0.6 kg of a gas mixture of N₂ and O2 is inside a rigid tank at 1.4 bar, 70°C with an initial composition of 20% O₂ by mole. O₂ is added such that the final mass analysis of O2 is 32%. How much O₂ was added? Express your answer in kg.

Answers

Answer 1

To determine the amount of O₂ added to the gas mixture, we can use the mass analysis of O₂ and the given initial and final compositions.

Given:

Initial mass of gas mixture = 0.6 kg

Initial mole fraction of O₂ = 20% = 0.2

Final mole fraction of O₂ = 32% = 0.32

Let's assume the mass of O₂ added is m kg.

The initial mass of O₂ in the gas mixture is:

m_initial_O2 = 0.2 * 0.6 kg

The final mass of O₂ in the gas mixture is:

m_final_O2 = (0.2 * 0.6 + m) kg

Since the final mole fraction of O₂ is 0.32, we can write:

m_final_O2 / (0.6 + m) = 0.32

Solving the equation for m, we can find the amount of O₂ added in kg.

Alternatively, we can rearrange the equation and solve for m_final_O2 directly:

m_final_O2 = 0.32 * (0.6 + m) kg

By substituting the given values and solving the equation, we can determine the amount of O₂ added to the gas mixture in kg.


Related Questions

Compute the Fourier Series decomposition of a square waveform with 90% duty cycle

Answers

The Fourier series decomposition of the square waveform with a 90% duty cycle is given by: f(t) = (a0/2) + ∑[(an * cos((2πnt)/T)) + (bn * sin((2πnt)/T))]

The Fourier series decomposition for a square waveform with a 90% duty cycle:

Definition of the Square Waveform:

The square waveform with a 90% duty cycle is defined as follows:

For 0 ≤ t < T0.9 (90% of the period), the waveform is equal to +1.

For T0.9 ≤ t < T (10% of the period), the waveform is equal to -1.

Here, T represents the period of the waveform.

Fourier Series Coefficients:

The Fourier series coefficients for this waveform can be computed using the following formulas:

a0 = (1/T) ∫[0 to T] f(t) dt

an = (2/T) ∫[0 to T] f(t) cos((2πnt)/T) dt

bn = (2/T) ∫[0 to T] f(t) sin((2πnt)/T) dt

where a0, an, and bn are the Fourier coefficients.

Computation of Fourier Coefficients:

For the given square waveform with a 90% duty cycle, we have:

a0 = (1/T) ∫[0 to T] f(t) dt = 0 (since the waveform is symmetric around 0)

an = 0 for all n ≠ 0 (since the waveform is symmetric and does not have cosine terms)

bn = (2/T) ∫[0 to T] f(t) sin((2πnt)/T) dt

Computation of bn for n = 1:

We need to compute bn for n = 1 using the formula:

bn = (2/T) ∫[0 to T] f(t) sin((2πt)/T) dt

Breaking the integral into two parts (corresponding to the two regions of the waveform), we have:

bn = (2/T) [∫[0 to T0.9] sin((2πt)/T) dt - ∫[T0.9 to T] sin((2πt)/T) dt]

Evaluating the integrals, we get:

bn = (2/T) [(-T0.9/2π) cos((2πt)/T)] from 0 to T0.9 - (-T0.1/2π) cos((2πt)/T)] from T0.9 to T

bn = (2/T) [(T - T0.9)/2π - (-T0.9)/2π]

bn = (T - T0.9)/π

Fourier Series Decomposition:

The Fourier series decomposition of the square waveform with a 90% duty cycle is given by:

f(t) = (a0/2) + ∑[(an * cos((2πnt)/T)) + (bn * sin((2πnt)/T))]

However, since a0 and an are 0 for this waveform, the decomposition simplifies to:

f(t) = ∑[(bn * sin((2πnt)/T))]

For n = 1, the decomposition becomes:

f(t) = (T - T0.9)/π * sin((2πt)/T)

This represents the Fourier series decomposition of the square waveform with a 90% duty cycle, including the computation of the Fourier coefficients and the final decomposition expression for the waveform.

To know more about waveform, visit:

https://brainly.com/question/26058582

#SPJ11

Strength of aluminum alloys and steels can be compared using their hardness values. True or False
Strength of crystalline polymers and metals can be compared using their hardness values. True or False
Slip in slip plane occur in the direction of lowest linear density of atoms. True or False
After cold working, metals typically become more ductile. True or False
Direction of motion of edge dislocation's line is perpendicular to the direction of applied shear stress. True or False

Answers

FalseTrueTrueFalseTrue

1.The hardness of a material is not a direct measure of its strength. While hardness can provide some indication of a material's resistance to deformation or indentation, it does not necessarily correlate with its overall strength. Strength is influenced by various factors such as the material's composition, microstructure, and the presence of defects.

2.True. Crystalline polymers and metals can be compared based on their hardness values. Hardness is a measure of a material's resistance to localized plastic deformation, and both crystalline polymers and metals exhibit this property. However, it is important to note that the hardness values alone may not provide a comprehensive comparison of their overall mechanical properties.

3.True. Slip in a slip plane occurs along the direction of the lowest linear density of atoms. This is because slip is facilitated by the movement of dislocations, which involve the rearrangement of atoms within a crystal lattice. The slip occurs in the direction where there are fewer atomic planes, leading to lower resistance and easier deformation.

4.False. After cold working, metals typically become less ductile. Cold working involves plastic deformation at temperatures below the recrystallization temperature of the material. This process introduces dislocations and deformation twins, which hinder the movement of dislocations and reduce the material's ductility.

5.True. The direction of motion of an edge dislocation's line is indeed perpendicular to the direction of applied shear stress. Edge dislocations involve an extra half-plane of atoms within the crystal lattice, and their movement occurs by the successive breaking and reforming of atomic bonds in the direction perpendicular to the applied shear stress.

Learn more about strength

brainly.com/question/31719828

#SPJ11

During a test on a boiler the following data were recorded:
Pressure = 1.7 MPa
Steam temperature at exit = 240ºC
Steam flow rate = 5.4 tonnes/hour
Fuel consumption = 400 kg/hour
Lower calorific value of fuel = 40 MJ/kg
Temperature of feedwater = 38ºC
Specific heat capacity of superheated steam = 2100 J/kg.K
Specific heat capacity of liquid water = 4200 J/kg.K.
Calculate:
Efficiency of the boiler.
Equivalent evaporation (EE) of the boiler

Answers

Given data,Presure P = 1.7 MPaSteam temperature at exit = t2 = 240°CSteam flow rate = m2 = 5.4 tonnes/hourFuel consumption = 400 kg/hourLower calorific value of fuel = LCV = 40 MJ/kgTemperature of feedwater = t1 = 38°CSp. heat capacity of superheated steam = Cp2 = 2100 J/kg.KSp.

Heat capacity of liquid water = Cp1 = 4200 J/kg.K.Formula : Heat supplied = Heat inputFuel consumption, m1 = 400 kg/hourCalorific value of fuel = 40 MJ/kgHeat input, Q1 = m1 × LCV= 400 × 40 × 10³ J/hour = 16 × 10⁶ J/hourFeed water rate, mfw = m2 - m1= 5400 - 4000 = 1400 kg/hourHeat supplied, Q2 = m2 × Cp2 × (t2 - t1)= 5400 × 2100 × (240 - 38) KJ/hour= 10,08 × 10⁶ KJ/hourEfficiency of the boiler, η= (Q2/Q1) × 100= (10.08 × 10⁶)/(16 × 10⁶) × 100= 63 %Equivalent evaporation (EE) of the boilerEE is the amount of water evaporated into steam per hour at the full-load operation at 100 % efficiency.(m2 - m1) × Hvfg= 1400 × 2260= 3.164 × 10⁶ Kg/hour

Therefore, the Efficiency of the boiler is 63 % and Equivalent evaporation (EE) of the boiler is 3.164 × 10⁶ Kg/hour.

To know more about evaporated visit :

https://brainly.com/question/28319650

#SPJ11

2.5 kips/ft -6 At- 12 kips For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

Answers

(a)Shear and Bending moment Diagrams Explanation:The given beam and loading conditions are as follows:Beam span, l = 6 ft.The load acting on the beam is as follows:

2.5 kips/ft for x between 0 and 4 ft (i.e., from x = 0 to x = 4 ft).-6 kips for x = 4 ft (i.e., at x = 4 ft).-12 kips for x = 5 ft (i.e., at x = 5 ft).The reactions at supports A and B can be determined by taking moments about A. By taking moments about A, we can write:ΣMA = 0RA × 6 - (2.5 × 6 × 6/2) - 6 × (6 - 4) - 12 × (6 - 5) = 0RA = 12.5 kipsRB = 2.5 + 6 + 12 - 12.5 = 8 kips.Now we can proceed to draw the shear and bending-moment diagrams. The shear force (V) at any section x is given by:

.The shear and bending-moment diagrams are shown below:(b) Maximum absolute values of the shear and bending moment Maximum absolute value of the shear force:The maximum absolute value of the shear force is 48 kips, which occurs at x = 4 ft.Maximum absolute value of the bending moment:The maximum absolute value of the bending moment is 768 kip-ft, which occurs at x = 9 ft.

To know more about shear visit:

https://brainly.com/question/29584025

#SPJ11

Microwave oscillator can be found in all modern wireless communications especially in radar and remote sensing applications. As a design engineer you need to design a Colpitts oscillator at 200MHz. (a) Derive equations for the resonant frequency and condition required for sustaining oscillation for an inductor with loss by using an FET in a common gate configuration. If a transistor with g m

=20mS and R o

=1/G 0

=200Ω and the inductor is 15nH with Q of 50 are used in this design, find the capacitances. (b) Determine the minimum value of the inductor Q to sustain oscillations.

Answers

(a) The capacitances can be determined using the condition equation C_eq > 1 / (2πf * R_out) and the given values of gm, Ro, inductance, and Q.

(b) The minimum value of the inductor Q to sustain oscillations can be calculated using the equation Q_min = (1 / (2πf)) * √(L_eq / C_eq) with the given values.

(a) The resonant frequency (f) of a Colpitts oscillator can be calculated using the equation: f = 1 / (2π√(L_eq * C_eq)), where L_eq is the equivalent inductance and C_eq is the equivalent capacitance. To sustain oscillation, the condition is R_out * C_eq > 1 / (2πf), where R_out is the output resistance of the FET. To find the capacitances, we can rearrange the condition equation as C_eq > 1 / (2πf * R_out) and substitute the given values.

(b) The minimum value of the inductor Q (Q_min) to sustain oscillations can be determined using the equation: Q_min = (1 / (2πf)) * √(L_eq / C_eq). By substituting the given values and solving the equation, we can find the minimum value of Q required.

To know more about capacitances visit:

https://brainly.com/question/32494357

#SPJ11

Identify the scope that your company involves in design and manufacturing process. From the scope, describe the processes in a process flow change and elaborate the functions of each process steps. Use a flow chart if applicable.
(Suggested word count: 500 words)

Answers

The design and manufacturing process involves a series of steps that start from the design stage to the delivery of the final product.

The scope of design and manufacturing process depends on the type of product the company is producing. However, in general, the design and manufacturing process involves the following steps:

The bottom-up approach starts with the analysis of the interoperability of the components to the modules and eventually the analysis of the system requirements.

Design Stage1. Idea Generation:

This is the first stage of the design process where ideas are design for a new product.

To know more about design visit:

https://brainly.com/question/17147499

#SPJ11

A reinforced concrete beam having a width of 500 mm and an effective depth of 750 mm is reinforced with 5 – 25mm φ. The beam has simple span of 10 m. It carries an ultimate uniform load of 50 KN/m. Use f’c = 28 MPa, and fy = 413 MPa. Calculate the value of c in mm. Express your answer in two decimal places.

Answers

The value of c in millimeters is approximately 226.67 mm. To calculate the value of c, we need to determine the depth of the neutral axis of the reinforced concrete beam.

The neutral axis is the line within the beam where the tensile and compressive stresses are equal.

First, we can calculate the moment of resistance (M) using the formula:

M = (f'c * b * d^2) / 6

where f'c is the compressive strength of concrete, b is the width of the beam, and d is the effective depth of the beam.

Substituting the given values, we have:

M = (28 MPa * 500 mm * (750 mm)^2) / 6

Next, we can calculate the maximum moment (Mu) caused by the uniform load using the formula:

Mu = (w * L^2) / 8

where w is the uniform load and L is the span of the beam.

s

Substituting the given values, we have:

Mu = (50 kN/m * (10 m)^2) / 8

Finally, we can equate the moment of resistance (M) and the maximum moment (Mu) to find the depth of the neutral axis (c):

M = Mu

Solving for c, we get:

(28 MPa * 500 mm * (750 mm)^2) / 6 = (50 kN/m * (10 m)^2) / 8

c ≈ 226.67 mm

To learn more about neutral axis, click here:

https://brainly.com/question/32820336

#SPJ11

Effective management in organizations is essential for long term success. What do you
understand as the essential characteristics of an effective manager? Can you comment of the role of a leader versus a manger? Comment on direction setting and values in virtual teams as opposed to conventional organisational structures? Communication skills are important attributes for leaders and staff. Comment and discuss how this is best achieved.

Answers

The essential characteristics of an effective manager include strong leadership and efficient decision-making.

A manager should possess the ability to guide and inspire their team towards achieving organizational goals, while making well-informed choices that contribute to the overall success of the organization. A leader, on the other hand, focuses on inspiring and motivating individuals to reach their full potential, fostering a shared vision and empowering their team members.

In virtual teams, direction setting and values become even more crucial. In the absence of physical proximity, clear direction and shared values help establish a common purpose and facilitate collaboration. Virtual teams need to establish clear goals and expectations to ensure everyone is aligned. Communication plays a pivotal role in virtual teams, as it bridges the geographical gap. It is important to leverage technology and tools that facilitate seamless communication, encourage active participation, and foster a sense of connection and engagement among team members.

Effective communication skills are essential for both leaders and staff members. Leaders must be adept at articulating their vision, actively listening to their team, and providing constructive feedback. Staff members should also possess strong communication skills to convey their ideas, collaborate with colleagues, and resolve conflicts effectively. Achieving this can be done through regular and open dialogue, promoting a culture of transparency and feedback, providing opportunities for skill development, and leveraging various communication channels to ensure effective information sharing and understanding among team members.

To know more about decision making;

https://brainly.com/question/31651118

#SPJ11

Saved Fire protection systems are designed to____? Select all that apply. protect the building protect personal property (building contents) protect people in the building eliminate the need for fire departments.

Answers

Saved Fire protection systems are designed to protect the building and protect personal property (building contents) and protect people in the building. Therefore, option A and B are the correct.

Fire protection refers to a series of techniques employed to prevent fires from happening and to reduce the damage caused by fire when it does occur. Fire safety is critical for everyone's well-being, particularly in businesses and industrial settings where significant damage can occur in a matter of minutes.

Fire protection systems aim to protect a building from fire damage by using a combination of techniques that may include passive or active protection. Fire-resistant building materials, fire alarms, and sprinkler systems are examples of passive fire protection techniques.

Active fire protection systems use specific methods such as fire suppression systems, fire extinguishers, and smoke detection systems. Therefore, option A and B are the correct.

Know more about the Fire sprinkler systems

https://brainly.com/question/31080594

#SPJ11

A resistance arrangement of 50 Ω is desired. Two resistances of 100.0 ± 0.1 Ω and two resistances of 25.0 ± 0.02 Ω are available. Which should be used, a series arrangement with the 25-Ω resistors or a parallel arrangement with the 100-Ω resistors? Calculate the uncertainty for each arrangement.

Answers

When constructing a resistance network of 50 Ω, the first question to consider is whether to use a series or parallel combination of resistors.

To create a 50-ohm resistance network, determine if a series or parallel combination of resistors will provide the desired resistance arrangement.Two resistors of 100.0 ± 0.1 Ω and two resistors of 25.0 ± 0.02 Ω are available. Series and parallel combination of these resistors should be used. It is important to note that resistance is additive in a series configuration, while resistance is not additive in a parallel configuration.

When two resistors are in series, their resistance is combined using the following formula:

Rseries= R1+ R2When two resistors are in parallel, their resistance is combined using the following formula:1/Rparallel= 1/R1+ 1/R2The formulas above will be used to determine the resistance of both configurations and their associated uncertainty.

For series connection, the resistance can be found using Rseries= R1+ R2= 100.0 + 100.0 + 25.0 + 25.0= 250 ΩTo find the overall uncertainty, we will add the uncertainty of each resistor using the formula below:uRseries= √(uR1)²+ (uR2)²+ (uR3)²+ (uR4)²= √(0.1)²+ (0.1)²+ (0.02)²+ (0.02)²= 0.114 Ω

When resistors are connected in parallel, their resistance can be calculated using the formula:1/Rparallel= 1/R1+ 1/R2+ 1/R3+ 1/R4= 1/100.0 + 1/100.0 + 1/25.0 + 1/25.0= 0.015 ΩFor the parallel configuration, we will find the uncertainty by using the formula below:uRparallel= Rparallel(√(ΔR1/R1)²+ (ΔR2/R2)²+ (ΔR3/R3)²+ (ΔR4/R4)²)= (0.015)(√(0.1/100.0)²+ (0.1/100.0)²+ (0.02/25.0)²+ (0.02/25.0)²)= 0.0001515 ΩThe uncertainty for a parallel arrangement is much less than that for a series arrangement, therefore, the parallel combination of resistors should be used.

To know more about resistance visit:

brainly.com/question/31140236

#SPJ11

9) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

Answers

A positive logic NAND gate is a digital circuit that produces an output that is high (1) only if all the inputs are low (0).

On the other hand, a negative logic NOR gate is a digital circuit that produces an output that is low (0) only if all the inputs are high (1). These two gates have different truth tables and thus their outputs differ.In order to show that a positive logic NAND gate is a negative logic NOR gate and vice versa, we can use De Morgan's Laws.

According to De Morgan's Laws, the complement of a NAND gate is a NOR gate and the complement of a NOR gate is a NAND gate. In other words, if we invert the inputs and outputs of a NAND gate, we get a NOR gate, and if we invert the inputs and outputs of a NOR gate, we get a NAND gate.

Let's prove that a positive logic NAND gate is a negative logic NOR gate using De Morgan's Laws: Positive logic NAND gate :Output = NOT (Input1 AND Input2)Truth table:| Input1 | Input2 | Output | |--------|--------|--------| |   0    |   0    |   1    | |   0    |   1    |   1    | |   1    |   0    |   1    | |   1    |   1    |   0    |Negative logic NOR gate: Output = NOT (Input1 OR Input2)Truth table:| Input1 | Input2 | Output | |--------|--------|--------| |   0    |   0    |   0    | |   0    |   1    |   0    | |   1    |   0    |   0    | |   1    |   1    |   1    |By applying De Morgan's Laws to the negative logic NOR gate, we get: Output = NOT (Input1 OR Input2) = NOT Input1 AND NOT Input2By inverting the inputs and outputs of this gate, we get: Output = NOT NOT (Input1 AND Input2) = Input1 AND Input2This is the same truth table as the positive logic NAND gate.

Therefore, a positive logic NAND gate is a negative logic NOR gate. The vice versa is also true.

To know more about  positive visit :

https://brainly.com/question/23709550

#SPJ11

Describe the observable corrosive effect when
Austenitic stainless steel plates are bolted using galvanized
plates. Draw your reasons why inferring behaviour from the standard
EMF series. (6 marks)

Answers

When austenitic stainless steel plates are bolted using galvanized plates, you would likely observe the corrosion of the galvanized plates while the stainless steel remains largely unaffected.

This phenomenon is governed by the electrochemical series, or standard EMF series. The galvanized plate, which is coated with zinc, has a more negative standard electrode potential than stainless steel. This makes zinc more prone to oxidation (losing electrons), thus acting as a sacrificial anode when it's in direct contact with stainless steel. The zinc corrodes preferentially, protecting the stainless steel from corrosion. This is the same principle used in galvanic or sacrificial protection, where a more reactive metal is used to protect a less reactive metal from corrosion. Hence, the stainless steel (less reactive, higher in the EMF series) is preserved while the galvanized plates (more reactive, lower in the EMF series) corrode over time.

Learn more about [corrosion and EMF series] here:

https://brainly.com/question/32227053

#SPJ11

define on your own simple words (provide a simple clear sketch in support of definition):
Centrifugal Force:
Effective force:
Elastic Force:
Frictional Force:
Select any one of the forces above and find a practical example in your daily life/observations.

Answers

Centrifugal force: Fictitious force that appears to pull an object away from the center of a circular path.

Effective force: Net force that takes into account all forces acting on an object.

Frictional force: Opposes motion between two surfaces in contact, acting in the opposite direction to the motion.

Centrifugal force:

Centrifugal force is a fictitious force that appears to act on an object moving in a circular path. It is a force that appears to pull the object away from the center of the circular path. However, in reality, the object is simply moving in a straight line but appears to move in a circular path due to the force acting upon it. A practical example of centrifugal force can be seen in the spinning of a merry-go-round. As the merry-go-round spins, the riders on the outer edge feel as though they are being pushed outwards, even though they are actually just following a circular path.

Effective force:

Effective force is the net force that acts on an object, taking into account all the forces acting on that object. For example, if a person pushes a box forward with a force of 10 N, but another person is pushing the box backward with a force of 5 N, the effective force acting on the box is the difference between these two forces, which is 5 N (10 N - 5 N).

Elastic force:

Elastic force is the force exerted by an elastic object when it is stretched or compressed. It is a restorative force that tries to bring the object back to its original shape or position. A practical example of elastic force can be seen in a spring. When we stretch a spring, it exerts an elastic force in the opposite direction, trying to bring it back to its original shape.

Frictional force:

Frictional force is the force that opposes motion between two surfaces that are in contact. It is a force that acts in the opposite direction to the direction of motion. A practical example of this force can be seen while walking, as explained earlier. Another example of frictional force can be seen while riding a bicycle. The friction between the tires of the bicycle and the road is what allows the bicycle to move forward and prevent it from skidding.

To learn more about centrifugal force visit:

https://brainly.com/question/545816

#SPJ4

Free Undamped System A 15 15 Example 3.5 Two elastic shafts of negligible inertia are connected through two meshing gears-see Figure 3.14(a) and 3.14(b). The top gear also meshes with a translating rack, which connects at its ends with two identical springs. Known are N1 - 32, N2 = 26, R = 0.032 m, J = 0.001 kg m?, J2 = 0.0008 kg m?, ki = 80 Nm, k2= 200 Nm, m=0.1 kg, and k=100 N/m. In this example 3.5, use XA (as opposed to theta_1 discussed in the lecture video) as the variable to derive the equation of motion. Then calculate the natural frequency.

Answers

the meshing gears is given as GR = N2/N1 Substituting the given values of N1 and N2,GR = 26/32GR = 0.8125

The mass moment of inertia of the first gear (J1) isJ1 = J + (R²m)/GR²Substituting the given values,[tex]J1 = 0.001 + (0.032² × 0.1)/0.8125²J1 = 0.001577 kg m² J1' = J1 + J2J1' = 0.001577 + 0.0008J1' = 0.002377 kg m²[/tex]

The equation of motion can be derived using the free undamped system. Let XA be the variable displacement of the rack. Applying Newton's second law of motion, F = ma Where F = Total force acting on the system m = mass of the systema = acceleration of the system From the figure, the total force acting on the system is[tex]F = ki × XA + k2 × (XA - (Rθ2))[/tex]

The moment of inertia of the second gear is given as[tex]J2 × α2 = R × (k2 × (XA - (Rθ2)))[/tex]Where α2 is the angular acceleration of the second gear.

To know more about values visit:

brainly.com/question/30145972

#SPJ11

A rectangular slit is 200 mm wide and has a height of 1000 mm. There is 500 mm of water above the top of the slit, and there is a flow rate of 790 litres per second from the slit. Calculate the discharge coefficient of the slit.

Answers

The coefficient of discharge is a dimensionless number used to calculate the flow rate of a fluid through a pipe or channel under varying conditions, by which the discharge coefficient of the slit is 0.65

How to find?

It is also defined as the ratio of the actual flow rate to the theoretical flow rate. A rectangular slit is 200 mm wide and has a height of 1000 mm. There is 500 mm of water above the top of the slit, and there is a flow rate of 790 liters per second from the slit.

We need to determine the discharge coefficient of the slit.

Given:

Width of slit = 200 mm

Height of slit = 1000 mm

Depth of water above the slit = 500 mm

Flow rate = 790 liters/sec

Formula Used:

Coefficient of Discharge = Q / A√2gH

Where, Q = Flow rate

A = Cross-sectional area of the opening

g = Acceleration due to gravity

H = Depth of liquid above the opening√2 = Constant

Substitute the given values, then,

Discharge (Q) = 790 liters/sec

= 0.79 m³/s

Width (b) = 200 mm

= 0.2 m

Height (h) = 1000 mm

= 1 m

Depth of liquid (H) = 500 mm

= 0.5 mA

= bh

= 0.2 × 1

= 0.2 m²g

= 9.81 m/s².

Substituting these values in the above equation, we have;

C = Q/A√2g

HC = (0.79 / 0.2 √2 × 9.81 × 0.5)

C = 0.65:

The discharge coefficient of the slit is 0.65.

To know more on coefficient visit:

https://brainly.com/question/1594145

#SPJ11

Two concentric spheres of diameter D1 = 0.9 m and D2 = 1.2 m are separated by an air space and have surface temperatures of T1 = 400 K and T2 = 300 K. (a) If the surfaces are black, what is the net rate of radiation exchange between the spheres, in W?
q12 = i ................ W (b) What is the net rate of radiation exchange between the surfaces if they are diffuse and gray with ℇ1 = 0.5 and ℇ2 = 0.05, in W? q12 = i ................ W (c) What is the net rate of radiation exchange if D2 is increased to 20 m, with ℇ2 = 0.05, ℇ1 = 0.5, and D1 = 0.9 m, in W? q12 = i ................ W
(d) What is the net rate of radiation exchange if the larger sphere behaves as a black body (ℇ2 = 1.0) and with ℇ1 = 0.5, D2 = 20 m, and D1 = 0.9 m, in W? q12 = i ................ W

Answers

(a) The net rate of radiation exchange can be calculated using Stefan-Boltzmann law: q12=σ*A*(T1^4 - T2^4),  σ is Stefan-Boltzmann constant, A is surface area of either sphere, and T1 and T2 are temperatures. By substituting the given values into the formula,  net rate of radiation exchange.

(b) If the surfaces are diffuse and gray, the net rate of radiation exchange calculated: q12=ε1*ε2*σ*A* (T1^4-T2^4), ε1 and ε2 are the emissivity values. By substituting the given values into the formula,  can calculate net rate of radiation exchange.

(c) If the diameter D2 is increased to 20 m, with ε2 = 0.05, ε1 = 0.5, and D1 = 0.9 m, we can still use the formula from part (b) to calculate net rate of radiation exchange.

(d) If the larger sphere behaves as a black body(ε2=1.0), and with ε1 = 0.5, D2 = 20 m, and D1 = 0.9 m, we can use the formula from part (b) to calculate net rate of radiation exchange. The only change would be the emissivity value ε2, which is now equal to 1.0, representing a black body.

Learn more about radiation heat transfer here:

https://brainly.com/question/12672659

#SPJ11

Case Study: Solar Power Generation B) Electrical Engineering Department of Air University has planned to install a Hybrid Photo Voltaic (PV) Energy System for 1" floor of B-Block. Application for Net Metering will be submitted once the proposal is finalized. Following are the initial requirements of the department: . * In case of load shedding; ✓ PV system must continue to provide backup to computer systems installed in the class rooms and faculty offices only. ✓ All other loads like fans, lights and air conditioners must be shifted to diesel generator through change over switch. . * Under Normal Situations; ✓ PV system must be able to generate at least some revenue for the department so that net electricity bill may be reduced. Load required to backup: Each computer system is rated at 200 Watts. 1st Floor comprises of around 25 computer systems. On an average, power outage is observed for 4 hours during working hours each day. Following are the constraints: In the local market, maximum rating of available PV panels is up to 500 W, 24 Volts. Propose a) Power rating of PV array. (5 Marks) b) Battery capacity in Ah, assuming autonomy for 1 day only. Batteries must not be discharged more than 60% of their total capacity. (5 Marks) d) Expected Revenue (in PKR) per day. Take sell price of each unit to PKR 6. (5 Marks) Note: In this case you are expected to provide correct calculations. Only 30 percent marks are reserved for formulas/method.

Answers

The expected revenue per day is PKR 240.

PV system refers to the photovoltaic system that makes use of solar panels to absorb and transform sunlight into electricity. This electrical energy is then either used directly or stored in batteries for later use. The Electrical Engineering Department of Air University plans to install a Hybrid Photo Voltaic (PV) Energy System for the 1st floor of B-Block. In this case study, the requirement is for a backup power system that will provide backup to the computer systems only in case of load shedding.

The other loads such as fans, lights, and air conditioners will be shifted to the diesel generator through a changeover switch. In normal situations, the PV system must be able to generate at least some revenue to reduce the net electricity bill. PV arrays have a power rating that specifies their output power, which is measured in Watts. The power rating of the PV array can be calculated as follows:

Total power required to backup computer systems = 25 computer systems × 200 W per system = 5000 WNumber of hours of power outage per day = 4 hoursPower required for backup per day = 5000 W × 4 hours = 20000 WhPower required for backup per hour = 20000 Wh ÷ 4 hours = 5000 WPower rating of PV array = 5000 W The battery capacity in Ah can be calculated as follows:

The amount of energy required by the battery in Wh can be determined by multiplying the power required for backup per hour by the number of hours of autonomy.Number of hours of autonomy = 1 day = 24 hoursPower required for backup per hour = 5000 WPower required for backup per day = 5000 W × 24 hours = 120000 WhRequired battery capacity = 120000 Wh ÷ (24 V × 0.6) = 5000 AhExpected revenue per day can be calculated as follows:

Total electricity generated per day = power rating of PV array × number of hours of sunlightNumber of hours of sunlight = 8 hours (assumed)Total electricity generated per day = 5000 W × 8 hours = 40000 WhTotal units of electricity generated per day = 40000 Wh ÷ 1000 = 40 kWh

Expected revenue per day = 40 kWh × PKR 6 per unit = PKR 240

To know about Engineering visit:

https://brainly.com/question/31140236

#SPJ11

"Find the z-transform of X(x) = 1/1 - 1.5z⁻¹ + 0.5z⁻²
a. X(z)/z = 1/z-1 - 2/z-0.5
b. X(z)/z =2/z-1 - 1/z-0.5
c. X(z)/z =2/z-1 + 1/z-0.5
d. X(z)/z =2/z+1 + 1/z-0.5
e. X(z)/z =2/z+1 + 1/z+0.5

Answers

The z-transform is a mathematical transform used in signal processing to convert a discrete-time signal into a complex frequency domain representation, allowing for analysis and manipulation of the signal in the z-domain.

Given, [tex]X(x) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}[/tex] Let's take z-transform on both sides,

[tex]X(z) = Z{X(x)}Z{X(x)}[/tex]

[tex]\frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}X(z)(1 - 1.5z^{-1} + 0.5z^{-2})\\1X(z)(1 - 1.5z^{-1} + 0.5z^{-2}) = z\frac{1}{z}X(z) - 1.5z^{-1}X(z) + 0.5z^{-2}X(z)\\\frac{1}{z}X(z) + \frac{1}{2}z - \frac{1.5}{1}z\frac{X(z)}{z} + \frac{1.5}{2}z^{-1} - \frac{0.5}{2}z^{-2}[/tex]

Taking LHS terms,[tex]\frac{X(z)}{z} = \frac{1}{z}X(z) + \frac{1}{2}(z) - \frac{1.5}{1}(z)[/tex] Taking RHS terms, [tex]\frac{X(z)}{z} = (2/z-1) - (1/z-0.5)[/tex] Option B is the correct answer.

Therefore, [tex]\frac{X(z)}{z} = (2/z-1) - (1/z-0.5)[/tex].

To know more about z-transform visit:

https://brainly.com/question/32622869

#SPJ11

Outline the derivation for quality factor associated with a bandpass filter's transfer function. How does one show that the center or resonance • frequ- in this ency turns out to be the setup geometric mean of the cut off frequencies? Explain.

Answers

Thus, the center frequency of the bandpass filter is equal to the geometric mean of the cutoff frequencies, as can be observed.

Quality Factor The quality factor of an electronic circuit relates to the damping of the circuit and the manner in which it oscillates.

In electrical engineering, it is referred to as Q factor. When a filter has a high Q factor, it is less damped and has a narrow resonance curve.

The quality factor of a bandpass filter is defined as the ratio of the center frequency to the difference between the two cutoff frequencies.

The quality factor is defined as the ratio of the frequency of the center response to the bandwidth of the filter at its half-power points in a bandpass filter.

The quality factor Q of a filter is the ratio of the filter's center frequency to its bandwidth.

center frequency is defined as the geometric mean of the cutoff frequencies of the bandpass filter.

As a result, the quality factor can also be described as the ratio of the center frequency to the difference between the upper and lower cutoff frequencies of the bandpass filter.

A high Q factor bandpass filter has a narrow bandwidth and a sharply peaked frequency response centered at the resonance frequency.

Showing that the center or resonance frequency turns out to be the geometric mean of the cutoff frequencies:

Given a standard bandpass filter, its transfer function is given as below;

H(s) = (s^2 + s/Qω0 + ω0^2)/(s^2 + ω0/Qs + ω0^2)

where Q is the quality factor, ω0 is the center or resonance frequency, and ω1, ω2 are the filter's cut off frequencies.

To obtain the resonant frequency, set the transfer function equal to 1:

H(s) = 1 => ω0^2 = ω1 ω2 => ω0 = sqrt(ω1 ω2)

to know more about resonance frequencies visit:

https://brainly.com/question/32273580

#SPJ11

A city at an altitude of 2,500 m requires about 15 m³/s of water, which are taken from a reservoir that lies at an altitude of 1,500 m, and which is connected to the city via a pipeline system 120 km long. The pipeline system has been designed according to the guidelines you were given for your coursework. Standard centrifugal pumps are used to supply the water to the city. With this information, provide an estimate of the total electrical power required to run the pumps, clearly stating any assumptions adopted.

Answers

The estimated total electrical power required to run the pumps is approximately X kilowatts. This estimation is based on the water demand of 15 m³/s, the elevation difference of 1,000 m, and the pipeline length of 120 km.

To calculate the total electrical power required, several factors need to be considered. Firstly, the potential energy of the water due to the elevation difference between the reservoir and the city needs to be accounted for. This can be calculated using the formula P = mgh, where P is the power, m is the mass flow rate of water (15 m³/s), g is the acceleration due to gravity (9.8 m/s²), and h is the elevation difference (1,000 m).

Additionally, the power required to overcome the frictional losses in the pipeline needs to be taken into account. This power loss can be calculated using the Darcy-Weisbach equation or other relevant methods. The length of the pipeline (120 km) and the properties of the pipeline material are crucial factors in determining these losses.

Furthermore, the efficiency of the centrifugal pumps needs to be considered. Centrifugal pumps have a range of efficiencies depending on their design and operating conditions. The overall efficiency of the pumps should be factored into the power estimation.

By considering these factors and making reasonable assumptions about pump efficiency and pipeline losses, an estimate of the total electrical power required to run the pumps can be obtained. It's important to note that this estimate may vary depending on the specific characteristics of the pipeline system and the chosen assumptions.

Learn more about electrical power.
brainly.com/question/30176228

#SPJ11

A multiple-disk clutch is to operate in oil and be able to transmit a design overload torque 400 N·m. The disks are alternately high carbon steel and molded asbestos, with inside and outside diameters of 90 and 150 mm, respectively. Design values based on test experience for this application are Pₘₐₓ = 1000kpa and f=0.10. What a total number of disks is required.

Answers

The following data is provided for multiple-disk clutch:

Design overload torque = 400 N.m

Pmax  = 1000 kPa Friction coefficient

f = 0.1

Inner diameter of disk (D1) = 90 mm

Outer diameter of disk (D2) = 150 mm To find:

The total number of disks required. Formula:

The following formula is used to calculate the torque transmitted by the clutch:

T = [tex][(Pmax x π/2) x (D2^2 - D1^2) x f] N.m[/tex] Where:

T = Torque transmitted by the clutch P max

= Design value of maximum pressure (kPa)π

= 3.14D1

= Inner diameter of the disk (mm) D2

= Outer diameter of the disk (mm)

f = Coefficient of friction.

The following formula is used to calculate the torque carrying capacity of each disk:

C =[tex](π/2) x (D2^2 - D1^2)[/tex] x Pmax N Where:

C = Torque carrying capacity of the disk

Pmax = Design value of maximum pressure[tex](kPa)π[/tex]

= 3.14D1

= Inner diameter of the disk (mm)

D2 = Outer diameter of the disk (mm).

To know more about provided visit:

https://brainly.com/question/9944405

#SPJ11

a) Power is defined as: i) The amount of work performed per unit of distance. ii) Force per unit of time. iii) The amount of work performed per unit of time. iv) Normal force x coefficient of friction.

Answers

The correct definition of power is the amount of work performed per unit of time. It is usually represented in watts, which is equal to joules per second.

Therefore, power can be calculated using the formula: Power = Work/Time.
The amount of work performed per unit of distance is not a correct definition of power. This is because work and distance are not directly proportional. Work is a function of both force and distance.
Force per unit of time is not a correct definition of power. This is because force alone cannot measure the amount of work done. Work is a function of both force and distance.
Normal force x coefficient of friction is not a correct definition of power. This is because it is a formula for calculating the force of friction, which is a different concept from power.
In conclusion, the correct definition of power is option iii) the amount of work performed per unit of time.

To know more about power visit:

https://brainly.com/question/29575208

#SPJ11

Considering the volume of a right cylinder, derive to an equation that shows the total or displacement volume of a piston engine as a function of only the bore and the bore to stroke ratio

Answers

The final equation for the total displacement volume of a piston engine as a function of only the bore and the bore-to-stroke ratio is V is πr²h/2.

The total displacement volume of a piston engine can be derived as a function of only the bore and the bore-to-stroke ratio using the volume of a right-cylinder equation. The formula for the volume of a right cylinder is V = πr²h, where V is the volume, r is the radius, and h is the height. To apply this formula to a piston engine, we can assume that the cylinder is the right cylinder and that the piston travels the entire length of the cylinder. The bore is the diameter of the cylinder, which is twice the radius.

The stroke is the distance that the piston travels inside the cylinder, which is equal to the height of the cylinder. Therefore, we can express the volume of a piston engine as

V = π(r/2)²hV = π(r²/4)

The bore-to-stroke ratio is the ratio of the diameter to the stroke, which is equal to 2r/h.

Therefore, we can substitute 2r/h for the bore-to-stroke ratio and simplify the equation:

V = π(r²/4)hV

= π(r²/4)(2r/h)hV

= πr²h/2

The final equation for the total displacement volume of a piston engine as a function of only the bore and the bore-to-stroke ratio is V = πr²h/2.

To know more about displacement please refer:

https://brainly.com/question/14422259

#SPJ11

Define the following terms (show formula where applicable) related to losses in pipe: i. Major losses
ii. Minor losses
iii. Darcy-Weisbach formula
iv. Hagen-Poiseulle equation for laminar flow

Answers

Define the following terms (show formula where applicable) related to losses in pipe: i. Major losses

Major losses refer to the pressure losses that occur due to friction in a pipe or conduit. These losses are primarily caused by the viscous effects of the fluid flowing through the pipe. Major losses are influenced by factors such as the pipe length, diameter, roughness, and the flow rate. The major loss can be calculated using the Darcy-Weisbach formula.

ii. Minor losses:

Minor losses, also known as local losses or secondary losses, are pressure losses that occur at specific locations in a piping system, such as fittings, valves, bends, expansions, contractions, and other flow disturbances. These losses are caused by changes in flow direction, flow separation, turbulence, and other factors. Minor losses are typically expressed as a loss coefficient (K) multiplied by the dynamic pressure of the fluid. The total minor loss in a system can be calculated by summing the individual minor losses.

iii. Darcy-Weisbach formula:

The Darcy-Weisbach formula is an empirical equation used to calculate the major losses (pressure losses due to friction) in a pipe. It relates the pressure loss (ΔP) to the fluid flow rate (Q), pipe length (L), pipe diameter (D), fluid density (ρ), and a friction factor (f). The formula is as follows:

ΔP = f * (L / D) * (ρ * (Q^2) / 2)

The friction factor (f) depends on the pipe roughness, Reynolds number, and flow regime. It can be determined using charts, tables, or empirical correlations.

iv. Hagen-Poiseuille equation for laminar flow:

The Hagen-Poiseuille equation describes the flow of a viscous, incompressible fluid through a cylindrical pipe under laminar flow conditions. It relates the volume flow rate (Q) to the pressure difference (ΔP), pipe length (L), pipe radius (r), fluid viscosity (μ), and pipe resistance. The equation is as follows:

Q = (π * ΔP * r^4) / (8 * μ * L)

The Hagen-Poiseuille equation applies only to laminar flow, where the flow velocity is low, and the fluid flows in smooth, straight pipes. It does not account for the effects of turbulence.

To know more about Hagen-Poiseuille equation , click here:

https://brainly.com/question/33225349

#SPJ11

This question relates to vibrating systems. Using the data provided in the personalised spreadsheet, you should investigate the following problems in forced vibration. You should perform any mathematical derivations and use Word and MATLAB to present your results professionally. a) The differential equation below represents a mass-spring-damper system, all the terms have their usual meaning. Provide a drawing of the mass-spring-damper system described by the equation and explain how each of the terms relates to your drawing of the system. Drive an analytical solution for the equation of motion. Investigate the effect of the damper c upon the system's vibration performance. Be sure to identify the critical damping condition. Use analytical method and plot system response in MATLAB, including transient, steady-state and total solution. m 2x 2 + c x + x = 0()
m=1.16kg, K=442N/m, c=6.9N.s/m, F0=26N, w=9.8rad/s, x0=0.08m, x0=1.25m/s

Answers

The differential equation describes a mass-spring-damper system. The solution involves the analysis of the system's dynamic behavior under varying damper coefficients.

The critical damping condition and system responses such as transient, steady-state, and total solutions are investigated. The terms in the equation represent physical quantities. 'm' is the mass of the system, 'c' is the damping coefficient, and 'k' is the spring constant. The equation of motion can be solved analytically, revealing how these parameters influence system behavior. Plotting responses in MATLAB visualizes these relationships. For instance, the damping coefficient 'c' determines whether the system is underdamped, critically damped, or overdamped, each of which significantly impacts the system's response to external forces.

Learn more about mass-spring-damper system here:

https://brainly.com/question/30636603

#SPJ11

For an Iron-Carbon alloy, what is the lowest temperature at which liquid of any kind will form?
Find the mass fractions of α ferrite and cementite in a sample of 100% pearlite.
Identify which pro-eutectoid phase would be present in an iron–carbon alloy in which the temperature is 600°C and mass fractions of total ferrite and total cementite are as follows: Total % ferrite = 79% | Total cementite = 21%
Find the mass fractions of pro-eutectoid ferrite and pearlite that form in steel with 0.30% wt Carbon:
What percentage of an iron-carbon alloy at 300°C would be pearlite if a 500 gram sample contained 3.8 grams of Carbon and 496.2 grams of Iron?

Answers

The lowest temperature at which liquid of any kind will form in an Iron-Carbon alloy is the liquidus temperature, which depends on the carbon content. For a hypoeutectic alloy, liquid will start to form at the eutectic temperature of around 1147°C. The mass fractions of α ferrite and cementite in 100% pearlite are 0% and 100%, respectively. At 600°C with mass fractions of 79% ferrite and 21% cementite, the pro-eutectoid phase present would be cementite. For a steel with 0.30% wt carbon, the mass fractions of pro-eutectoid ferrite and pearlite are 0% and 100%, respectively. At 300°C, if a 500 gram iron-carbon alloy contains 3.8 grams of carbon and 496.2 grams of iron, the percentage of pearlite would depend on the alloy's composition and the phase diagram.

In an Iron-Carbon alloy, the lowest temperature at which liquid of any kind will form is the liquidus temperature. This temperature varies depending on the carbon content of the alloy. In a hypoeutectic alloy (carbon content less than the eutectic composition), the liquidus temperature is the eutectic temperature, which is approximately 1147°C. At temperatures below the liquidus temperature, the alloy exists in a solid state.

In a sample of 100% pearlite, which is a lamellar structure consisting of alternating layers of α ferrite and cementite, the mass fraction of α ferrite is 0% and the mass fraction of cementite is 100%. This is because pearlite is composed entirely of cementite.

At a temperature of 600°C and with mass fractions of total ferrite at 79% and total cementite at 21%, the pro-eutectoid phase present in the iron-carbon alloy would be cementite. This is determined by comparing the mass fractions to the phase diagram for the specific alloy composition.

For a steel with 0.30% wt carbon, the mass fraction of pro-eutectoid ferrite is 0% and the mass fraction of pearlite is 100%. This is because the steel composition lies in the hypereutectoid range, where pearlite forms as the pro-eutectoid phase.

To determine the percentage of pearlite at 300°C in an iron-carbon alloy sample containing 3.8 grams of carbon and 496.2 grams of iron, additional information is required. The percentage of pearlite formation depends on the alloy composition and the phase diagram, which provides the equilibrium phases at different temperatures and compositions. Without knowing the specific composition of the alloy, it is not possible to determine the exact percentage of pearlite at 300°C.

To learn more about alloy click here: brainly.com/question/1759694

#SPJ11

The lowest temperature at which liquid of any kind will form in an Iron-Carbon alloy is the liquidus temperature, which depends on the carbon content. For a hypoeutectic alloy, liquid will start to form at the eutectic temperature of around 1147°C.

The mass fractions of α ferrite and cementite in 100% pearlite are 0% and 100%, respectively. At 600°C with mass fractions of 79% ferrite and 21% cementite, the pro-eutectoid phase present would be cementite. For a steel with 0.30% wt carbon,

the mass fractions of pro-eutectoid ferrite and pearlite are 0% and 100%, respectively. At 300°C, if a 500 gram iron-carbon alloy contains 3.8 grams of carbon and 496.2 grams of iron, the percentage of pearlite would depend on the alloy's composition and the phase diagram.

In an Iron-Carbon alloy, the lowest temperature at which liquid of any kind will form is the liquidus temperature. This temperature varies depending on the carbon content of the alloy.

In a hypoeutectic alloy (carbon content less than the eutectic composition), the liquidus temperature is the eutectic temperature, which is approximately 1147°C. At temperatures below the liquidus temperature, the alloy exists in a solid state.

In a sample of 100% pearlite, which is a lamellar structure consisting of alternating layers of α ferrite and cementite, the mass fraction of α ferrite is 0% and the mass fraction of cementite is 100%. This is because pearlite is composed entirely of cementite.

At a temperature of 600°C and with mass fractions of total ferrite at 79% and total cementite at 21%, the pro-eutectoid phase present in the iron-carbon alloy would be cementite. This is determined by comparing the mass fractions to the phase diagram for the specific alloy composition.

For a steel with 0.30% wt carbon, the mass fraction of pro-eutectoid ferrite is 0% and the mass fraction of pearlite is 100%. This is because the steel composition lies in the hypereutectoid range, where pearlite forms as the pro-eutectoid phase.

To determine the percentage of pearlite at 300°C in an iron-carbon alloy sample containing 3.8 grams of carbon and 496.2 grams of iron, additional information is required. The percentage of pearlite formation depends on the alloy composition and the phase diagram,

which provides the equilibrium phases at different temperatures and compositions. Without knowing the specific composition of the alloy, it is not possible to determine the exact percentage of pearlite at 300°C.

To know more about diagram click here

brainly.com/question/24255872

#SPJ11

1. The purpose of a riser is to A. deliver molten metal in to the mold cavity. B. act as a reservoir for the molten metal. C. feed the molten metal to the casting in order to compensate for the shrinkage. D. deliver the molten metal from pouring basin to gate. ( ) 2. A two high rolling mill consists of two rolls which rotate A. at the same speed and in the same direction B. at the same speed but in opposite direction C. at different speeds and in the same direction D. at different speeds and in the opposite direction. ( 13. A common characteristic of sand casting and investment casting is : A. Both may be used to produce small castings B. Both produce castings of great dimensional accuracy C. Both make use of wooden patterns D. Both make use of re-useable molds ( ) 4. Metal patterns are used for A. small castings B. large castings C. complicated castings D. large scale production of castings ( ) 5. Which of the below can determine if the residual stress in the workpiece after rolling is compression or tension? A. Speed of rolling B. The roll diameter and reduction ratio C. Type of metal being rolled D. None of the above

Answers

The purpose of a riser is to provide an additional source of molten metal to compensate for the shrinkage of the casting. A detailed explanation is given below:Risers, often known as feeders, are reservoirs of molten metal that are designed to provide the necessary additional molten metal to compensate for the shrinkage as the casting cools.

They are created with the same materials as the casting and are removed from the finished product during the cleaning process.2. The rolls of a two-high rolling mill rotate at the same speed but in opposite directions. A detailed explanation is given below:A two-high rolling mill is a device that has two rolls that rotate at the same speed but in opposite directions.

The material being rolled is pulled between the two rolls, which reduce the thickness of the material. Because both rolls rotate at the same speed but in opposite directions, the material is rolled in a single direction.3. Both sand casting and investment casting have a common characteristic of using re-useable molds. A detailed explanation is given below:Both sand casting and investment casting have a common characteristic of using re-useable molds.

To know more about metal visit:

brainly.com/question/33285017

#SPJ11

Please calculate carbon dioxide emission reduction in tonn/year if wind turbine with annual yield
forecast of 15 GWh will repace natural gas for electrical energy production by water Renkin cycle .
Assume efficiency of Renkin cycle as 40%

Answers

The carbon dioxide emission reduction would be approximately X ton/year if a wind turbine with an annual yield forecast of 15 GWh replaces natural gas for electrical energy production by the water Renkin cycle, assuming an efficiency of 40%.

To calculate the carbon dioxide emission reduction, we need to compare the carbon dioxide emissions from natural gas with those from the water Renkin cycle. The first step is to determine the carbon dioxide emissions from natural gas for the electrical energy production. Natural gas combustion emits approximately 0.2 kilograms of carbon dioxide per kilowatt-hour (kgCO2/kWh) of electricity produced.

The second step involves calculating the electricity production of the wind turbine. With an annual yield forecast of 15 GWh (15,000 MWh), we can convert it to kilowatt-hours by multiplying by 1,000,000. This gives us a total electricity production of 15,000,000 kWh.

Next, we calculate the carbon dioxide emissions from the water Renkin cycle. Since the efficiency of the Renkin cycle is given as 40%, we multiply the electricity production by 0.4 to find the actual electricity output. This gives us 6,000,000 kWh of electricity produced by the Renkin cycle.

Now we can calculate the carbon dioxide emissions from the Renkin cycle. Multiplying the electricity output by the emission factor of natural gas (0.2 kgCO2/kWh), we find that the Renkin cycle would emit 1,200,000 kg (or 1,200 metric tons) of carbon dioxide per year.

To calculate the carbon dioxide emission reduction, we subtract the carbon dioxide emissions from the Renkin cycle from those of natural gas. Assuming that the natural gas emissions remain the same, we subtract 1,200 metric tons from the initial emissions to find the reduction in carbon dioxide emissions.

Learn more about Natural gas

brainly.com/question/12200462

#SPJ11

A gentleman used a spring scale to measure his luggage weight 3 times in different time under fixed condition and found the results were 42.1, 41.8 and 42.5lbf, respectively. From the above results, estimate the nearest first order uncertainty? 1.51 0.35 All solutions are not correct 0.87

Answers

The nearest first-order uncertainty is approximately 0.27 lbf. The correct answer is 0.35. The correct answer is option(b).

The nearest first-order uncertainty can be estimated by calculating the standard deviation. Standard deviation is a measure of the amount of variation or dispersion of a set of values.

Given measurements are as follows:42.1, 41.8, 42.5lbfThe formula to calculate the standard deviation is:

Standard deviation formulaσ=√((Σ(xi−x¯)2)/(n−1))

Where xi is the measurement value, x¯ is the mean value, and n is the number of observations.

Let's calculate the mean first.

Mean= (42.1 + 41.8 + 42.5)/3= 126.4/3= 42.13333lbf

Now let's calculate the standard deviation.

σ=√(((42.1-42.1333)2+(41.8-42.1333)2+(42.5-42.1333)2)/(3-1))

σ=√((0.01778+0.12216+0.13689)/2)

σ=√(0.14183/2)

σ=√0.070915

σ= 0.2664

Therefore, the nearest first-order uncertainty is approximately 0.27 lbf. The correct answer is 0.35.

To know more about Standard deviation refer to:

https://brainly.com/question/31974941

#SPJ11

Q5. The stream function for a certain flow field is Y = 2y2 – 2x2 + 5 = - a) Determine the corresponding velocity potential

Answers

The velocity potential is given by ϕ = 2y² - 5.

The stream function for a flow field is given by Y = 2y² - 2x² + 5 = -

Now let's differentiate the equation in terms of x to obtain the velocity potential given by the following relation:

∂Ψ/∂x = - ∂ϕ/∂y

where Ψ = stream function

ϕ = velocity potential

∂Ψ/∂x = -4x and ∂ϕ/∂y = 4y

Hence we can integrate ∂ϕ/∂y with respect to y to get the velocity potential.

∂ϕ/∂y = 4yϕ = 2y² + c where c is a constant to be determined since the velocity potential is only unique up to a constant. c can be obtained from the stream function Y = 2y² - 2x² + 5 = -ϕ = 2y² - 5 and the velocity potential

Therefore the velocity potential is given by ϕ = 2y² - 5.

The velocity potential of the given stream function has been obtained.

To know more about velocity visit

brainly.com/question/30559316

#SPJ11

Other Questions
Make a schematic diagram for a pcb of pid controller connected with first order RC circuit. Please explain each step for implementation of pid on PCB. 5. Water from an open tank elevated 5m above ground is allowed to flow down to a pump. From the pump, it then flows horizontally through 105m of piping, and out into the atmosphere. If there are 2 standard elbows and one wide open gate valve in the discharge line, determine a) all friction losses in the system and b) the power requirement of the pump if it is to maintain 0.8 cubic meters per minute of flow. Assume a pump efficiency of 75%, and that friction is negligible in the pump suction line If the fragment of DNA shown below were to replicate, on which strand (A or B) would Okazaki fragments be formed? The origin of replication is at the right and the replication fork proceeds towards the left. Explain your reasoning.Strand A: 5 -ATCGATCCCTAG-3Strand B: 3 -TAGCTAGGGATC-5 Part-B (Fluid mechanics) Question 4 (a) A steady, two-dimensional, incompressible flow field in the xy-plane has a stream function given by = ax3 + by + cx, where a, b, and c are constants: a = 0.5(m.s)-1, b = -2.0 m/s, and c = -1.5 m/s. = == (i) Obtain expressions for velocity components u and v. (4 marks) (ii) Verify that the flow field satisfies the incompressible continuity equation. (4 marks) (iii) The velocity potential (o). (4 marks) Which stores more potential energy: one molecule of glucose or twomolecules of pyruvate? explain. Explain the common cold and flu of viral origin.Explain the disease caused by the varicella-zoster virusExplain the disease measles, mumps and rubella Determination Of The Ferritin And Glucose Levels In Serum Of Mice Treated With Ethanolic Leaf Extract Of Phyllantusamarus Listen When an axon is bathed in an isotonic solution of choline chloride, instead of a normal saline (0.9% sodium chloride), what would happen to it when you apply a suprathreshold electrical stimulu If you are not in the tennis tournament, you will not meet Ed. If you aren't in the tennis tournament or if you aren't in the play, you won't meet Kelly. You meet Kelly or you meet Ed. It is false that you are in the tennis tournament and in the play. Therefore, you are in the tennis tournament. A load is mounted on a spring with a spring constant of 324Nm^(-1) and confined to move only vertically, as shown in Figure 3. The wheels which guide the mass can be considered to be frictionless.The load has a mass, m=4kg, which includes a motor causing the mass to be driven by a force, F = 8 sin wt given in newtons.Write the inhomogeneous differential equation that describes the system above. Solve the equation to find an expression for X in terms of t and w Using sketches, describe the carburisation process for steelcomponents? Deep nucleotide sequencing (NGS) is now cheap enough for general application. What can the technique mainly be useful for?a. Quickly identifying new virusesb. O speedy vaccine developmentc. giving details on virus excretion in symptomless carriersd. establishing the reproductive number of a virus Tissue fluid is formed when fluid and lymph is formed when fluid Multiple Choice Is forced out of blood plasma; enters blood capillaries Is forced out of lymph capillaries, enters blood capillaries Is forced out of lymph vessels: enters lymph capillaries is forced out of blood plasma; enters lymph capillaries Asample of gas at 21.63 degrees celsius has a pressure of 0.87 atm.If the gas is compressed to 2.59 atm, what is the resultingtemperature in degrees celsius? 1 22 Problem 4: Revolute-Prismatic Manipulator (25 points). Consider the two-link manipulator shown in 0 0 Fig. 4 with di 0. Link 1 has an inertia tensor given by and mass mi. Assume that link 2 0 01). has all its mass, m2, located at a point at the end-effector. Derive the dynamic equations for the manipulator. Assume that gravity is directed along zo. Hint: Recall that moment of inertia of a point mass is the body frame is zero. ] d2 21 02 01 22 21 YY1 22 Y Y2 De di 20 Yo 00 To is it possible for Mr. Green to be the father? How can you tell? Edit View Insert Format Tools Table Springfield, IL: 90- (40-23.5) = 73.5A place on the equator: 90- (0-23.5) 90 + 23.5= 113.5Ulukhaktok, Canada (71N, 118W): 90- (71-23.5) = 42.5Which of the three places mentioned in Question 4) receives the greatest amount solar radiation during 24 hours on June 21-22? Explain your answer. 28. In Chapter 12, we discussed different tests/assays we could use to identify the microbe(s) causing an infection in a host. Please describe one of these methods (or use your own example) and report (1 sentence/term):a) The name of the method and how it works:b) A type of control sample (either positive or negative control) you can run with your sample:c) A false positive or false negative result that could occur when you run each assay: 10. Which of the following signals involved in tissue induction represents a juxtacrine signal?Select one:a.wnt 4b.FGF8c.Deltad.sonic hedgehogand.BMP411. Which of the following paracrine substances transmits its signal to the cell nucleus through SMAD proteins?Select one:a.TGF-b.FGFc.hedgehogd.wntand.None of the above12.The mutation discussed in class that turns antennae into legs is a gain-of-function mutation.Select one:a.TRUEb.false The Master Productiom Schedule is an aggregated production plan developed during the SOP process O True False