You push a shopping cart full of groceries. The shopping cart has a mass of 32
kg.
a. What is the weight of your shopping cart?

b. How much force must you apply to give the cart an acceleration of 1.3 m/s2?

c. If you push with a force of 200 N, what is the acceleration of the cart?

d. You are driving home from the store. If your car has an acceleration of 4.1 m/s2 and its engine is applying a forward force of 7000 N, what is the mass of your car?

Answers

Answer 1

Answer:

a) 320N (if you take gravity as 10ms^-2) or 313.6N (if you take gravity as 9.8ms^-2

b) 41.6N

c) 6.25ms^-2

d) 1707.317 kg

Explanation:

a) W=mg

    W= 32 x 10 or 9.8

    W = 320N or 313.6N

b) F=ma

   F= 32 x 1.3

   F= 41.6N

c) F=ma

   200 = 32 x a

   a= 6.25ms^-2

d) F=ma

    7000= m x 4.1

     m= 1707.317 kg

   

I am not completely sure about the d) part because I dont whether you will be taking Friction and Normal Reaction too. As per my knowledge, I think no, as no angles nor the gradient of the floor/road is mentioned here.                  

Answer 2

a) The weight of your shopping cart is 313.6N .

b) The required force is  41.6N

c) The acceleration of the car is 6.25ms^-2

d) The mass of the car is 1707.317 kg.

What is acceleration?

Acceleration is rate of change of velocity with time. Due to having both direction and magnitude, it is a vector quantity. Si unit of acceleration is meter/second² (m/s²).

a) The weight of the shopping cart:  W=mg

  W= 32 x  9.8 N

 W = 313.6N

b) The required force is to be applied: F=ma

F= 32 x 1.3 N.

F= 41.6N.

c) Let the acceleration of the cart is a.

Then, force:  F=ma

200 = 32 x a

a= 6.25ms^-2

Hence,  the acceleration of the cart is  6.25ms^-2.

d) Let the mass of the car is m.

Force applied on the car: F=ma

7000= m x 4.1

m= 1707.317 kg

The mass of the car is 1707.317 kg.

Learn more about acceleration here:

brainly.com/question/12550364

#SPJ2


Related Questions

Rays that pass through a lens very close to the principle axis are more sharply focused than those that are very far from the axis. This spherical aberration helps us understand why:_______

Answers

Answer: it is easier to read in bright light than dim light.

Explanation:

The ray of light is the direction that is used by light in travelling through a medium. Rays that pass through a lens very close to the principle axis are more sharply focused than those that are very far from the axis.

Because of the fact that the rays are close to the principle axis, the spherical aberration helps us to understand the reason why it is easier for people to read in bright light than readin iin dim light.

Comparing helium atoms with nitrogen molecules at the same temperature, the helium atoms on average are moving _______ and have _______ kinetic energy.

Answers

Answer:

Helium atoms compared to nitrogen atoms are moving faster and have a greater kinetic energy.

Explanation:

The molecular velocity of a gas at room temperature is inverse proportional to the square root of its molecular mass.

The greater the molecular mass of the gas the lesser the average speed of its molecules. Comparing the molecular masses of nitrogen and helium, helium is found to have a lower molecular mass and a corresponding greater velocity.

Hence helium moves faster than nitrogen and has a higher kinetic energy than nitrogen

Consider a block of mass equal to 10kg sliding on an inclined plane of 30°, as shown in the figure below. The coefficient of kinetic friction between the block and the plane surface is c = 0.4 (a) Determine the value of the horizontal and vertical acceleration of the block. (b) If the block starts from rest in t=0s and when it is in the X=0 and Y=5m position, calculate what its horizontal and vertical position will be at the instant t=1s. (C) How long does the LM block take to reach the base of the tilted plane?

Answers

Answer:

(a) aₓ = 1.33 m/s² and aᵧ = -0.770 m/s²

(b) x = 0.665 m and y = 4.62 m

(c) 3.61 s

Explanation:

(a) There are two ways we can solve this.  The first way is to sum the forces in the x and y direction, then use the relation tan 30° = -aᵧ/aₓ, where aᵧ is the acceleration in the +y direction (up) and aₓ is the acceleration in the +x direction (right).

The second way is to sum the forces in the parallel and perpendicular directions to find the acceleration parallel to the incline, a.  Then, use the relations aᵧ = -a sin 30° and aₓ = a cos 30°.

Let's try the first method.  Sum of forces in the +y direction:

∑F = ma

N cos 30° + Nμ sin 30° − mg = maᵧ

N cos 30° + Nμ sin 30° − mg = -maₓ tan 30°

Sum of forces in the +x direction:

∑F = ma

N sin 30° − Nμ cos 30° = maₓ

Substituting:

N cos 30° + Nμ sin 30° − mg = -(N sin 30° − Nμ cos 30°) tan 30°

N cos 30° + Nμ sin 30° − mg = -N sin 30° tan 30° + Nμ sin 30°

N cos 30° − mg = -N sin 30° tan 30°

N (cos 30° + sin 30° tan 30°) = mg

N = mg / (cos 30° + sin 30° tan 30°)

N = (10 kg) (10 m/s²) / (cos 30° + sin 30° tan 30°)

N = 86.6 N

Now, solving for the accelerations:

N sin 30° − Nμ cos 30° = maₓ

aₓ = N (sin 30° − μ cos 30°) / m

aₓ = (86.6 N) (sin 30° − 0.4 cos 30°) / 10 kg

aₓ = 1.33 m/s²

N cos 30° + Nμ sin 30° − mg = maᵧ

aᵧ = N (cos 30° + μ sin 30°) / m − g

aᵧ = (86.6 N) (cos 30° + 0.4 sin 30°) / 10 kg − 10 m/s²

aᵧ = -0.770 m/s²

Now let's try the second method.

Sum of forces in the perpendicular direction:

∑F = ma

N − mg cos 30° = 0

N = mg cos 30°

Sum of forces in the parallel direction:

∑F = ma

mg sin 30° − Nμ = ma

mg sin 30° − mgμ cos 30° = ma

a = g (sin 30° − μ cos 30°)

a = (10 m/s²) (sin 30° − 0.4 cos 30°)

a = 1.536 m/s²

Solving for the accelerations:

aₓ = a cos 30°

aₓ = 1.33 m/s²

aᵧ = -a sin 30°

aᵧ = -0.770 m/s²

As you can see, the second method is faster and easier, but both methods will give you the same answer.

(b) In the x direction:

Given:

x₀ = 0 m

v₀ = 0 m/s

aₓ = 1.33 m/s²

t = 1 s

Find: x

x = x₀ + v₀ t + ½ at²

x = 0 m + (0 m/s) (1 s) + ½ (1.33 m/s²) (1 s)²

x = 0.665 m

In the y direction:

Given:

y₀ = 5 m

v₀ = 0 m/s

aᵧ = -0.770 m/s²

t = 1 s

Find: y

y = y₀ + v₀ t + ½ at²

y = 5 m + (0 m/s) (1 s) + ½ (-0.770 m/s²) (1 s)²

y = 4.62 m

(c) In the y direction:

Given:

y₀ = 5 m

y = 0 m

v₀ = 0 m/s

aᵧ = -0.770 m/s²

Find: t

y = y₀ + v₀ t + ½ at²

0 m = 5 m + (0 m/s) t + ½ (-0.770 m/s²) t²

t = 3.61 s

which of the following is a physical change?

A. a newspaper burns when placed in a fire.
B.an iron chair rusts when left outside
C.a sample of water boils and releases gas.
D.a plant changes carbon dioxide and water into sugar

Answers

It’s C. This is because all of the other options you can’t turn back but if you boil water, the gas can turn back by condensation. If a newspaper burns it’s gone. If the chair rust you can only scrape off the rust. If the plant changes the CO2 you aren’t getting it back. At least not easily

On a certain planet a body is thrown vertically upwards with an initial speed of 40 m / s. If the maximum height was 100 m, the acceleration due to gravity is

a) 15 m / s 2
b) 12.5 m / s 2
c) 8 m / s 2
d) 10 m / s 2

Answers

Answer:

C) 8 m/s²

Explanation:

Given:

v₀ = 40 m/s

v = 0 m/s

Δy = 100 m

Find: a

v² = v₀² + 2aΔy

(0 m/s)² = (40 m/s)² + 2a (100 m)

a = -8 m/s²

A 7.0-kg shell at rest explodes into two fragments, one with a mass of 2.0 kg and the other with a mass of 5.0 kg. If the heavier fragment gains 100 J of kinetic energy from the explosion, how much kinetic energy does the lighter one gain?

Answers

Answer:

39.94m/s.

Explanation:

Kinetic energy is expressed as KE = 1/2 mv² where;

m is the mass of the body

v is the velocity of the body.

For the heavier shell;

m = 5kg

KE gained = 100J

Substituting this values into the formula above to get the velocity v;

100 = 1/2 * 5 * v²

5v² = 200

v² = 200/5

v² = 40

v = √40

v = 6.32 m/s

Note that after the explosion, both body fragments will possess the same velocity.

For the lighter shell;

mass = 2.0kg and v = 6.32m/s

KE of the lighter shell = 1/2 * 2 * 6.32²

KE of the lighter shell = 6.32²

KE of the lighter shell= 39.94m/s

Hence, the lighter one gains a kinetic energy of 39.94m/s.

The gain in the kinetic energy of the smaller fragment is 249.64 J.

The given parameters;

Mass of the shell, m = 7.0 kgMass of one fragment, m₁ = 2.0 kgMass of the second fragment, m₂ = 5.0 kgKinetic energy of heavier fragment, K.E₁ = 100 J

The velocity of the heavier fragment is calculated as follows;

[tex]K.E = \frac{1}{2} mv^2\\\\mv^2 = 2K.E\\\\v^2 = \frac{2K.E}{m} \\\\v= \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2 \times 100}{5} }\\\\v = 6.32 \ m/s[/tex]

Apply the principle of conservation of linear momentum to determine the velocity of the smaller fragment as;

[tex]m_1 u_1 + m_2 u_2 = v(m_1 + m_2)\\\\-6.32(5) \ + 2u_2 = 0(7)\\\\-31.6 + 2u_2 = 0\\\\2u_2 = 31.6\\\\u_2 = \frac{31.6}{2} \\\\u_2 = 15.8 \ m/s[/tex]

The gain in the kinetic energy of the smaller fragment is calculated as follows;

[tex]K.E_2 = \frac{1}{2} mu_2^2\\\\K.E_2 = \frac{1}{2} \times 2 \times (15.8)^2\\\\K.E_2 = 249.64 \ J[/tex]

Thus, the gain in the kinetic energy of the smaller fragment is 249.64 J.

Learn more about conservation of linear momentum here: https://brainly.com/question/7538238

g A tube open at both ends, resonated at it's fundamental frequency, to a sound wave traveling at 330m/s. If the length of the tube is 4cm, find the frequency of the sound wave.

Answers

Answer:

frequency =4125Hz

Explanation:

L = 4cm = 0.04m

f =v/2L

f = 330/2 x 0.04

f = 4125Hz

An inductor is connected to the terminals of a battery that has an emf of 12.0 V and negligible internal resistance. The current is 4.86 mA at 0.700 ms after the connection is completed. After a long time the current is 6.80 mA.
What are
(a) the resistance R of the inductor and
(b) the inductance L of the inductor?

Answers

Answer:

a) 1764.71 ohms

b) 1.73 H

Explanation:

From the question, we can identify the following parameters;

Vo =12 V , i = 4.86 mA, t =0.700 ms, io =6.80 mA

(a) Indcued emf V = L di/dt =0

From ohms law Vo = ioR

R = 12/6.80*0.001

R=1764.71 ohms

(b) For LR circuit

i =io (1-e^-t/T)

Time constant T = L/R

4.86 = 6.80 (1-e^-0.7*10^-3/T)

divide both side by 6.8

0.715 = 0.0007/T

L/R = 0.0007/0.715

L/R = 0.000979020979

Substitute R from above

L = 0.000979020979 * 1764.71

L =1.73 H

Si se deja caer una piedra desde un helicóptero en reposo, entonces al cabo de 20 s cual será la rapidez y la distancia recorrida por la piedra

Answers

Answer:

La piedra alcanza una rapidez de 196.14 metros por segundo y una distancia recorrida de 1961.4 metros en 20 segundos.

Explanation:

Si se excluye los efectos del arrastre por la viscosidad del aire, la piedra experimenta un movimiento de caída libre, es decir, que la piedra es acelerada por la gravedad terrestre. La distancia recorrida y la rapidez final de la piedra pueden obtenerse con la ayuda de las siguientes ecuaciones cinemáticas:

[tex]v = v_{o} + g\cdot t[/tex]

[tex]y - y_{o} = v_{o}\cdot t + \frac{1}{2}\cdot g \cdot t^{2}[/tex]

Donde:

[tex]v[/tex], [tex]v_{o}[/tex] - Rapideces final e inicial de la piedra, medidas en metros por segundo.

[tex]t[/tex] - Tiempo, medido en segundos.

[tex]g[/tex] - Aceleración gravitacional, medida en metros por segundo al cuadrado.

[tex]y[/tex]. [tex]y_{o}[/tex] - Posiciones final e inicial de la piedra, medidos en metros.

Si [tex]v_{o} = 0\,\frac{m}{s}[/tex], [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{o} = 0\,m[/tex], entonces:

[tex]v = 0\,\frac{m}{s} +\left(-9.807\,\frac{m}{s^{2}} \right) \cdot (20\,s)[/tex]

[tex]v = -196.14\,\frac{m}{s}[/tex]

[tex]y-y_{o} = \left(0\,\frac{m}{s} \right)\cdot (20\,s) + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (20\,s)^{2}[/tex]

[tex]y-y_{o} = -1961.4\,m[/tex]

La piedra alcanza una rapidez de 196.14 metros por segundo y una distancia recorrida de 1961.4 metros en 20 segundos.

Asteroid A has 3.5 times the mass and 2.0 times the velocity of Asteroid B. If
Asteroid B has a kinetic energy of 2,300,000 J then what is the kinetic energy of
Asteroid A?

Answers

Answer:

   K_A = 32.2 10⁶ J

Explanation:

In this exercise we must relate the quantities given to find the kinetic energy

   

Asteroid A data

              m_A = 3.5 m_B

               v_A = 2.0 v

they also give the value of the kinetic energy of asteroid A

              K_B = 2.3 10⁶ J

the expression for scientific energy is

               K = ½ m v²

let's replace

              K_A = ½ m_a V_a2

               K_A = ½ 3.5 m_B (2.0 v_B)^2

                K_A = 3.5 2² (½ m_B v_B²)

                K_A = 14 K_B

                   

               K_A = 32.2 10⁶ J

As more energy from fossil fuels and other fuels is released on Earth, the overall temperature of Earth tends to rise. Discuss how temperature equilibrium explains why Earth’s temperature cannot rise indefinitely.

Answers

Answer:

processes are competitive and reach a thermal equilibrium where the absorbed energy is equal to the energy emitted, this is the equilibrium temperature of the planet.

Explanation:

The temperature of planet Earth is due to two main types of process, internal and external.

Internal processes are all chemical processes that occur that release heat into the environment or due to gases that trap heat on the planet, greenhouse effect

External processes is heating due to energy coming from the Sun. This includes direct heating of the surface by the absorption of energy and reflects of energy in different atmospheric layers.

These are the two terms that heat the Earth

In addition there are several processes so the planet loses energy,

* energy radiation to outer space that is a few degrees kelvin, for which there is a permanent emission

* endothermic processes that need to absorb heat to perform, this lowers the temperature of the system

* liquid (water) system that absorbs large amounts of heat to change state and temperature.

These processes are competitive and reach a thermal equilibrium where the absorbed energy is equal to the energy emitted, this is the equilibrium temperature of the planet.

Therefore it is impossible for the temperature to increase indefinitely since the emission would increase by decreasing the value

Consider the following three objects, each of the same mass and radius:
(1) a solid sphere
(2) a solid disk
(3) a hoop
All three are released from rest at the top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. Use work-kinetic energy theorem to determine which object will reach the bottom of the incline first.
a) 1, 2, 3
b) 2, 3, 1
c) 3, 1, 2
d) 3, 2, 1
e) All three reach the bottom at the same time.

Answers

Answer:

Explanation:a 1

An air-filled capacitor is formed from two long conducting cylindrical shells that are coaxial and have radii of 42 mm and 74 mm. The electric potential of the inner conductor with respect to the outer conductor is -308 V ( = 1/4πε0 = 8.99 × 10^9 N · m^2/C^2).

The maximum energy density of the capacitor is closest to:_______

Answers

Correct answer is 2.7 x 10^-3 J/m3

I hope that helps ! <33

The maximum energy density of the capacitor is closest to: 2.7 x 10^-3 J/m3.

What is meant by the energy density of a capacitor?

Energy density is defined as the total energy per unit volume of the capacitor. Since, Now, for a parallel plate capacitor, A × d = Volume of space between plates to which electric field E = V / d is confined. Therefore, Energy is stored per unit volume.

How do you calculate energy density?

All Answers (14) Energy density is equal to 1/2*C*V2/weight, where C is the capacitance you computed and V should be your nominal voltage (i.e 2.7 V). Power Density is V2/4/ESR/weight, where ESR is the equivalent series resistance.

Learn more about energy density at

https://brainly.com/question/13035557

#SPJ2

A 0.2 kg rubber ball is dropped from the window of a building. It strikes the sidewalk below at 30 m/s and rebounds at 20 m/s. The magnitude of the change in momentum of the ball as a result of the collision with the sidewalk is _______.

Answers

Answer:

10 kgm/s

Explanation:

Change in momentum: This can be defined as the product of mass and change in velocity. The S.I unit of change in momentum is Kgm/s.

From the question,

ΔM = m(v-u)...................... Equation 1

Where ΔM = change in momentum, u = initial velocity, v = final velocity.

Note: Let upward direction be negative, and downward direction be positive.

Given: m = 0.2 kg, v = -20 m/s, u = 30 m/s

Substitute into equation 1

ΔM = 0.2(-20-30)

ΔM = 0.2(-50)

ΔM = -10 kgm/s.

The negative sign shows that the change in momentum is Upward

The magnitude of the change in momentum of the ball as a result of the collision with the sidewalk is -10 kg-m/s.

Given data:

The mass of rubber ball is, m = 0.2 kg.

The initial speed of ball is, u = 30 m/s.

The final rebounding speed of ball is, v = - 20 m/s ( Negative sign shows that during the rebounding, the ball changes its direction)

The momentum of any object is defined as the product of mass and change in velocity. The S.I unit of momentum is Kg-m/s. And the expression for the change in momentum is given as,

[tex]p= m ( v-u)[/tex]

Solving as,

[tex]p= 0.2 \times ( -20-30)\\\\p=-10 \;\rm kg.m/s[/tex]

Thus, we can conclude that the magnitude of the change in momentum of the ball as a result of the collision with the sidewalk is -10 kg-m/s.

Learn more about the change in momentum here:

https://brainly.com/question/904448

Four equal masses m are located at the corners of a square of side L, connected by essentially massless rods. Find the rotational inertia of this system about an axis (a) that coincides with one side and (b) that bisects two opposite sides.

Answers

Answer:

Explanation:

a )

Moment of inertial of four masses about axis that coincides with one side :

Out of four masses . location of two masses will lie on the axis so their moment of inertia will be zero .

Moment of inertia of the two remaining masses

= m L² + m L²

= 2 mL²

b )

Axis that bisects two opposite sides

Each of the four masses will lie at a distance of L / 2 from this axis so moment of inertia of the four masses

= 4 x m x ( L/2 )²

= 4 x  mL² / 4

= m L² .

An electric field can be created by a single charge or a distribution of charges. The electric field a distance from a point charge has magnitude E = k|q'|/r^2.
The electric field points away from positive charges and toward negative charges. A distribution of charges creates an electric field that can be found by taking the vector sum of the fields created by individual point harges. Note that if a charge is placed in an electric field created by q', q will not significantly affect the electric field if it is small compared to q'. Imagine an isolated positive point charge with a charge Q (many times larger than the charge on a single electron).
1. There is a single electron at a distance from the point charge. On which of the following quantities does the force on the electron depend?
a. the distance between the positive charge and the electron
b. the charge on the electron
c. the mass of the electron
d. the charge of the positive charge
e. the mass of the positive charge
f. the radius of the positive charge
g. the radius of the electron
2. For the same situation as in Part A, on which of the following quantities does the electric field at the electron's position depend?
a. the distance between the positive charge and the electron
b. the charge on the electron
c. the mass of the electron
d. the charge of the positive charge
e. the mass of the positive charge
f. the radius of the positive charge
g. the radius of the electron

Answers

Answer:

a) true.

b) True

c) False. In the equation above the mass does not appear

d) True

e) False. Mass does not appear in the equation

f) False. The load even when distributed in the space can be considered concentrated in the center

Explanation:

1. The electric force is given by the relation

           F = k Q e / r2

where k is the Coulomb constant, Q the charge used, e the charge of the electron and r the distance between the two.

 The strength depends on:

a) true.

b) True

c) False. In the equation above the mass does not appear

d) True

e) False. Mass does not appear in the equation

f) False. The load even when distributed in the space can be considered concentrated in the center

two.

a) True

b) Treu

c) Fail

f) false

For a single electron located at a distance from a positive charge, we have:

1. The force on the electron depends on the distance between it and the positive charge (option a) and the charge of both particles (option b and d).      

2. The electric field at the electron's position depends on the distance between the positive charge and it (option a) and the charge of the positive particle (option d).    

Part 1

The force on a single electron at a distance from the point charge is given by Coulomb's law:

[tex] F = \frac{Kq_{1}q_{2}}{r^{2}} [/tex]    (1)

Where:

K: is the Coulomb's constant q₁: is the charge of the positive chargeq₂: is the charge of the electrond: is the distance between the positive charge and the electron

As we can see in equation (1), the force on the electron by the positive charge depends on both charges q₁ and q₂, and the distance, so the correct options are:

a. The distance between the positive charge and the electron

b. The charge on the electron

d. The charge of the positive charge

The other options (c, e, f, and g) are incorrect because the electric force does not depend on the particles' masses or their radii.

Part 2

The electric field (E) at a distance "r" from a point charge is given by:

[tex] E = \frac{Kq_{1}}{r^{2}} [/tex]   (2)

From equation (2), we can see that the electric field is directly proportional to the charge and inversely proportional to the distance of interest (r).  

The electric field at the electron's position is given by the one produced by the positive charge, so the correct options are:

a. The distance between the positive charge and the electron

d. The charge of the positive charge

The other options (b, c, e, f, and g) are incorrect because the electric field is independent of the mass of the charges involved and their radii.

Therefore, the correct options for part 1 are a, b, and d and for part 2 are a and d.

Learn more about the electric field here:

brainly.com/question/13308086

I hope it helps you!

Suppose you are looking into the end of a long cylindrical tube in which there is a uniform magnetic field pointing away from you. If the magnitude of the field is decreasing with time the direction of the induced magnetic field is

Answers

Answer:

If the magnitude of the field is decreasing with time the direction of the induced magnetic field is CLOCKWISE

Explanation

This is because If the magnetic field decreases with time, the electric field will be produced in order to oppose the change in line with lenz law. Thus The right hand rule can be applied to find that the direction of electric field is in the clockwise direction.

A 269-turn solenoid is 102 cm long and has a radius of 2.3 cm. It carries a current of 3.9 A. What is the magnetic field inside the solenoid near its center?

Answers

Answer:

Magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T

Explanation:

Given;

number of turns of solenoid, N = 269 turn

length of the solenoid, L = 102 cm = 1.02 m

radius of the solenoid, r = 2.3 cm = 0.023 m

current in the solenoid, I = 3.9 A

Magnitude of the magnetic field inside the solenoid near its centre is calculated as;

[tex]B = \frac{\mu_o NI}{l} \\\\[/tex]

Where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

[tex]B = \frac{4\pi*10^{-7} *269*3.9}{1.02} \\\\B = 1.293 *10^{-3} \ T[/tex]

Therefore, magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T

A generator rotates at 95 Hz in a magnetic field of 0.025 T. It has 550 turns and produces an rms voltage of 170 V and an rms current of 60.0 A.

Required:
a. What is the peak current produced?
b. What is the area of each turn of the coil?

Answers

Answer:

Peak current= 84.86 A

Area of each turn = 0.029 m^2

Explanation:

The peak value of current can be obtained from Irms= 0.707Io. Where Io is the peak current.

Hence;

Irms= 60.0A

Io= Irms/0.707

Io = 60.0/0.707

Io= 84.86 A

Vrms= 0.707Vo

Vo= Vrms/0.707= 170/0.707 = 240.45 V

From;

V0 = NABω

Where;

Vo= peak voltage

N= number of turns

B= magnetic field

A= area of each coil

ω= angular velocity

But ω= 2πf = 2×π×95= 596.9 rads-1

Substituting values;

A= Vo/NBω

A= 240.45/550×0.025×596.9

A= 0.029 m^2

A car starts from rest and accelerates at a constant rate after the car has gone 50 m it has a speed of 21 m/s what is the acceleration of the car

Answers

Answer:

4.41 m/s^2

Explanation:

(v_f)^2 - (v_i)^2 = 2a * change in distance

(21)^2 - (0)^2 = 2a * 50

a = (21^2)/(2*50)

a = 4.41 m/s^2

Two unknown resistors are connected together. When they are connected in series their equivalent resistance is 15 Ω. When they are connected in parallel, their equivalent resistance is 3.3 Ω. What are the resistances of these resistors?

Answers

Explanation:

Let x and y are two unknown resistors. When they are connected in series their equivalent resistance is 15 Ω. When they are connected in parallel, their equivalent resistance is 3.3 Ω.

For series combination,

[tex]x+y=15[/tex] ......(1)

For parallel combination,

[tex]\dfrac{1}{x}+\dfrac{1}{y}=3.3[/tex] ....(2)

We need to find the resistances of these resistors. Solving equation (1) and (2) we get :

x = 0.29 and y = 14.7

Hence, the resistances of these resistors are 0.29 ohms and 14.7 ohms.

The intensity of sunlight at the Earth's distance from the Sun is 1370 W/m2. (a) Assume the Earth absorbs all the sunlight incident upon it. Find the total force the Sun exerts on the Earth due to radiation pressure. N (b) Explain how this force compares with the Sun's gravitational attraction.

Answers

Answer:

F= 3.56e22N

Explanation:

Using the force of radiation acting on the earth which is

force = radiation pressure x area = (intensity/c)xpi R^2

force = 1370W/m^2 x pi x( 6.37x10^6m)^2/3x10^8m/s

force = 5.82x10^8 N

But the sun's gravitational attraction means the magnitude of the solar gravitational force on earth: If that's the case, the answer is approx 10^22 N:

F=GMm/r^2

G=6.67x10^(-11)=6.67e-11

M=mass sun = 2x10^30kg=2e30

m=mass earth = 6x10^24kg

r=earth sun distance = 1.5x10^11m

F=(6.6e-11)(2e30)(6e24)/(1.5e11)^2 =

F= 3.56e22N

Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to take another street to avoid it. He worries that the police will stop and question him even though he has not done anything wrong. Which theory explains this thought process? Dramaturgy Social construction of reality Social exchange theory Ethnomethodology

Answers

Answer:

Ethnomethodology theory

Explanation:

Take note of the fact that we are told Kevin worries that the police will stop and question him even though he has not done anything wrong.

This statement shows us that Kevin already understood his society from past experiences, and thus he tries to avoid social interactions with particular member of his society (the police) who may be show discrimination towards him.

A person can survive a feet-first impact at a speed of about 12 m/s (27 mi/h) on concrete, 15 m/s (34 mi/h) on soil, and 34 m/s (76 mi/h) on water. What is the reason for the different values for different surfaces

Answers

Answer:

Different surfaces have different impact force during collision which depends on the time it takes the person to come to rest after collision.

Explanation:

Given;

speed on concrete = 12 m/s (27 mi/h)

speed on soil = 15 m/s (34 mi/h)

speed on water = 34 m/s (76 mi/h)

The impact force on this person during collision is rate of change of momentum;

[tex]F = \frac{\delta P}{\delta t}[/tex]

During collision, the force exerted on this person depends on how long the collision lasts; that is, how long it takes for this person to come to rest after collision with each of the surfaces.

The longer the time of collision, the smaller the force exerted by each.

It takes shorter time for the person to come to rest on concrete surface than on soil surface, also it takes shorter time for the person to come to rest on soil surface than on water surface.

As a result of the reason above, the force exerted on the person during collision by the concrete surface is greater than that of soil surface which is  greater than that of water surface.

In general, how do highland climates compare with nearby areas at lower elevations? They are cooler and drier. They are cooler and wetter. They are warmer and drier. They are warmer and wetter.

Answers

Answer:

They are cooler and wetter

Explanation:

Highland areas have lower temperatures compared to low lying areas. The climate is more wetter because of more rainfalls compared to low lying areas and the wind carries moist air over the highlands.

An automotive air conditioner produces a 1-kW cooling effect while consuming 0.75 kW of power. What is the rate at which heat is rejected from this air conditioner

Answers

Answer:

The rejected by the air conditioning system is 1.75 kilowatts.

Explanation:

A air conditioning system is a refrigeration cycle, whose receives heat from cold reservoir with the help of power input before releasing it to hot reservoir. The First Law of Thermodynamics describes the model:

[tex]\dot Q_{L} + \dot W - \dot Q_{H} = 0[/tex]

Where:

[tex]\dot Q_{L}[/tex] - Heat rate from cold reservoir, measured in kilowatts.

[tex]\dot Q_{H}[/tex] - Heat rate liberated to the hot reservoir, measured in kilowatts.

[tex]\dot W[/tex] - Power input, measured in kilowatts.

The heat rejected is now cleared:

[tex]\dot Q_{H} = \dot Q_{L} + \dot W[/tex]

If [tex]\dot Q_{L} = 1\,kW[/tex] and [tex]\dot W = 0.75\,kW[/tex], then:

[tex]\dot Q_{H} = 1\,kW + 0.75\,kW[/tex]

[tex]\dot Q_{H} = 1.75\,kW[/tex]

The rejected by the air conditioning system is 1.75 kilowatts.

A scientist is testing the seismometer in his lab and has created an apparatus that mimics the motion of the earthquake felt in part (a) by attaching the test mass to a spring. If the test mass weighs 13 N, what should be the spring constant of the spring the scientist use to simulate the relative motion of the test mass and the ground from part (a)?

Answers

Complete Question

The complete question is shown on the first uploaded image  

Answer:

a

 [tex]a_{max} = 0.00246 \ m/s^2[/tex]

b

   [tex]k =722.2 \ N/m[/tex]

Explanation:

From the question we are told that

     The  amplitude is [tex]A = 1.8 \ cm = 0.018 \ m[/tex]

     The period is [tex]T = 17 \ s[/tex]

    The test weight is  [tex]W = 13 \ N[/tex]

Generally the radial acceleration is mathematically represented as

        [tex]a = w^2 r[/tex]

at maximum angular acceleration

       [tex]r = A[/tex]

So  

       [tex]a_{max} = w^2 A[/tex]

Now [tex]w[/tex] is the angular velocity which is mathematically represented as

      [tex]w = \frac{2 * \pi }{T}[/tex]

Therefore

       [tex]a_{max} = [\frac{2 * \pi}{T} ]^2 * A[/tex]

substituting values

       [tex]a_{max} = [\frac{2 * 3.142}{17} ]^2 * 0.018[/tex]

       [tex]a_{max} = 0.00246 \ m/s^2[/tex]

Generally this test weight is mathematically represented as

     [tex]W = k * A[/tex]

Where k is the spring constant

Therefore

        [tex]k = \frac{W}{A}[/tex]

substituting values        

      [tex]k = \frac{13}{0.018}[/tex]

     [tex]k =722.2 \ N/m[/tex]

Balls A and B attract each other gravitationally with a force of magnitude F at distance R. If we triple the mass of ball B and triple the separation of the balls to 3R, what is the magnitude of their attractive force now

Answers

Answer:

F₂ = 1/3 F

Explanation:

Using the law of gravitation of force to solve this question. The law states that the Force of attraction between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distances between them.

Mathematically, F = GMaMb/R² ... 1

G is the gravitational constant

Ma and Mb are the masses of the balls

R is the distance between the balls

If the mass of ball B is tripled and the magnitude of the separation of the balls is increased to 3R, the force between them will be;

F₂ = GMa(3Mb)/(3R)²

F₂ = 3GMaMb/9R² ... 2

Dividing equation 1 by 2 we will have;

F₂/F = (3GMaMb/9R²)/GMaMb/R²

F₂/F =  3GMaMb/9R² * GMaMb/R²

F₂/F = 3/9

F₂/F = 1/3

F₂ = 1/3 F

This shows that the magnitude of the new attractive force is one-third that of the initial attractive force

Each of the boxes starts at rest and is then pulled for 2.0 m across a level, frictionless floor by a rope with the noted force. Which box has the highest final speed

Answers

Answer:

Explanation:

d

A positively charged particle has a velocity in the negative z direction at a certain point P. The magnetic force on the particle at this point is in the negative y direction. Which one of the following statements about the magnetic field at point P can be determined from this data?
a. Bx is positive
b. Bz­ is positive
c. By is negative
d. By is positive
e. Bx is negative

Answers

Answer:

a. Bx is positive

Explanation:

See attached file

Other Questions
How are the members of the House of Representatives elected? A. by the people through the Electoral College B. by the people in proportion to the population of their state C. by the state legislatures D. by the senators of each state The area of a circle is increasing at a rate of 0.4 cm square per second. What is the rate of change of the circumference of the circle when its radius is 5cm? What structure of the endocrine system releases insulin if blood sugar levels get too high?A. ThyroidB. Adrenal GlandC. ThymusD. Pancreas Solve the system of equations by substitution y=-2x+18 and 4y-x+9=0 A free negro of the African race, whose ancestors were brought to this country and sold as slaves, is not a "citizen within the meaning of the Constitution of the United States. When the Constitution was adopted, they were not regarded in any of the States as members of the community which constituted the State, and were not numbered among its "people or citizens. Consequently, the special rights and immunities guarantied to citizens do not apply to them. And not being "citizens within the meaning of the Constitution, they are not entitled to sue in that character in a court of the United States, and the Circuit Court has not jurisdiction in such a suit.Dred Scott v. Sandford,Supreme Court of the United StatesWhich details does Taney use as evidence to support his reasoning? Check all that apply.A free negro of the African racewhose ancestors were brought to this country and sold as slavesnot a citizen within the meaning of the Constitution of the United Statesthey were not regarded in any of the States as members of the communitynot numbered among its people or citizens If Camryan has 12 Tie fighters and Logan has 23 more than Camryan how many Tie fighters does Logan have. Which element in the radio broadcast of The War of the Worlds helpedestablish logos with the audience?O A. An orchestra and musical breaks that grabbed the audience'sattentionO B. Interviews with respected government officials to establishcredibilityO c. Information from actors pretending to be scientists about theevents in the storyOD. A disclaimer that informed listeners that the events of the storywere not real Determine the value of X. 30 POINTS what is the plural of Japonesa? Golden Corral charges $11 for a buffet plus $1 for each drink. Western Sizzlin charges $9 for a buffet plus $2 for each drink. Which restaurant has the best deal? (I made up these prices!!) Graph the system of equations. (Show your x/y tables) **Use a ruler or your answer will not come out correctly** or Slope- intercept simulation copy and paste A company manufactures and sells two products: Product A1 and Product C4. Data concerning the expected production of each product and the expected total direct labor-hours (DLHs) required to produce that output appear below: Expected Production Direct Labor-Hours Per Unit Total Direct Labor-Hours Product A1 500 2.0 1,000 Product C4 200 1.0 200 Total direct labor-hours 1,200 The direct labor rate is $27.40 per DLH. The direct materials cost per unit is $281 for Product A1 and $267 for Product C4. The company is considering adopting an activity-based costing system with the following activity cost pools, activity measures, and expected activity: Estimated Expected Activity Cost Pools Activity Measures Overhead Cost Product C1 Product M2 TotalLabor-related DLHs $558,452 7,200 7,700 14,900Production orders Orders 75,240 500 600 1,100General factory MHs 886,410 4,400 4,600 9,000$1,520,102 The total cost per unit of Product C4 under activity-based costing is closest to: ____________ What conclusion can you make from the information below?Three cousins (Donna, Marilyn, and Valr) have three different favorite typesof music (classical, pop, and hip-hop). Donna does not like classical. Valr does not like classical. Find magnetic azimuth from stream 89 degrees magnetic azimuth from pond 14degrees A parallelogram has coordinates A(1, 1), B(5, 4), C(7, 1), and D(3, -2). What are the coordinates of parallelogram ABCD after a 180 rotation about the origin and a translation 5 units to the right and 1 unit down? I need Help What is the best first step in solving -4x + 5/3 > 5/10 can someone please help me The technology developed during World War I resulted in(1) smaller nations becoming part of larger empires after the war(2) a smaller number of refugees during the war(3) increased military casualties in battles fought during the war(4) a slowdown in transportation improvements after the war Chloe needs to rent a car while on vacation . The rental company charges $17.95 , plus 18 cents for each mile driven. If Chloe only has $40 to spend on the car rental, what is the maximum number of miles she can drive ? Milani, Inc., acquired 10 percent of Seida Corporation on January 1, 2017, for $197,000 and appropriately accounted for the investment using the fair-value method. On January 1, 2018, Milani purchased an additional 30 percent of Seida for $600,000 which resulted in significant influence over Seida. On that date, the fair value of Seida's common stock was $2,000,000 in total. Seida's January 1, 2018 book value equaled $1,850,000, although land was undervalued by $120,000. Any additional excess fair value over Seida's book value was attributable to a trademark with an 8-year remaining life. During 2018, Seida reported income of $300,000 and declared and paid dividends of $110,000. Prepare the 2018 journal entries for Milani related to its investment in Seida. What is the simplified expression for2^2 2^3 over 24O 20O 21O 22O 23