 10 atm. At this temperature, Kc = 0.25(mol/dm2. (C) The gas-phase reaction in part (b) carried out in a constant-volume batch reactor. (d) The gas-phase reaction in part (b) carried out in a constant-pressure batch reactor.

Answers

a)The equilibrium concentrations are [A] = 2-1.53 = 0.47 mol/dm3, [B] = 0.47 mol/dm3, and [C] = 1.53 mol/dm3

b)The equilibrium concentration of A is (10-3.07) / RT = 0.322 mol/dm3

c)The equilibrium concentration of C is 0.00138 mol/dm3

d)The equilibrium concentration of C is 3x = 0.02007 mol/dm3.

(a) The equilibrium constant Kc is given as Kc= [C] / [A][B] where [A], [B], and [C] are the concentrations of reactants and products at equilibrium.

The balanced chemical equation is given as A + B ⇌ CThe initial concentration of A and B are given as [A]o = [B]o = 2mol/dm3. Let the equilibrium concentration of A be 'x' mol/dm3, then the equilibrium concentration of B is (2-x) mol/dm3.The equilibrium concentration of C is also 'x' mol/dm3.

Now, substituting the equilibrium concentration values in the expression for Kc, we have10 = x2 / (2-x)2Solving the above equation, we get the value of 'x' as x = 1.53 mol/dm3

Therefore, the equilibrium conversion is given by (Initial concentration of A - Equilibrium concentration of A) / Initial concentration of A= (2 - 1.53) / 2= 0.235 or 23.5%

(b) The equilibrium constant Kc is given as Kc= [C] / [A]^3 where [A] and [C] are the concentrations of reactants and products at equilibrium.

The balanced chemical equation is given as A3C ⇌ 3AThe initial pressure of pure A is given as P = 10 atm. The temperature of A is 400 K. Let the equilibrium pressure be 'x' atm. The equilibrium concentration of A is (P - x) / RT, where R is the universal gas constant and T is the temperature.Substituting the equilibrium concentration values in the expression for Kc, we have0.25 = x^3 / (10-x)^3Solving the above equation, we get the value of 'x' as 3.07 atm

Therefore, the equilibrium conversion is given by (Initial pressure of A - Equilibrium pressure of A) / Initial pressure of A= (10 - 3.07) / 10= 0.693 or 69.3%

(c) The equilibrium constant and the initial concentration of A are the same as in part (b). As the volume of the reactor is constant, the number of moles of A remains constant throughout the reaction. Therefore, the equilibrium concentration of A is the same as the initial concentration of A.

Using the expression for Kc, we have0.25 = [C] / [A]^3Therefore, [C] = 0.25 [A]^3Substituting the initial concentration of A in the above expression, we have[C] = 0.25 x (10/82.0578)^3= 0.00138 mol/dm3

Therefore, the equilibrium conversion is given by (Initial pressure of A - Equilibrium pressure of A) / Initial pressure of A= (10 - 0.01) / 10= 0.999 or 99.9%The equilibrium concentration of A is 10/82.0578 = 0.122 mol/dm3

(d) The equilibrium constant and the initial concentration of A are the same as in part (b). As the pressure of the reactor is constant, the number of moles of A and C changes during the reaction. Let the initial pressure of the reactor be P1 and the final pressure of the reactor be P2.

The number of moles of A and C at the beginning of the reaction is n1, and at the end of the reaction is n2.The balanced chemical equation is given as A3C ⇌ 3AInitially, n1 = P1 V / RTwhere V is the volume of the reactor. At equilibrium, n2 = P2 V / RTLet the number of moles of A at equilibrium be 'x'.

Therefore, the number of moles of C at equilibrium is 3x.Substituting the initial and equilibrium number of moles of A and C in the expression for Kc, we have0.25 = (3x) / (n1 - x)^3Solving the above equation for 'x', we get x = 0.00669 mol

Therefore, the equilibrium conversion is given by (Initial pressure of A - Equilibrium pressure of A) / Initial pressure of A= (10 - 0.06) / 10= 0.934 or 93.4%The equilibrium concentration of A is x = 0.00669 mol/dm3.

Thus, the equilibrium conversion and concentrations have been calculated for each of the following reactions.

Learn more about moles:

https://brainly.com/question/15209553

#SPJ11

Write the net ionic equation for the precipitation reaction that occurs when aqueous magnesium chloride is mixed with aqueous sodium phosphate. .

Answers

The net ionic equation for the precipitation reaction between aqueous magnesium chloride (MgCl2) and aqueous sodium phosphate (Na3PO4) can be determined by identifying the precipitate formed. Here's the balanced net ionic equation:

3Mg2+(aq) + 2PO43-(aq) → Mg3(PO4)2(s)

In this reaction, the magnesium ions (Mg2+) from magnesium chloride combine with the phosphate ions (PO43-) from sodium phosphate to form solid magnesium phosphate (Mg3(PO4)2) as the precipitate.

Note that the sodium ions (Na+) and chloride ions (Cl-) are spectator ions and do not participate in the formation of the precipitate. Therefore, they are not included in the net ionic equation.

It's important to note that the state of each compound (whether it is aqueous or solid) should be indicated in the balanced equation.

Learn more about net ionic equation here:

https://brainly.com/question/13887096

#SPJ11

why it is important to consider NPSH when designing
and operating a pumping system.

Answers

Net Positive Suction Head (NPSH) is a term used in pump engineering. It represents the total suction head that is required to keep the flow from cavitating as it moves through the pump. The Net Positive Suction Head (NPSH) is critical to the design and operation of a pumping system.

NPSH is an essential parameter in the pump selection and design process. It establishes a limit to the pump's capacity to move liquid by determining the required pressure at the suction inlet of the pump. Pump impellers demand a specific head to operate effectively. The Net Positive Suction Head (NPSH) for the pump must be higher than this value.

During the pumping process, the Net Positive Suction Head (NPSH) also plays an important role. It's crucial to guarantee that NPSH is greater than or equal to NPSHr, or the necessary NPSH to avoid cavitation.

Cavitation can cause significant damage to the pump's internal components, such as impellers and volutes. This, in turn, causes a drop in the pump's overall efficiency, which might lead to additional difficulties.

Cavitation may also result in an unexpected reduction in pump performance, which can lead to complete pump failure, requiring expensive maintenance and replacement costs.

Learn more about cavitation at

https://brainly.com/question/32279501

#SPJ11

Damage to which area below would result in the inability to perform precise hand movements?
Broca's area
somatosensory cortex
premotor cortex
postcentral gyrus

Answers

Correct option is premotor cortex. The premotor cortex is the area that, when damaged, would result in the inability to perform precise hand movements.

The premotor cortex is responsible for planning and coordinating voluntary movements, including the fine motor control required for precise hand movements. Damage to this area can lead to difficulties in executing skilled movements and impairments in tasks that require dexterity and hand-eye coordination.

The other areas mentioned, such as Broca's area, somatosensory cortex, and postcentral gyrus, are not primarily associated with precise hand movements.

To know more about Premotor cortex visit-

brainly.com/question/30514086

#SPJ11

CA fluid rotated a solid about a vertical axis with angular velocity (w). The pressure rise (P) in a radial direction depends upon wor, and P. obtain a form of equation for P. 4

Answers

The actual pressure distribution in a rotating fluid may be more complex and depend on additional factors. P = ρ × ω² × r² / 2

In the case of a fluid rotating with angular velocity (ω) about a vertical axis, the pressure rise (P) in a radial direction can be related to the angular velocity and the density (ρ) of the fluid.

To obtain the equation for P, we can start with the Bernoulli's equation, which relates the pressure, velocity, and elevation in a fluid flow. In this case, we will focus on the radial direction.

Consider a point at radius r from the axis of rotation. The fluid at this point experiences a centripetal acceleration due to its circular motion. This acceleration creates a pressure gradient in the radial direction.

The equation for the pressure rise (P) in the radial direction can be given as:

P = ρ × ω² × r² / 2

Where:

P is the pressure rise in the radial direction,

ρ is the density of the fluid,

ω is the angular velocity of the fluid, and

r is the radial distance from the axis of rotation.

This equation shows that the pressure rise is directly proportional to the square of the angular velocity and the square of the radial distance from the axis of rotation, and it is also proportional to the density of the fluid.

Please note that this equation assumes an idealized scenario and neglects other factors such as viscosity and any other external forces acting on the fluid. The actual pressure distribution in a rotating fluid may be more complex and depend on additional factors.

Learn more about angular velocity :

brainly.com/question/30465088

#SPJ11

Other Questions
BackRazors R Us just paid a dividend (D0) of $0.70. You expect future dividend growth of 5% every year thereafter. How much is the stock worth today if the equity cost of capital is 11.8%? Round your answer to the nearest penny. Josh's weekly budget for lunch is $24. He eats only pizza and burgers. Each pizza costs $6 and each burger costs $3. Josh knows that 2 pizzas and 4 burgers will give him a utility of 8 . What is Josh's utility-maximizing point? 0 pizzas, 8 burgers 3 pizzas, 2 burgers 2 pizzas, 4 burgers 4 pizzas, 1 burger A scuba diver is swimming 17. 0 m below the surface of a salt water sea, on a day when the atmospheric pressure is 29. 92 in HG. What is the gauge pressure, on the diver the situation? The salt water has a density of 1.03 g/cm. Give your answer in atmospheres. Studying the cause-effect relationship between hours of sleep, and mental alertness is linked to which paradigm?a. Postcoloniab. Positivismc. Transformatived. Experimentaliste. Constructivist What is bell hooks position on the heteronormative standard nuclear two parent family versus other family forms?a. The idealization of one family form harms all children and families who fall outside that idealb. The two parent nuclear family is ideal but is not attainable for everyone because of other systems of oppressionc. Tw0 mothers in a same-sex relationship can provide an even better way to raise children outside patriarchal domination When the price is established by the interaction between the competitors, customers, and the pricing company, it is said that it is a case of aMarket approachCost approachIndirect cost approachDirect cost approachTarget approach ontario is gradually moving to an ehealrh blueprint.Why is this important? Also give an example of how ehealth data could help a patient.Do you think it is a good idea that we are moving towards a paperless system? Why or why not? Question 5 Janice has recently renovated her shop, and she stores many premium handbags in a locked room at the back of the store. Janice is concerned as she has heard that criminal activity has drastically increased in the area. Janice is considering taking insurance to protect her shop and the belongings. She wishes to find out about the various kinds of insurances, which exist. 5.1 5.2 Discuss the TWO (2) types of insurances, which exist. Furthermore, you are required to advise Janice as to which type of insurance is more suitable to her needs. (4 marks) (1 marks) The Cournot Model (Cournot-Nash equilibrium example)Game setup(a)Players: firms i. i = 1,..., n(b) Strategy set for firm i: Choice of outputSi = {qiqi 0} The strategy space is the set of all nonnegative outputs(c) Payoff functions: based on; -linear demand P-a-bQ -constant marginal costs MC = c -per unit tax $t/ unit Il-Pqi (c+t) qi=(a-bQ) qi - (c+t) qi = a- 9, qi (c+t) qi j=1Questions and Answers(a) Is it possible to include demands, costs and tax functions into the strategy set of each firm?(b) What is the Nash strategy equilibrium qui?(c) What is the equilibrium payoff? Para construir un reservorio de agua son contratados 24 obreros, que deben acabar la obra en 45 das trabajando 6 horas diarias. Luego de 5 das de trabajo, la empresa constructora tuvo que contratar los servicios de 6 obreros ms y se decidi que todos deberan trabajar 8 horas diarias con el respectivo aumento en su remuneracin. Determina el tiempo total en el que se entregar la obra} Which of these relations are functions?y = 5 x = -2y=2x-52y=x-4 In a survey, 69 people indicated that they prefer cats, 63 indicated that they prefer dogs, and 49 indicated that they don't enjoy either pet. Find the probability that a randomly chosen person will prefer dogs. 1. Discuss the reasons for the increasing rates of STI's in the United States. 2. Identify and describe 3 common vaginal infections including prevalence, symptoms and treatment. Textbook is called The Psychology of Diversity: Beyond Prejudice and Racism for additional guidanceASSIGNMENT:Describe hostile sexism and provide an example. Writing Suppose A = [a b c d ]has an inverse. In your own words, describe how to switch or change the elements of A to write A 2). Calculate the time that it will take to reach a conversion = 0.8 in a batch reactor for a A = Product, elementary reaction.Use: specific reaction rate (k) equal to 0.25 min, Ca = 1 M. Use: fx dx 1-X = (In-_x]. Why was peter minuit an important personality for the expansion of dutch settlements? *Can the goal of providing quality and affordable health care to all Americans be reached?please make it long and cite where you got the info from An open-end fund has a NAV of $17.50 per share. The fund charges a 5% load. How much money does an investor need to spend in order to obtain one share of the fund?a) $16.63b) $16.67c) $18.42d) $18.38e) None of the above Decide whether the following statement is true or false, and explain why you chose true or false. Secondary follicles contain secondary oocytes." For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).