You push a hockey puck that is initially at rest on slick ice by applying a constant force until the puck reaches a final velocity of 1 m/s. On the second attempt, you want the hockey puck to reach the same final velocity by applying a force that is twice as large.
1. Therefore, you must exert the force for a time interval that is
A. shorter than the time interval of your first attempt.
B. longer than the time interval of your first attempt.
C. the same as the time interval of your first attempt.
2. After the hockey puck has reached the final velocity, you suddenly stop pushing it. The hockey puck:
A. stops abruptly
B. reduces speed gradually
C. continues at constant velocity
D. increases speed gradually
E. reduces speed abruptly

Answers

Answer 1

Answer:

1. A

2. B or C

Explanation:

1.

F=ma, meaning that if you use two times more force on a constant mass, the acceleration must double. Acceleration is change in velocity, which means that if you are aiming for the same final velocity the change must happen in half of the time. Therefore, the correct answer is choice A.

2.

By Newton's first law, an object in motion will stay in motion unless an external force acts on it. Since there is nothing pushing the puck in the other direction, the puck will either keep on going for at a constant velocity or will reduce its speed gradually, depending on whether or not this ice is considered to be frictionless. Hope this helps!

Answer 2

(1) You must exert the force for a time interval that is  shorter than the time interval of your first attempt.

(2) The hockey puck reduces speed abruptly.

According to Newton's second law of motion; the force applied to an object is directly proportional to the mass and acceleration of the object.

F = ma

[tex]F = \frac{mv}{t}[/tex]

The force applied to an object is directly proportional to the velocity of the object and inversely proportional to the time of motion of the object.To double the force, you must halve the time interval.

Thus, to apply a force that is twice as large as the first while maintaining the same velocity, you must exert the force for a time interval that is  shorter than the time interval of your first attempt.

(2) The force applied to an object is direct directly proportional to the velocity of the object. Once you stop applying force to the hockey puck, it moves for a short with initial momentum gained before it will stop.

Thus, the magnitude of the velocity (speed) will drop sharply once the force on the object is removed.

Learn more here:  https://brainly.com/question/18076879


Related Questions

Does there appear to be a simple mathematical relationship between the acceleration of an object (with fixed mass and negligible friction) and the force applied to the object (measured by the force probe mounted on the object)? Describe the mathematical relationship in words.

Answers

Answer:

the net force applied to an object is directly proportional to the acceleration undergone by that object

Explanation:

This verbal statement can be expressed in equation form as follows:

a = Fnet / m

A soap bubble of radius R is situated in a uniform electric field of magnitude E. The electric flux through the surface of the soap bubble is

Answers

Answer:

The electric flux around the soap bubble will be

Ф = q/ε

Explanation:

The radius of the soap bubble = R

The electric field around the soap bubble = E

The electric flux = ?

The soap can be approximated to be a sphere, so we find the surface area of the sphere

For the soap bubble, the surface area will be

A =  [tex]4\pi R^{2}[/tex]

Recall that electric flux is given as

Ф = EA

substituting value of A from above, we'll have

Ф = E[tex]4\pi R^{2}[/tex]..... equ 1

Also recall that the electric field E is given as

E = q/(4πε[tex]R^{2}[/tex])

substitute the value of E into equ 1, to get

Ф = q/(4πε[tex]R^{2}[/tex]) * [tex]4\pi R^{2}[/tex]

The electric flux around the soap bubble reduces to

Ф = q/ε

A 40.0 kg ballet dancer stands on her toes during a performance with 25.0 cm2 in contact with the floor. What is the pressure exerted by the floor over the area of contact if the dancer is stationary

Answers

Explanation:

40×10ms^-2

400N.

25/100m^2

0.25m^2

1.P=F/A

=400N/0.25m^2

=100Nm^-2

=100Pa

A beam of light is propagating in the x direction. The electric-field vector Group of answer choices can oscillate in any arbitrary direction in space. must oscillate in the z direction. must oscillate in the yz plane. must oscillate in the x direction. must have a steady component in the x direction.

Answers

Answer:

Option C is correct.

The electric-field vector must oscillate in the yz plane.

Explanation:

Light, in waveform, is an electromagnetic wave.

And electromagnetic waves are known to have their electric and magnetic field perpendicular to each other and also simultaneously perpendicular to the direction of propagation of the wave.

If the velocity of direction of propagation of the wave is in one direction, the electric-field vector must be in a direction we are sure is perpendicular to this direction of wave propagation and the wave's magnetic field.

Of the options provided, only option B (z-direction) and option C (yz-plane) show a direction that is indeed perpendicular to the direction of propagation of the wave (x-axis).

And truly, the electric-field vector for this wave can be in any of the two directions without breaking the laws of physics, but the electric-field vector oscillating in the yz-plane is a more general answer as it covers all the possible directions that the electric-field can oscillate in, including the one specified by option B (z-direction).

Hence, the correct answer is option C.

Hope this Helps!!!

your washer has a power of 350 watts and your dryer has a power of 1800 watts how much energy do you use to clean a load of clothes in 1 hour of washing and 1 hour of drying?
A. 1.29 x 10^3 J
B. 2.58 x 10^3 J
C. 1.55 x 10^7 J
D. 7.74 x 10^6 J

Answers

Answer:

7.74 x 10⁶ Joules

Explanation:

recall that "Watts" is the SI unit used for "energy per unit time"

Hence "Watts" may also be expressed as Joules / Second (or J/s)

We are given that the washer is rated at 350W (i.e. 350 Joules / s) and the dryer is rated at 1800W (i.e. 1800 Joules / s).

We are also given that the appliances are each run for 1 hour

1 hour = 60 min = (60 x 60) seconds = 3600 seconds

Hence the total energy used,

= Energy used by Washer in 1 hour + Energy used by dryer in 1 hour

= (350 J/s x 3600 s)  + (1800 J/s x 3600 s)

= 3600 ( 350 + 1800)

= 3600 (2150)

= 7,740,000 Joules

= 7.74 x 10⁶ Joules

A 150 V battery is connected across two parallel metal plates of area 28.5 cm2 and separation 0.00820 m. A beam of alpha particles (charge +2e, mass 6.64Ã10â27 kg) is accelerated from rest through a potential difference of 1.75 kV and enters the region between the plates perpendicular to the electric field.What magnitude and direction of magnetic field are needed so that the alpha particles emerge undeflected from between the plates?

Answers

Answer:

B = 4.45mT in the +^k direction

Explanation:

In order to calculate the required magnitude of the magnetic force, to achieve that the beam of particles emerge undeflected of the parallel plates, the electric force between the plates and the magnetic field in that region must be equal.

[tex]F_E=F_B\\\\qE=qvB[/tex]            (1)

q: charge of the particles beam = +2e = 2*1.6*10^-19C

v: speed of the particles = ?

B: magnitude of the magnetic field = ?

E: electric field between the plates = V/d

V: potential difference between the parallel plates = 150V

d: distance of separation of the plates = 0.00820m

If you assume that the below plate is negative, the electric force on the particles has a direction upward (+^j). Then, the direction of the magnetic force must be downwards (-^j).  

To obtain a downward magnetic force, it is necessary that the magnetic field point out of the page. In fact, if the direction of motion of the particles is toward east (+^i) and the magnetic field points out of the page (+^k), you have:

^i X ^k = -^j

Furthermore, it is necessary to calculate the sped of the particles. It is made by using the information about the charge, the potential difference that accelerates the particles and the kinetic energy.

[tex]K=qV=\frac{1}{2}mv^2\\\\v=\sqrt{\frac{2qV}{m}}[/tex] (2)

You replace the expression (2) into the equation (1) and solve for B:

[tex]B=\frac{E}{v}=E\sqrt{\frac{m}{2qV}}[/tex]    

[tex]B=\frac{V}{d}\sqrt{\frac{m}{2qV}}\\\\B=\frac{150V}{0.0820m}\sqrt{\frac{6.64*10^{-27}kg}{2(2(1,6*10^{-19}C))(1.75*10^3V)}}\\\\B=4.45*10^{-3}T=4.45mT[/tex]

The required magnitude of the magnetic field is 4.45mT and has a direction out of the page +^k

Following are the solution to the given question:

In order to emerge using reflecting means, use the following formula:

[tex]\to F_E = F_B ..............(1)\\\\ \to F_E = \text{electric force}\\\\ \to F_B = \text{magnetic force}\\\\[/tex]

Calculating the Lorent's force:  

[tex]\to F=qE+qv \times B \ \ also,\ \ K_{E} =U_{E} \\\\[/tex]

[tex]\to K_{E}[/tex][tex]= \text{kinetic energy} = -\frac{1}{2} \ mv^2 \\\\[/tex]

[tex]\to U_{E} = \text{potential energy} = q_V[/tex]

Calculating the value of v: \\\\

[tex]\to v= \sqrt{\frac{2qV}{m}} \\\\ \to q = 2e^{+} = 2 (1.6 \times 10^{-19}\ C) = 3.2 \times 10^{-19} C \\\\\to V = 1.75 \times 10^{3} \V \\\\\to m = 6.64 \times 10^{-27} \ kg\\\\ \to v = 410,700.25 \ \frac{m}{s}\\\\[/tex]

It's the particle's velocity, but the velocity also is defined as:

[tex]\to v=\frac{E}{B}[/tex]

solving for B:  

[tex]\to B= \frac{E}{v}\\\\[/tex]

       [tex]= \frac{\frac{V}{d}}{v}\\\\ =\frac{V}{vd} \\\\= \frac{150\ V}{(410,700.25 \ \frac{m}{s}) (8.2 \times 10^{-3} m)} \\\\= 0.045\ T\\\\[/tex]

When indicated in the diagram, the direction is parallel to "v" and E.

Learn more:

brainly.com/question/15522069

How can global warming lead to changes to the Earth’s surface? a. Global warming can lead to an increased number of earthquakes, which change the Earth’s surface. b. Global warming can lead to glaciers melting, causing flooding to areas and the decrease of glacial land masses. c. Global warming leads to a decrease in water levels of coastal wetlands. d. Global warming cannot lead to changes to the Earth’s surface.

Answers

Answer:

Option:  b. Global warming can lead to glaciers melting, causing flooding to areas and the decrease of glacial land masses.

Explanation:

Global warming is the reason for the changes in environment and climate on earth. Melting of glaciers leads to an increase in water level and a decrease in landmass. One of the most climactic consequences is the decrease in Arctic sea ice. Melting polar ice along with ice sheets and glaciers across Greenland, North America, Europe, Asia, and South America suspected to increase sea levels slowly. There is an increase in the glacial retreat due to global warming, which leaves rock piles that covered with ice.  

Answer:

B: Global warming can lead to glaciers melting, causing flooding to areas and the decrease of glacial land masses.

Explanation:

Global warming is primarily caused by the increase in greenhouse gases, such as carbon dioxide, in the Earth's atmosphere. This leads to a rise in global temperatures, which has various impacts on the Earth's surface. One significant effect is the melting of glaciers and ice caps in polar regions and mountainous areas.

As temperatures increase, glaciers and ice sheets start to melt at a faster rate. This melting results in the release of massive amounts of water into rivers, lakes, and oceans. Consequently, there can be an increase in the frequency and intensity of flooding events in regions downstream from these melting glaciers.

Moreover, the melting of glaciers and ice caps contributes to a rise in sea levels. As the melted ice enters the oceans, it adds to the overall volume of water, leading to a gradual increase in sea levels worldwide. This rise in sea levels poses a threat to coastal areas, as they become more vulnerable to coastal erosion, storm surges, and saltwater intrusion into freshwater sources.

Additionally, the loss of glacial land masses due to melting can have long-term effects on ecosystems. Glaciers act as freshwater reservoirs, releasing water gradually throughout the year. With their decline, the availability of freshwater for agriculture, drinking water, and other human needs can be significantly affected.

Therefore, global warming can indeed lead to changes in the Earth's surface, particularly through the melting of glaciers and subsequent impacts on sea levels, flooding, and glacial land masses.

E23 verified.

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
8 m/s to the east. What is the recoil velocity of the launcher?

Answers

Answer:

1.6 m/s west

Explanation:

The recoil velocity of the launcher is 1.6 m/s west.

What is conservation of momentum principle?

When two bodies of different masses move together each other and have head on collision, they travel to same or different direction after collision.

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of 8 m/s to the east.

Final momentum will be zero, so

m₁u₁ +m₂u₂ =0

Substitute the values for m₁ = 5kg, m₂ =1kg and u₂ =8 m/s, then the recoil velocity will be

5 x v +1x8 = 0

v = - 1.6 m/s

Thus, the recoil velocity of the launcher is  1.6 m/s (West)

Learn more about conservation of momentum principle

https://brainly.com/question/14033058

#SPJ2

A typical arteriole has a diameter of 0.080 mm and carries blood at the rate of 9.6 x10-5 cm3/s. What is the speed of the blood in (cm/s) the arteriole

Answers

Answer:

v= 4.823 × 10⁻⁹ cm/s

Explanation:

given

flow rate = 9.6 x10-5 cm³/s, d = 0.080mm

r = d/2= 0.080/2= 0.0040 cm

speed = rate of blood flow × area

v = (9.6 x 10⁻⁵ cm³/s) × (πr²)

v = (9.6 x 10⁻⁵ cm³/s) × π(0.0040 × cm)²

v= 1.536 × 10⁻⁹π cm/s

v= 4.823 × 10⁻⁹ cm/s

What is the work done in stretching a spring by a distance of 0.5 m if the restoring force is 24N?

Answers

Answer:

3Nm

Explanation:

work = 0.5 x 12 x 0.5 = 3

The work done in stretching the spring by a distance of 0.5 m, with a restoring force of 24 N, is 6 joules.

To calculate the work done in stretching a spring, we can use the formula for work done by a spring:

Work = (1/2) * k *[tex]x^2[/tex]

where:

k = spring constant

x = distance the spring is stretched

Given that the restoring force (F) acting on the spring is 24 N, and the distance the spring is stretched (x) is 0.5 m, we can find the spring constant (k) using Hooke's law:

F = k * x

k = F / x

k = 24 N / 0.5 m

k = 48 N/m

Now, we can calculate the work:

Work = (1/2) * 48 N/m * [tex](0.5 m)^2[/tex]

Work = (1/2) * 48 N/m * [tex]0.25 m^2[/tex]

Work = 6 joules

Therefore, the work done in stretching the spring by a distance of 0.5 m, with a restoring force of 24 N, is 6 joules.

To know more about work done, here

brainly.com/question/2750803

#SPJ2

A spring with a 3.15kg weight hanging from it measures 13.40cm, and without the weight 12.00cm. If you hang a weight on it so as to store 10.0J potential energy in it, how long will the spring be?

Answers

Answer:

21.52 cm

Explanation:

Given that

mass of the spring, m = 3.15 kg

Length of the spring l2, = 13.4 cm = 0.134 m

Length of the spring l1 = 12 cm = 0.12 m

change in extension, x = 0.134 - 0.12 = 0.014 m

Acceleration due to gravity, g = 9.8 m/s²

Potential Energy, U = 10 J

See attachment for calculation

Answer:

Final Length = 12.45 cm

Explanation:

First we need to find the spring constant. From Hooke's Law:

F = kΔx

where,

F = Force Applied on Spring = Weight = mg = (3.15 kg)(9.8 m/s²) = 30.87 N

k = spring constant = ?

Δx = change in length of spring = 13.4 cm - 12 cm = 1.4 cm = 0.014 m

Therefore,

30.87 N = k(0.014 m)

k = (30.87 N)/(0.014 m)

k = 2205 N/m

Now, for the Potential Energy of 10 J:

P.E = (1/2)KΔx²

where,

P.E = Potential Energy of Spring = 10 J

Δx = ?

Therefore,

10 J = (2205 N/m)Δx²

Δx = √[10 J/(2205 N/m)

Δx = Final Length - Initial length = 0.0045 m = 0.45 cm

Final Length = 0.45 cm + 12 cm

Final Length = 12.45 cm

A loop of wire with cross-sectional area 1 m2 is inserted into a uniform magnetic field with initial strength 1 T. The field is parallel to the axis of the loop. The field begins to grow with time at a rate of 2 Teslas per hour. What is the magnitude of the induced EMF in the loop of wire

Answers

Answer:

The magnitude of the EMF is 0.00055  volts

Explanation:

The induced EMF is proportional to the change in magnetic flux based on Faraday's law:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt}[/tex]

Since in our case there is only one loop of wire, then N=1 and we get:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt}[/tex]

We need to express the magnetic flux given the geometry of the problem;

[tex]\Phi=B\,\,A[/tex]where A is the area of the coil that remains unchanged with time, and B is the magnetic field that does change with time. Therefore the equation for the EMF becomes:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt} = \frac{d\Phi}{dt} =-\frac{d\,(B\,A)}{dt} =-\,A\,\frac{d\,(B)}{dt}=- 1\,m^2(2\,\,T/h})= -2\,\,m^2\,T/(3600\,\,s)= -0.00055\,Volts[/tex]

2. A 2.0-kg block slides down an incline surface from point A to point B. Points A and B are 2.0 m apart. If the coefficient of kinetic friction is 0.26 and the block is starting at rest from point A. What is the work done by friction force

Answers

Answer:a

Explanation:

Changing the camber of a wing by designing positive curvature in or lowering trailing edge flaps allows:______.
A. Higher Maximum Coefficients of Lift
B. Maximum Coefficient of Lift at lower Angle of Attack
C. Lower landing/approach angles of attack
D. A and C
E. All of the above

Answers

Answer:

E. All of the above

Explanation:

The wings that contain curvature is known as "camber," which in essence is half of a venturi, generating a greater-pressure area at the bottom of the wing, and a lesser-pressure area at the top. Creating an extra lift, the camber (curvature) of the wing is increased by extending (in an arc) the leading edge, typically by forcing or hinging the leading edge out on tracks.

The additional camber provides them with the additional lift needed for safe operation and control at slower aircraft speeds, such as when departing or landing.

By allowing wings to operate at a greater angle. A high lift coefficient is established and used as an angle of element for both attack and speed, when an airplane can travel extra steadily or take off and land in a smaller time with slats

Therefore the correct option is E.

A coil has resistance of 20 W and inductance of 0.35 H. Compute its reactance and its impedance to an alternating current of 25 cycles/s.

Answers

Answer:

Reactance of the coil is 55 WImpedance of the coil is 59 W

Explanation:

Given;

Resistance of the coil, R = 20 W

Inductance of the coil, L = 0.35 H

Frequency of the alternating current, F = 25 cycle/s

Reactance of the coil is calculated as;

[tex]X_L=[/tex] 2πFL

Substitute in the given values and calculate the reactance [tex](X_L)[/tex]

[tex]X_L =[/tex] 2π(25)(0.35)

[tex]X_L[/tex] = 55 W

Impedance of the coil is calculated as;

[tex]Z = \sqrt{R^2 + X_L^2} \\\\Z = \sqrt{20^2 + 55^2} \\\\Z = 59 \ W[/tex]

Therefore, the reactance of the coil is 55 W and Impedance of the coil is 59 W

A proton with an initial speed of 400000 m/s is brought to rest by an electric field.
Part A- Did the proton move into a region of higher potential or lower potential?
Part B - What was the potential difference that stopped the proton?
?U = ________V
Part C - What was the initial kinetic energy of the proton, in electron volts?
Ki =_________eV

Answers

Answer:

moves into a region of higher potential

Potential difference = 835   V

Ki = 835 eV

Explanation:

given data

initial speed = 400000 m/s

solution

when proton moves against a electric field  so that it will move into higher potential  region

and

we know Work done by electricfield  W is express as

W = KE of proton   K

so

q × V   =  0.5 × m × v²     ......................1

put here va lue

1.6 × [tex]10^{-19}[/tex] × V   =   0.5 × 1.67 × [tex]10^{-27}[/tex] × 400000²

Potential difference V = 1.336 × 10-16 / 1.6  × 10-19      

Potential difference = 835   V

and

KE of proton in eV is express as

Ki  =   V numerical

Ki = 835 eV

A rod of very small diameter with a mass 2m and length 3L is placed along the xaxis with one end at the origin. An identical rod is placed along the yaxis with one end at the origin, so that the two rods form an L-shape. What are the coordinates of the center of mass for these two rods

Answers

Answer:

coordinates of the center of mass for these two rods

([tex]x_{cm}[/tex], [tex]y_{cm}[/tex])= ([tex]\frac{3L}{4}[/tex],  [tex]\frac{3L}{4}[/tex])cm

Explanation:

given

mass of a rod = 2m

length of the rod = 3L

mass of two rods = 2(2m) = 4m

radius = diameter/2 = [tex]\frac{3L}{2}[/tex]

attached is the diagram and solution to the question

Two lenses of focal length 4.5cm and 1.5cm are placed at a certain distance apart, calculate the distance between the lenses if they form an achromatic combination

Answers

Answer:

3.0cm

Explanation:

For lenses in an achromatic combination, the following condition holds, assuming the two lenses are of the same materials;

d = [tex]\frac{f_1 + f_2}{2}[/tex]     ---------(i)

Where;

d= distance between lenses

f₁ = focal length of the first lens

f₂ = focal length of the second lens

From the question;

f₁ = 4.5cm

f₂ = 1.5cm

Substitute these values into equation (i) as follows;

d = [tex]\frac{4.5+1.5}{2}[/tex]

d = [tex]\frac{6.0}{2}[/tex]

d = 3.0cm

Therefore, the distance between the two lenses is 3.0cm

An infinitely long line of charge with uniform density, rho???????? lies in y-z plane parallel to the zaxis at y=1m. (a) Find the potential VAB at point A (4m, 2m, 4m) in Cartesian coordinates with respect to point B (0,0,0). (b) Find E filed at point B.

Answers

Answer with Explanation:

We are given that

Density=[tex]\rho l[/tex]

A(4m,2m,4m) and B(0,0,0)

y=1 m

a. Linear charge density=[tex]\frac{\rho l}{l}=\rho C/m[/tex]

Let a point P (0,1,4) on the line of charge  and point Q (0,1,0)

Therefore,

Distance AP=[tex]\sqrt{(4-0)^2+(2-1)^2+(4-4)^2}=\sqrt{17}[/tex]

Distance,BQ=[tex]\sqrt{(0-0)^2+(1-0)^2+(0-0)^2}=1[/tex]

Electric field for infinitely long line

[tex]E=\frac{\rho}{2\pi \epsilon_0 r}\cdot \hat{r}[/tex]

Therefore, potential

[tex]V_{BA}=-\int_{a}^{b}E\cdot dl[/tex]

[tex]V_{BA}=-\int_{\sqrt{17}}^{1}\frac{\rho}{2\pi \epsilon_0 r}\hat{r}\cdot \hat{r} dr[/tex]

[tex]V_{BA}=-\int_{\sqrt{17}}^{1}\frac{\rho}{2\pi \epsilon_0 r}dr[/tex]

[tex]V_{BA}=-\frac{\rho}{2\pi \epsilon_0}[\ln r]^{1}_{\sqrt{17}}[/tex]

[tex]V_{BA}=-\frac{\rho}{2\pi \epsilon_0}(ln 1-ln(\sqrt{17})=\frac{\rho}{2\pi \epsilon_0}(ln(\sqrt{17})[/tex]

[tex]V_{BA}=V_B-V_A[/tex]

[tex]V_{AB}=V_A-V_B=-V_{BA}=-\frac{\rho}{2\pi \epsilon_0}(ln(\sqrt{17})[/tex]

b.Electric field at point B

[tex]E=\frac{\rho}{2\pi \epsilon_0 r}\cdot \hat{r}[/tex]

Unit vector r=[tex]-\hat{j}[/tex]

Therefore,

[tex]E=\frac{\rho}{2\pi \epsilon_0 r}\cdot \hat{-j}[/tex]

A basketball rolls across a classroom floor without slipping, with its center of mass moving at a certain speed. A block of ice of the same mass is set sliding across the floor with the same speed along a parallel line. (i) Which object has more kinetic energy

Answers

Answer:

The two objects encounter a ramp sloping upward.

Explanation:

The basketball will travel farther up theramp

In this problem we will consider the collision of two cars initially moving at right angles. We assume that after the collision the cars stick together and travel off as a single unit. The collision is therefore completely inelastic. Two cars of masses m1 and m2 collide at an intersection. Before the collision, car 1 was traveling eastward at a speed of v1, and car 2 was traveling northward at a speed of v2. After the collision, the two cars stick together and travel off in the direction.

Required:
a. Write the momentum conservation equation for the east-west components.
b. Write the momentum conservation equation for the north-south components.
c. Find the tangent of the angle.

Answers

Answer:

a)     vfₓ = m₁ / (m₁ + m₂) v₁,  b)    tan θ  = m₂ / m₁ v₂ / v₁, c)

Explanation:

Momentum is a vector quantity, so the consideration must be fulfilled in all axes

a) conservation of the moment east-west direction

the system is formed by the two cases, so that the forces during the sackcloth have been internal and therefore the mummer remains

before the crash

                 p₀ = m₁ v₁

after the crash

                 [tex]p_{f}[/tex]= (m1 + m2) vfₓ

                p₀ = pf

                m₁ v₁ = (m₁ + m₂) vfₓ

              vfₓ = m₁ / (m₁ + m₂) v₁

b) conservation of the North-South axis moment

before the shock

                p₀ = m₂ v₂

after the crash

              p_{f} = ( m₁ +m₂) [tex]vf_{y}[/tex]  

             p₀ = p_{f}

            me 2 v₂ = (m₁ + m₂) vfy

       

            [tex]vf_{y}[/tex] = m₂ / (m₁ + m₂) v₂

c) the angle with which the car moves is

             tan θ = Vfy / Vfₓ

             tan θ = [m₂ / (m₁ + m₂) v] / [m₁ / (m₁ + m₂) v₁]

             tan θ  = m₂ / m₁ v₂ / v₁

The momentum conservation equation for the north-south components is [tex]m_1u_1 = v(m_1 + m_2)[/tex]

The momentum conservation equation for the north-south components is [tex]m_2u_2 = v(m_1 + m_2)[/tex]

The tangent of the angle is 1.

The given parameters;

angle between the initial velocity of the cars, θ = 90

Apply the principle of conservation of linear momentum of inelastic collision as shown below;

[tex]m_1u_1 + m_2u_2 = v(m_1 + m_2)[/tex]

The momentum conservation equation for the east-west components is written as follows;

[tex]m_1(u_1cos \ 0) + m_2(u_2 cos 90)= v(m_1 + m_2)\\\\m_1u_1 = v(m_1 + m_2)[/tex]

The momentum conservation equation for the north-south components is written as follows;

[tex]m_1(u_1sin 0) + m_2(u_2sin90) = v(m_1 + m_2)\\\\m_2u_2 = v(m_1 + m_2)[/tex]

The tangent of the angle is calculated as follows;

[tex]tan \ \theta = \frac{p_y}{p_x} = \frac{v(m_1 + m_2)}{v(m_1 + m_2)} \\\\tan \ \theta = 1\\\\\theta = tan^{-1} (1) \\\\\theta = 45\ ^0[/tex]

Learn more here:https://brainly.com/question/24424291

Two identical pendulums have the same period when measured in the factory. While one pendulum swings on earth, the other is taken on a spaceship traveling at 95%% the speed of light. Assume that both pendulums operate under the influence of the same net force and swing through the same angle.
When observed from earth, how many oscillations does the pendulum on the spaceship undergo compared to the pendulum on earth in a given time interval?
a. more oscillations
b. fewer oscillations
c. the same number of oscillations

Answers

Answer:

Explanation:

As a result of impact of time widening, a clock moving as for an observer seems to run all the more gradually than a clock that is very still in the observer's casing.  

At the point when observed from earth, the pendulum on the spaceship takes more time to finish one oscillation.  

Hence, the clock related with that pendulum will run more slow (gives fewer oscillations as observed from the earth)  than the clock related with the pendulum on earth.

Ans => B fewer oscillations

Which of the following gives the magnitude of the average velocity (over the entire run) of an athlete running on a circular track with a circumference of 0.5 km, if that athlete runs a total length of 1.0 km in a time interval of 4 minutes?
a. O m/s
b. 2 m/s
c. 4.2 m/s
d. 16.8 m/s

Answers

Answer:

c. 4.2 m/s

Explanation:

The definition of the average velocity, measured in meters per second, is given by the following expression:

[tex]\bar v = \frac{x_{f}-x_{o}}{t_{f}-t_{o}}[/tex]

Where:

[tex]x_{o}[/tex], [tex]x_{f}[/tex] - Initial and final positions, measured in meters.

[tex]t_{o}[/tex], [tex]t_{f}[/tex] - Initial and final instants, measured in seconds.

Positions and instants must be written in meters and seconds, respectively:

[tex]x_{o} = 0\,m[/tex], [tex]x_{f} = 1000\,m[/tex].

[tex]t_{o} = 0\,s[/tex], [tex]t_{f} = 240\,s[/tex].

Finally, the average velocity of the athlete that runs a total length of 1.0 kilometer in a time interval of 4 minutes is:

[tex]\bar v = \frac{1000\,m-0\,m}{240\,s-0\,s}[/tex]

[tex]\bar v = 4.167\,\frac{m}{s}[/tex]

Hence, the best option is C.

3. A body moves along a semicircular path. The ratio of distance to displacement is

Answers

Answer:

Ratio of distance to displacement is pi/2

Explanation:

Pls see attached file for diagram and explanation

Which statement describes one feature of a mineral's definite chemical composition?
It always occurs in pure form.
It always contains certain elements.
It cannot form from living or once-living materials.
It cannot contain atoms from more than one element.
N

Answers

Answer:

It always contains certain elements

Explanation:

Minerals can be defined as natural inorganic substances which possess an orderly internal structural arrangement as well as a particular, well known chemical composition, crystal structures and physical properties. Minerals include; quartz, dolomite, basalt, etc. Minerals may occur in isolation or in rock formations.

Minerals contain specific, well known chemical elements in certain ratios that can only vary within narrow limits. This is what we mean by a mineral's definite chemical composition. The structure of these minerals are all well known as well as their atom to atom connectivity.

The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

A mineral is a naturally occurring chemical compound, usually of a crystalline form.

A mineral has one specific chemical composition.chemical composition that varies within a specific limited range and the atoms that make up the mineral must occur in specific ratiosthe proportions of the different elements and groups of elements in the mineral.

Thus, The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

Learn more:

https://brainly.com/question/690965

What direct current will produce the same amount of thermal energy, in a particular resistor, as an alternating current that has a maximum value of 2.59 A?

Answers

Answer:

The direct current that will produce the same amount of thermal energy is 1.83 A

Explanation:

Given;

maximum current, I₀ = 2.59 A

The average power dissipated in a resistor connected in an AC source is given as;

[tex]P_{avg} = I_{rms} ^2R[/tex]

Where;

[tex]I_{rms} = \frac{I_o}{\sqrt{2} }[/tex]

[tex]P_{avg} = (\frac{I_o}{\sqrt{2} } )^2R\\\\P_{avg} = \frac{I_o^2R}{2} ----equation(1)[/tex]

The average power dissipated in a resistor connected in a DC source is given as;

[tex]P_{avg} = I_d^2R --------equation(2)[/tex]

where;

[tex]I_d[/tex] is direct current

Solve equation (1) and (2) together;

[tex]I_d^2R = \frac{I_o^2R}{2} \\\\I_d^2 = \frac{I_o^2}{2} \\\\I_d=\sqrt{\frac{I_o^2}{2} } \\\\I_d = \frac{I_o}{\sqrt{2}} \\\\I_d = \frac{2.59}{\sqrt{2} } \\\\I_d = 1.83 \ A[/tex]

Therefore, the direct current that will produce the same amount of thermal energy is 1.83 A

Find the terminal velocity (in m/s) of a spherical bacterium (diameter 1.81 µm) falling in water. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10 ✕ 103 kg/m3. (Assume the viscosity of water is 1.002 ✕ 10−3 kg/(m · s).)

Answers

Answer:

The terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

Explanation:

The terminal velocity of the bacterium can be calculated using the following equation:

[tex] F = 6\pi*\eta*rv [/tex]    (1)

Where:

F: is drag force equal to the weight

η: is the viscosity = 1.002x10⁻³ kg/(m*s)

r: is the radium of the bacterium = d/2 = 1.81 μm/2 = 0.905 μm

v: is the terminal velocity

Since that F = mg and by solving equation (1) for v we have:

[tex] v = \frac{mg}{6\pi*\eta*r} [/tex]  

We can find the mass as follows:

[tex] \rho = \frac{m}{V} \rightarrow m = \rho*V [/tex]

Where:

ρ: is the density of the bacterium = 1.10x10³ kg/m³

V: is the volume of the spherical bacterium

[tex] m = \rho*V = \rho*\frac{4}{3}\pi*r^{3} = 1.10 \cdot 10^{3} kg/m^{3}*\frac{4}{3}\pi*(0.905 \cdot 10^{-6} m)^{3} = 3.42 \cdot 10^{-15} kg [/tex]

Now, the terminal velocity of the bacterium is:

[tex] v = \frac{mg}{6\pi*\eta*r} = \frac{3.42 \cdot 10^{-15} kg*9.81 m/s^{2}}{6\pi*1.002 \cdot 10^{-3} kg/(m*s)*0.905 \cdot 10^{-6} m} = 1.96 \cdot 10^{-6} m/s [/tex]

Therefore, the terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

I hope it helps you!

When a hydrometer (see Fig. 2) having a stem diameter of 0.30 in. is placed in water, the stem protrudes 3.15 in. above the water surface. If the water is replaced with a liquid having a specific gravity of 1.10, how much of the stem would protrude above the liquid surface

Answers

Answer:

5.79 in

Explanation:

We are given that

Diameter,d=0.30 in

Radius,r=[tex]\frac{d}{2}=\frac{0.30}{2}=0.15 in[/tex]

Weight of hydrometer,W=0.042 lb

Specific gravity(SG)=1.10

Height of stem from the water surface=3.15 in

Density of water=[tex]62.4lb/ft^3[/tex]

In water

Volume  of water displaced [tex]V=\frac{mass}{density}=\frac{0.042}{62.4}=6.73\times 10^{-4} ft^3[/tex]

Volume of another liquid displaced=[tex]V'=\frac{V}{SG}=\frac{6.73\times 10^{-4}}{1.19}=5.66\times 10^{-4}ft^3[/tex]

Change in volume=V-V'

[tex]V-V'=\pi r^2 l[/tex]

Substitute the values

[tex]6.73\times 10^{-4}-5.66\times 10^{-4}=3.14\times (\frac{0.15}{12})^2l[/tex]

By using

1 ft=12 in

[tex]\pi=3.14[/tex]

[tex]l=\frac{6.73\times 10^{-4}-5.66\times 10^{-4}}{3.14\times (\frac{0.15}{12})^2}[/tex]

l=2.64 in

Total height=h+l=3.15+2.64= 5.79 in

Hence, the height of the stem protrude above the liquid surface=5.79 in

The spectral lines of two stars in a particular eclipsing binary system shift back and forth with a period of 3 months. The lines of both stars shift by equal amounts, and the amount of the Doppler shift indicates that each star has an orbital speed of 88,000 m/s. What are the masses of the two stars

Answers

Answer:

Explanation:

given

T = 3months = 7.9 × 10⁶s

orbital speed = 88 × 10³m/s

V= 2πr÷T

∴ r = (V×T) ÷ 2π

r = (88km × 7.9 × 10⁶s) ÷ 2π

r = 1.10 × 10⁸km

using kepler's 3rd law

mass of both stars = (seperation diatance)³/(orbital speed)²

M₁ + M₂ = (2r)³/([tex]\frac{1}{4}[/tex]year)²

= (1.06 × 10²⁵)/(6.2×10¹³)

1.71×10¹²kg

since M₁ = M₂ =1.71×10¹²kg ÷ 2

M₁ = M₂ = 8.55×10¹¹kg

Your 64-cm-diameter car tire is rotating at 3.4 rev/s when suddenly you press down hard on the accelerator. After traveling 260 m, the tire's rotation has increased to 5.5 rev/s.
What is the tires angular acceleration?

Answers

Answer:

The angular acceleration of the tire is 0.454 rad/s²

Explanation:

Given;

initial velocity, u = 3.4 rev/s = 3.4 rev/s x 2π rad/rev

                        u = 21.3656 rad/sec

final velocity, v = 5.5 rev/s = 5.5 rev/s x 2π rad/rev

                      v = 34.562 rad/sec

Calculate the value of angular rotation, θ, of the tire

θ = Number of revolutions x 2π rad/rev

θ = [tex]\frac{260}{2 \pi r} *\frac{2 \pi \ rad}{rev}[/tex]

θ = (260 / r)

r is the radius of the tire = 64 / 2 = 32cm = 0.32 m

θ = (260 / 0.32)

θ = 812.5 rad

Apply the following kinematic equation, to determine angular acceleration of the tire;

[tex]v^2 = u^2 + 2 \alpha \theta\\\\2 \alpha \theta = v^2 - u^2\\\\\alpha = \frac{v^2-u^2}{2 \theta} \\\\\alpha = \frac{(34.562)^2-(21.3656)^2}{2 (812.5)}\\\\\alpha = \frac{738.043}{1625} \\\\\alpha = 0.454 \ rad/s^2[/tex]

Therefore, the angular acceleration of the tire is 0.454 rad/s²

Other Questions
What volume of Co2 (carbon (iv) oxide)will be produced when 10g of Na2Co3(sodium trioxocarbonate (iv) reactedwith excess Hcl (Hydrogen Chloride) atSTP(Na=23, C=12, O=16) The altitude at which we boil an egg affects how long it takes for the egg to achieve perfect hardness. It takes 198198198 seconds to boil a perfect egg at the lowest place possible, the edge of the Dead Sea, which has an altitude of -418418minus, 418 meters. The highest place possible is the summit of Mount Everest which has an altitude of 884888488848 meters. It takes 209209209 seconds to boil a perfect egg there. T(a)T(a)T, left parenthesis, a, right parenthesis models the time (in seconds) it takes to boil a perfect egg at an altitude of aaa meters. Which number type is more appropriate for the domain of TTT? What is Romeo's dream about? if 15/3 greater than 7, then 15/7 is less than 3 true or false Un agricultor tiene 140 metros de malla para instalar una cerca en su huerta de hortalizas y esa tiene forma de rectangulo a) encuentra una funcin que modele el rea de la huerta que pueda cercar b)Para que valor de la longitud del largo, el area es Maxima? I need help with this question! QUESTION 4The expected value can be used to calculate the overall grade for a course by using theearned value for each grade category and its category weighted probability. Calculate theoverall grade given the following grade data:Grade CategoryEarned ValueWeighted ProbabilityHomework9520%Quiz8020%Test7545%Project9015%Enter your answer as a numeric. For example, if your answer is 78.23%, enter 73.23. What is the equation of the line which passes through (-0.5,-5) and (2,5) Please answer this correctly without making mistakes 14. Solve 10 + 6(-9 4x) = 10(x - 12) + 8.O A. X = 17OB. X = 2O C. X = -18O D. X = -6 A random sample of 10 employees for the Department of Health and Human Services has the following salaries in thousands of dollars. Assuming normality, use a TI-83, TI-83 plus, or TI-84 calculator to find the 98% confidence interval for the true population mean salary. Round your answers to two decimal places and use increasing order. Salary 72 71 66 71 69 71 72 69 70 71 two angles of a triangle measure 58 degrees and 104 degrees what is the measure of the third angle? A) 18 degrees B) 28 degrees C) 152 degrees D) 162 degrees Which of the following polynomials has a remainder of -7 when divided by x 2?A. 4x3 + 2x2 + 5B. x3 - 2x2 - 4x + 1 c. 3x + 6x - 2D.-2x3 + 4x2 + 3x - 2 What happens to water in the atmosphere as it rises? a. It evaporates. b. It condenses and forms clouds. c. It combines with other gases in the air. d. It is used up. Please select the best answer from the choices provided A B C D One of the effects of World War I was A parallelogram has the vertices W(-4, 2), X(2, 2), Y(3, -1), and Z(-3, -1). What are the coordinates of the endpoints of side WX? How were the Maya and the Aztecs alike? A. They built vast road networks to unite conquered lands. B. They organized into independent city-states. C. They paid a labor tax to a single emperor. D. They adapted challenging terrain to support farming. Elenas aunt bought her a $150 savings bond when she was born. When Elena is 20 years old, the bond will have earned 105% in interest. How much will the bond be worth when Elena is 20 years old? Enumerate the methods used by pressure groups to achieve their objectives. A local animal rescue organization receives an average of 0.55 rescue calls per hour. Use the Poisson distribution to find the probability that during a randomly selected hour, the organization will receive fewer than two calls.A) 0.087B) 0.894C) 0.317D) 0.106