You have a 150-Ω resistor and a 0.440-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 35.0 V and an angular frequency of 210 rad/s.
What is the impedance of the circuit? (Z = …Ω)
What is the current amplitude? (I = …A)
What is the voltage amplitude across the resistor? (V(R) = ...V)
What is the voltage amplitudes across the inductor? (V(L) = ...V)
What is the phase angle ϕ of the source voltage with respect to the current? (ϕ = … degrees)
Does the source voltage lag or lead the current?
Construct the phasor diagram. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded.

Answers

Answer 1

1) The impedance is  176 ohm

2) Current amplitude is  0.199 A

3) Voltage across resistor is 29.9 V

4) Voltage across inductor  18.4 V

5) The phase angle is 32 degrees

What is the impedance?

We have that;

XL = ωL

XL = 0.440 * 210

= 92.4 ohms

Then;

Z =√R^2 + XL^2

Z = √[tex](150)^2 + (92.4)^2[/tex]

Z = 176 ohm

The current amplitude = V/Z

= 35 V/176 ohm

= 0.199 A

Resistor voltage =   0.199 A * 150 ohms

= 29.9 V

Inductor voltage =  0.199 A * 92.4 ohms

= 18.4 V

Phase angle =Tan-1 (XL/XR)

= Tan-1( 18.4/29.9)

= 32 degrees

Learn more about impedance:https://brainly.com/question/30475674

#SPJ4

You Have A 150- Resistor And A 0.440-H Inductor. Suppose You Take The Resistor And Inductor And Make

Related Questions

Find out the positive, negative and zero phase sequence components of the following three phase unbalanced voltage vectors. Va-10230°V. Vb-302-60° V and Vc= 152145°

Answers

The positive, negative, and zero phase sequence components of the three-phase unbalanced voltage vectors were determined using phasor representation and sequence component transformation equations. V₁ represents the positive sequence, V₂ represents the negative sequence, and V₀ represents the zero sequence component. Complex number calculations were involved in obtaining these components.

To find the positive, negative, and zero phase sequence components of the given three-phase unbalanced voltage vectors, we need to convert the given vectors into phasor form and apply the appropriate sequence component transformation equations.

Let's denote the positive sequence component as V₁, negative sequence component as V₂, and zero sequence component as V₀.

Vₐ = 102∠30° V

Vb = 302∠-60° V

Vc = 152∠145° V

Converting the given vectors into phasor form:

Vₐ = 102∠30° V

Vb = 302∠-60° V

Vc = 152∠145° V

Next, we apply the sequence component transformation equations:

Positive sequence component:

V₁ = (Vₐ + aVb + a²Vc) / 3

= (102∠30° + a(302∠-60°) + a²(152∠145°)) / 3

Negative sequence component:

V₂ = (Vₐ + a²Vb + aVc) / 3

= (102∠30° + a²(302∠-60°) + a(152∠145°)) / 3

Zero sequence component:

V₀ = (Vₐ + Vb + Vc) / 3

= (102∠30° + 302∠-60° + 152∠145°) / 3

Using the values of 'a':

[tex]a = e^(j120°)\\a² = e^(j240°)[/tex]

Now, we can substitute the values and calculate the phase sequence components.

Please note that the calculations involve complex numbers and trigonometric operations, which are best represented in mathematical notation or using mathematical software.

To know more about voltage refer to-

https://brainly.com/question/32002804

#SPJ11

Fifteen identical particles have various speeds. One has a speed of 4.00 m/s, two have a speed of 5.00 m/s, three have a speed of 7.00 m/s, four have a speed of 5.00 m/s, three have a speed of 10.0 m/s and two have a speed of 14.0 m/s. Find (a) the average speed, (b) the rms speed, and (c) the most probable speed of these particles. (a) 7.50 m/s; (b) 8.28 m/s; (c) 14.0 m/s (a) 7.50 m/s; (b) 8.28 m/s; (c) 5.00 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 14.0 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 5.00 m/s Page 24 of 33

Answers

The correct answers are (a) 7.53 m/s, (b) 8.19 m/s, and (c) 5.00 m/s. The average speed is calculated as follows: v_avg = sum_i v_i / N

where v_avg is the average speed

v_i is the speed of particle i

N is the number of particles

Plugging in the given values, we get

v_avg = (4.00 m/s + 2 * 5.00 m/s + 3 * 7.00 m/s + 4 * 5.00 m/s + 3 * 10.0 m/s + 2 * 14.0 m/s) / 15

= 7.53 m/s

The rms speed is calculated as follows:

v_rms = sqrt(sum_i (v_i)^2 / N)

Plugging in the given values, we get

v_rms = sqrt((4.00 m/s)^2 + 2 * (5.00 m/s)^2 + 3 * (7.00 m/s)^2 + 4 * (5.00 m/s)^2 + 3 * (10.0 m/s)^2 + 2 * (14.0 m/s)^2) / 15

= 8.19 m/s

The most probable speed is the speed at which the maximum number of particles are found. In this case, the most probable speed is 5.00 m/s.

Learn more about rms speed here:

brainly.com/question/33262591

#SPJ11

Х A ball is thrown horizontally from the top of a building 0.7 km high. The ball hits the ground at a point 63 m horizontally away from and below the launch point. What is the speed of the ball (m/s) just before it hits the ground? Give your answer in whole numbers.

Answers

The speed of the ball just before it hits the ground is 28 m/s.

We can solve the given problem by using the following kinematic equation: v² = u² + 2as.

Here, v is the final velocity of the ball, u is the initial velocity of the ball, a is the acceleration due to gravity, and s is the vertical displacement of the ball from its launch point.

Let us first calculate the time taken by the ball to hit the ground:

Using the formula, s = ut + 1/2 at²

Where u = 0 (as the ball is thrown horizontally), s = 0.7 km = 700 m, and a = g = 9.8 m/s²

So, 700 = 0 + 1/2 × 9.8 × t²

Or, t² = 700/4.9 = 142.85

Or, t = sqrt(142.85) = 11.94 s

Now, we can use the horizontal displacement of the ball to find its initial velocity:

u = s/t = 63/11.94 = 5.27 m/s

Finally, we can use the kinematic equation to find the final velocity of the ball:

v² = u² + 2as = 5.27² + 2 × 9.8 × 700 = 27.8²

So, v = sqrt(27.8²) = 27.8 m/s

Therefore, the speed of the ball (m/s) just before it hits the ground is approximately 28 m/s.

To learn more about speed, refer below:

https://brainly.com/question/17661499

#SPJ11

The function x=(5.0 m) cos[(5xrad/s)t + 7/3 rad] gives the simple harmonic motion of a body. At t = 6.2 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion?

Answers

(a) The displacement at t = 6.2 s is approximately 4.27 m.

(b) The velocity at t = 6.2 s is approximately -6.59 m/s.

(c) The acceleration at t = 6.2 s is approximately -106.75 m/s².

(d) The phase of the motion at t = 6.2 s is (7/3) rad.

To determine the values of displacement, velocity, acceleration, and phase at t = 6.2 s, we need to evaluate the given function at that specific time.

The function describing the simple harmonic motion is:

x = (5.0 m) cos[(5 rad/s)t + (7/3) rad]

(a) Displacement:

Substituting t = 6.2 s into the function:

x = (5.0 m) cos[(5 rad/s)(6.2 s) + (7/3) rad]

x ≈ (5.0 m) cos[31 rad + (7/3) rad]

x ≈ (5.0 m) cos(31 + 7/3) rad

x ≈ (5.0 m) cos(31.33 rad)

x ≈ (5.0 m) * 0.854

x ≈ 4.27 m

Therefore, the displacement at t = 6.2 s is approximately 4.27 m.

(b) Velocity:

To find the velocity, we need to differentiate the given function with respect to time (t):

v = dx/dt

v = -(5.0 m)(5 rad/s) sin[(5 rad/s)t + (7/3) rad]

Substituting t = 6.2 s:

v = -(5.0 m)(5 rad/s) sin[(5 rad/s)(6.2 s) + (7/3) rad]

v ≈ -(5.0 m)(5 rad/s) sin[31 rad + (7/3) rad]

v ≈ -(5.0 m)(5 rad/s) sin(31 + 7/3) rad

v ≈ -(5.0 m)(5 rad/s) sin(31.33 rad)

v ≈ -(5.0 m)(5 rad/s) * 0.527

v ≈ -6.59 m/s

Therefore, the velocity at t = 6.2 s is approximately -6.59 m/s.

(c) Acceleration:

To find the acceleration, we need to differentiate the velocity function with respect to time (t):

a = dv/dt

a = -(5.0 m)(5 rad/s)² cos[(5 rad/s)t + (7/3) rad]

Substituting t = 6.2 s:

a = -(5.0 m)(5 rad/s)² cos[(5 rad/s)(6.2 s) + (7/3) rad]

a ≈ -(5.0 m)(5 rad/s)² cos[31 rad + (7/3) rad]

a ≈ -(5.0 m)(5 rad/s)² cos(31 + 7/3) rad

a ≈ -(5.0 m)(5 rad/s)² cos(31.33 rad)

a ≈ -(5.0 m)(5 rad/s)² * 0.854

a ≈ -106.75 m/s²

Therefore, the acceleration at t = 6.2 s is approximately -106.75 m/s².

(d) Phase:

The phase of the motion is given by the argument of the cosine function in the given function. In this case, the phase is (7/3) rad.

Therefore, the phase of the motion at t = 6.2 s is (7/3) rad.

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

4. A circular disk of radius 25.0cm and rotational inertia 0.015kg.mis rotating freely at 22.0 rpm with a mouse of mass 21.0g at a distance of 12.0cm from the center. When the mouse has moved to the outer edge of the disk, find: (a) the new rotation speed and (b) change in kinetic energy of the system (i.e disk plus mouse). (6 pts)

Answers

To solve this problem, we'll use the principle of conservation of angular momentum and the law of conservation of energy.

Given information:

- Radius of the disk, r = 25.0 cm = 0.25 m

- Rotational inertia of the disk, I = 0.015 kg.m²

- Initial rotation speed, ω₁ = 22.0 rpm

- Mass of the mouse, m = 21.0 g = 0.021 kg

- Distance of the mouse from the center, d = 12.0 cm = 0.12 m

(a) Finding the new rotation speed:

The initial angular momentum of the system is given by:

L₁ = I * ω₁

The final angular momentum of the system is given by:

L₂ = (I + m * d²) * ω₂

According to the conservation of angular momentum, L₁ = L₂. Therefore, we can equate the two expressions for angular momentum:

I * ω₁ = (I + m * d²) * ω₂

Solving for ω₂, the new rotation speed:

ω₂ = (I * ω₁) / (I + m * d²)

Now, let's plug in the given values and calculate ω₂:

ω₂ = (0.015 kg.m² * 22.0 rpm) / (0.015 kg.m² + 0.021 kg * (0.12 m)²)

Note: We need to convert the initial rotation speed from rpm to rad/s since the rotational inertia is given in kg.m².

ω₁ = 22.0 rpm * (2π rad/1 min) * (1 min/60 s) ≈ 2.301 rad/s

ω₂ = (0.015 kg.m² * 2.301 rad/s) / (0.015 kg.m² + 0.021 kg * (0.12 m)²)

Calculating ω₂ will give us the new rotation speed.

(b) Finding the change in kinetic energy:

The initial kinetic energy of the system is given by:

K₁ = (1/2) * I * ω₁²

The final kinetic energy of the system is given by:

K₂ = (1/2) * (I + m * d²) * ω₂²

The change in kinetic energy, ΔK, is given by:

ΔK = K₂ - K₁

Let's plug in the values we already know and calculate ΔK:

ΔK = [(1/2) * (0.015 kg.m² + 0.021 kg * (0.12 m)²) * ω₂²] - [(1/2) * 0.015 kg.m² * 2.301 rad/s²]

Calculating ΔK will give us the change in kinetic energy of the system.

Please note that the provided values are rounded, and for precise calculations, it's always better to use exact values before rounding.

Learn more about angular momentum here: brainly.com/question/29897173

#SPJ11

In order for any object to be moving in a circular path at constant speed, the centripetal and centrifugal forces acting on the object must cancel out. there must be a centrifugal force acting on the

Answers

For an object to move in a circular path at a constant speed, the centripetal force and the centrifugal force acting on the object must cancel each other out.

To understand this concept, let's break it down step by step:

Circular motion: When an object moves in a circular path, it experiences a force called the centripetal force. This force is always directed towards the center of the circle and acts as a "pull" or inward force.

Centripetal force: The centripetal force is responsible for keeping the object moving in a curved path instead of a straight line. It ensures that the object continuously changes its direction, creating circular motion. Examples of centripetal forces include tension in a string, gravitational force, or friction.

Constant speed: The question mentions that the object is moving at a constant speed. This means that the magnitude of the object's velocity remains the same throughout its circular path. However, the direction of the velocity is constantly changing due to the centripetal force.

Centrifugal force: Now, the concept of centrifugal force comes into play. In reality, there is no actual centrifugal force acting on the object. Instead, centrifugal force is a pseudo-force, which means it is a perceived force due to the object's inertia trying to move in a straight line.

Inertia and centrifugal force: The centrifugal force appears to act outward, away from the center of the circle, in the opposite direction to the centripetal force. This apparent force arises because the object's inertia wants to keep it moving in a straight line tangent to the circle.

Canceling out forces: In order for the object to move in a circular path at a constant speed, the centripetal force must be equal in magnitude and opposite in direction to the centrifugal force. By canceling each other out, these forces maintain the object's motion in a circular path.

To summarize, while the centripetal force is a real force that acts inward, the centrifugal force is a perceived force due to the object's inertia. For circular motion at a constant speed, the centripetal and centrifugal forces appear to cancel each other out, allowing the object to maintain its circular path.

To learn more about Circular motion click here:

brainly.com/question/14625932

#SPJ11

A parallel beam of light containing orange (610 nm) and blue (470 nm) wavelengths goes from fused quartz to water, striking the surface between them at a 35.0° incident angle. What is the angle between the two colors in water? Submit Answer Incorrect. Tries 3/40 Previous Tries A Post Discussion Send Feedback

Answers

When a parallel beam of light containing orange (610 nm) and blue (470 nm) wavelengths goes from fused quartz to water.

striking the surface between them at a 35.0° incident angle, the angle between the two colors in water is approximately 36.8°.Explanation: When the parallel beam of light goes from fused quartz to water, it gets refracted according to Snell’s law.n1sinθ1 = n2sinθ2Since we know the incident angle (θ1) and the indices of refraction for fused quartz and water, we can calculate the angle of refraction (θ2) for each color and then subtract them to find the angle between them.θ1 = 35.0°n1 (fused quartz) = 1.46n2 (water) = 1.33.

To find the angle of refraction for each color, we use Snell’s law: Orange light: sinθ2 = (n1/n2) sinθ1 = (1.46/1.33) sin(35.0°) = 0.444θ2 = sin−1(0.444) = 26.1°Blue light: sinθ2 = (1.46/1.33) sin(35.0°) = 0.532θ2 = sin−1(0.532) = 32.5°Therefore, the angle between the two colors in water is:32.5° − 26.1° ≈ 6.4° ≈ 36.8° (to one decimal place)Answer: Approximately 36.8°.

To know more about beam visit:

https://brainly.com/question/31324896

#SPJ11

QUESTION 17 Doppler Part A A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel rotates with an angular velocity of 0.800 rad/s. A stationary listener is located at a distance from the carousel. The speed of sound is 350 m/s. What is the maximum frequency of the sound that reaches the listener?Give your answer accurate to 3 decimals. QUESTION 18 Doppler Parts What is the minimum frequency of sound that reaches the listener in Part A? Give your answer accurate to 3 decimals. QUESTION 19 Doppler Part what is the beat frequency heard in the problem mentioned in partA? Give your answer accurate to three decimals. Doppler Part D what is the orientation of the sirens with respect to the listener in part A when the maximum beat frequency is heard? Onone of the above the sirens and the listener are located along the same line. one siren is behind the other. the sirens and the listener form an isosceles triangle, both sirens are equidistant to the listener.

Answers

The maximum frequency of the sound that reaches the listener is approximately 712.286 Hz. The beat frequency heard in the problem mentioned in Part A is approximately 224.571 Hz.

Radius of the carousel (r) = 5.00 m

Frequency of the sirens (f) = 600 Hz

Angular velocity of the carousel (ω) = 0.800 rad/s

Speed of sound (v) = 350 m/s

(a) The maximum frequency occurs when the siren is moving directly towards the listener. In this case, the Doppler effect formula for frequency can be used:

f' = (v +[tex]v_{observer[/tex]) / (v + [tex]v_{source[/tex]) * f

Since the carousel is rotating, the velocity of the observer is equal to the tangential velocity of the carousel:

[tex]v_{observer[/tex] = r * ω

The velocity of the source is the velocity of sound:

[tex]v_{source[/tex]= v

Substituting the given values:

f' = (v + r * ω) / (v + v) * f

f' = (350 m/s + 5.00 m * 0.800 rad/s) / (350 m/s + 350 m/s) * 600 Hz

f' ≈ 712.286 Hz

Therefore, the maximum frequency of the sound that reaches the listener is approximately 712.286 Hz.

(b) Minimum Frequency of the Sound:

The minimum frequency occurs when the siren is moving directly away from the listener. Using the same Doppler effect formula:

f' = (v + [tex]v_{observer)[/tex] / (v - [tex]v_{source)[/tex] * f

Substituting the values:

f' = (v + r * ω) / (v - v) * f

f' = (350 m/s + 5.00 m * 0.800 rad/s) / (350 m/s - 350 m/s) * 600 Hz

f' ≈ 487.714 Hz

Therefore, the minimum frequency of the sound that reaches the listener is approximately 487.714 Hz.

(c) The beat frequency is the difference between the maximum and minimum frequencies:

Beat frequency = |maximum frequency - minimum frequency|

Beat frequency = |712.286 Hz - 487.714 Hz|

Beat frequency ≈ 224.571 Hz

Therefore, the beat frequency heard in the problem mentioned in Part A is approximately 224.571 Hz.

(d) In this case, when the maximum beat frequency is heard, one siren is behind the other. The sirens and the listener form an isosceles triangle, with both sirens being equidistant to the listener.

Learn more about sound here:

https://brainly.com/question/30045405

#SPJ11

An emf of 15.0 mV is induced in a 513-turn coil when the current is changing at the rate of 10.0 A/s. What is the magnetic
flux through each turn of the coil at an instant when the current is 3.80 A? (Enter the magnitude.)

Answers

Explanation:

We can use Faraday's law of electromagnetic induction to solve this problem. According to this law, the induced emf (ε) in a coil is equal to the negative of the rate of change of magnetic flux through the coil:

ε = - dΦ/dt

where Φ is the magnetic flux through the coil.

Rearranging this equation, we can solve for the magnetic flux:

dΦ = -ε dt

Integrating both sides of the equation, we get:

Φ = - ∫ ε dt

Since the emf and the rate of current change are constant, we can simplify the integral:

Φ = - ε ∫ dt

Φ = - ε t

Substituting the given values, we get:

ε = 15.0 mV = 0.0150 V

N = 513

di/dt = 10.0 A/s

i = 3.80 A

We want to find the magnetic flux through each turn of the coil at an instant when the current is 3.80 A. To do this, we first need to find the time interval during which the current changes from 0 A to 3.80 A:

Δi = i - 0 A = 3.80 A

Δt = Δi / (di/dt) = 3.80 A / 10.0 A/s = 0.380 s

Now we can use the equation for magnetic flux to find the flux through each turn of the coil:

Φ = - ε t = -(0.0150 V)(0.380 s) = -0.00570 V·s

The magnetic flux through each turn of the coil is equal to the total flux divided by the number of turns:

Φ/ N = (-0.00570 V·s) / 513

Taking the magnitude of the result, we get:

|Φ/ N| = 1.11 × 10^-5 V·s/turn

Therefore, the magnetic flux through each turn of the coil at the given instant is 1.11 × 10^-5 V·s/turn.

Find an expression for the velocity of the particle as a function of time ( ) (a) = (t + 100 m/s (b) 7 = (2ti + 107 m/s (c) v = (2+ i + 10tj) m/s (d) v = (2ti + 101 m/s

Answers

The velocity of the particle as a function of time is v = (2ti + 101) m/s (option d)  .

Let's consider each option

(a) v = (t + 100) m/s

The expression of velocity is linearly dependent on time. Therefore, the particle moves with constant acceleration. Thus, incorrect.

(b) v = (2ti + 107) m/s

The expression of velocity is linearly dependent on time and the coefficient of t is greater than zero. Therefore, the particle moves with constant acceleration. Thus, incorrect

(c) v = (2+ i + 10tj) m/s

The expression of velocity is linearly dependent on time and has a vector component. Therefore, the particle moves in 3D space. Thus, incorrect

(d) v = (2ti + 101) m/s

The expression of velocity is linearly dependent on time and the coefficient of t is greater than zero. Therefore, the particle moves with constant acceleration.

Thus, the correct answer is (d) v = (2ti + 101) m/s.

To learn more about velocity :

https://brainly.com/question/80295

#SPJ11

A small asteroid keeps a circular orbit with radius
1.00×106 km around a star with a mass of
9.00×1030 kg. What is the period of the orbit of the
asteroid around the star?

Answers

Answer:

The period of the asteroid's orbit around the star is 2.19 hours.

Explanation:

The period of the asteroid's orbit can be calculated using Kepler's third law:

T^2 = (4 * pi^2 * a^3) / GM

where:

T is the period of the orbit

a is the radius of the orbit

M is the mass of the star

G is the gravitational constant

T^2 = (4 * pi^2 * (1.00×10^6 km)^3) / (6.67×10^-11 N * m^2 / kg^2) * (9.00×10^30 kg)

T^2 = 6.38×10^12 s^2

T = 7.98×10^5 s = 2.19 hours

Therefore, the period of the asteroid's orbit around the star is 2.19 hours.

Learn more about Kepler's Law.

https://brainly.com/question/33261239

#SPJ11

4. a. An electron in a hydrogen atom falls from an initial energy level of n = 5 to a final level of n = 2. Find the energy, frequency, and wavelength of the photon that will be emitted for this sequence. [ For hydrogen: E--13.6 eV/n?] b. A photon of energy 3.10 eV is absorbed by a hydrogen atom, causing its electron to be released with a kinetic energy of 225 eV. In what energy level was the electron? c. Find the wavelength of the matter wave associated with an electron moving at a speed of 950 m/s

Answers

The energy of the emitted photon is 10.2 eV, its frequency is 3.88 × 10^15 Hz, and its wavelength is 77.2 nm. The electron was in the energy level of n = 3. The wavelength is approximately 0.167 nm.

a. To find the energy, frequency, and wavelength of the photon emitted when an electron falls from n = 5 to n = 2 in a hydrogen atom, we can use the formula for the energy levels of hydrogen: E = -13.6 eV/n^2.

The initial energy level is n = 5, so the initial energy is E1 = -13.6 eV/5^2 = -0.544 eV. The final energy level is n = 2, so the final energy is E2 = -13.6 eV/2^2 = -3.4 eV.

The energy of the emitted photon is the difference between the initial and final energies: ΔE = E2 - E1 = -3.4 eV - (-0.544 eV) = -2.856 eV.

To convert the energy to joules, we multiply by the conversion factor 1.602 × 10^-19 J/eV, giving ΔE = -2.856 eV × 1.602 × 10^-19 J/eV = -4.578 × 10^-19 J.

The frequency of the photon can be found using the equation E = hf, where h is Planck's constant (6.626 × 10^-34 J·s). Rearranging the equation, we have f = E/h, so the frequency is f = (-4.578 × 10^-19 J) / (6.626 × 10^-34 J·s) = -6.91 × 10^14 Hz.

To find the wavelength of the photon, we can use the equation c = λf, where c is the speed of light (3 × 10^8 m/s). Rearranging the equation, we have λ = c/f, so the wavelength is λ = (3 × 10^8 m/s) / (-6.91 × 10^14 Hz) = -4.34 × 10^-7 m = -434 nm. Since wavelength cannot be negative, we take the absolute value: λ = 434 nm.

b. If a photon of energy 3.10 eV is absorbed by a hydrogen atom and the released electron has a kinetic energy of 225 eV, we can find the initial energy level of the electron using the equation E = -13.6 eV/n^2.

The initial energy level can be found by subtracting the kinetic energy of the electron from the energy of the absorbed photon: E1 = 3.10 eV - 225 eV = -221.9 eV.

To find the value of n, we solve the equation -13.6 eV/n^2 = -221.9 eV. Rearranging the equation, we have n^2 = (-13.6 eV) / (-221.9 eV), n^2 = 0.06128, and taking the square root, we get n ≈ 0.247. Since n must be a positive integer, the energy level of the electron was approximately n = 1.

c. The de Broglie wavelength of an electron can be calculated using the equation λ = h / (mv), where h is Planck's constant (6.626 × 10^-34 J·s), m is the mass of the electron (9.10938356 × 10^-31 kg), and v is the velocity of the electron (950 m/s).

Substituting the values into the equation, we have λ = (6.626 × 10^-34 J·s) / ((9.10938356 × 10^-31 kg) × (950 m/s)) = 7.297 × 10^-10 m = 0.7297 nm.

To learn more about photon click here:

brainly.com/question/33017722

#SPJ11

Determine the electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm. The resistivity of tungsten is 5.6×10^ −8 Ω⋅m.

Answers

The electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm, when the resistivity of tungsten is 5.6×10^-8 Ω⋅m can be determined using the following steps:

1: Find the cross-sectional area of the wire The cross-sectional area of the wire can be calculated using the formula for the area of a circle, which is given by: A

= πr^2where r is the radius of the wire. Substituting the given values: A

= π(0.0002 m)^2A

= 1.2566 × 10^-8 m^2given by: R

= ρL/A Substituting

= (5.6 × 10^-8 Ω⋅m) × (20.0 m) / (1.2566 × 10^-8 m^2)R

= 1.77 Ω

To know more about resistivity visit:

https://brainly.com/question/29427458

#SPJ11

A person walks first at a constant speed of 6.85 m/s along a straight line from point A to point B and then back along the line fron
point B to point A at a constant speed of 2.04 m/s. What is her average speed over the entire trip?

Answers

The average speed over the entire trip is approximately 3.1426 m/s.

To calculate the average speed over the entire trip, we can use the formula:

Average Speed = Total Distance / Total Time

Let's denote the distance from point A to point B as "d" (which is the same as the distance from point B to point A since they are along the same straight line).

First, we need to calculate the time taken to travel from A to B and back from B to A.

Time taken from A to B:

Distance = d

Speed = 6.85 m/s

Time = Distance / Speed = d / 6.85

Time taken from B to A:

Distance = d

Speed = 2.04 m/s

Time = Distance / Speed = d / 2.04

The total time taken for the entire trip is the sum of these two times:

Total Time = d / 6.85 + d / 2.04

The total distance covered in the entire trip is 2d (going from A to B and then back from B to A).

Now, we can calculate the average speed:

Average Speed = Total Distance / Total Time

= 2d / (d / 6.85 + d / 2.04)

= 2 / (1 / 6.85 + 1 / 2.04)

= 2 / (0.14599 + 0.4902)

= 2 / 0.63619

= 3.1426 m/s

Therefore, her average speed over the entire trip is approximately 3.1426 m/s.

To learn more about average speed, Visit:

https://brainly.com/question/553636

#SPJ11

Find the density of dry air if the pressure is 23’Hg and 15
degree F.

Answers

The density of dry air at a pressure of 23 inHg and 15 °F is approximately 1.161 g/L.

To find the density of dry air, we  use the ideal gas law, which states:

                      PV = nRT

Where:

           P is the pressure

           V is the volume

           n is the number of moles of gas

           R is the ideal gas constant

          T is the temperature

the equation to solve for the density (ρ), which is mass per unit volume:

           ρ = (PM) / (RT)

Where:

          ρ is the density

          P is the pressure

          M is the molar mass of air

          R is the ideal gas constant

          T is the temperature

Substitute the given values into the formula:

           P = 23 inHg

   (convert to SI units: 23 * 0.033421 = 0.768663 atm)

           T = 15 °F

   (convert to Kelvin: (15 - 32) * (5/9) + 273.15 = 263.15 K)

The approximate molar mass of air can be calculated as a weighted average of the molar masses of nitrogen (N₂) and oxygen (O₂) since they are the major components of air.

           M(N₂) = 28.0134 g/mol

           M(O₂) = 31.9988 g/mol

The molar mass of dry air (M) is approximately 28.97 g/mol.

     R = 0.0821 L·atm/(mol·K) (ideal gas constant in appropriate units)

let's calculate the density:

     ρ = (0.768663 atm * 28.97 g/mol) / (0.0821 L·atm/(mol·K) * 263.15 K)

     ρ ≈ 1.161 g/L

Therefore, the density of dry air at a pressure of 23 inHg and 15 °F is approximately 1.161 g/L.

Learn more about density on the given link:

https://brainly.com/question/1354972

#SPJ11

A scuba diver is swimming 17. 0 m below the surface of a salt water sea, on a day when the atmospheric pressure is 29. 92 in HG. What is the gauge pressure, on the diver the situation? The salt water has a density of 1.03 g/cm³. Give your answer in atmospheres.

Answers

The gauge pressure on a scuba diver swimming at a depth of 17.0 m below the surface of a saltwater sea can be calculated using the given information.

To find the gauge pressure on the diver, we need to consider the pressure due to the depth of the water and subtract the atmospheric pressure.

Pressure due to depth: The pressure at a given depth in a fluid is given by the equation P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the depth.

In this case, the depth is 17.0 m, and the density of saltwater is 1.03 g/cm³.

Conversion of units: Before substituting the values into the equation, we need to convert the density from g/cm³ to kg/m³ and the atmospheric pressure from in HG to atmospheres.

Density conversion: 1.03 g/cm³ = 1030 kg/m³Atmospheric pressure conversion: 1 in HG = 0.0334211 atmospheres (approx.)

Calculation: Now we can substitute the values into the equation to find the pressure due to depth.P = (1030 kg/m³) * (9.8 m/s²) * (17.0 m) = 177470.0 N/m²

Subtracting atmospheric pressure: To find the gauge pressure, we subtract the atmospheric pressure from the pressure due to depth.

Gauge pressure = Pressure due to depth - Atmospheric pressure

Gauge pressure = 177470.0 N/m² - (29.92 in HG * 0.0334211 atmospheres/in HG)

To learn more about gauge pressure click here.

brainly.com/question/30698101

#SPJ11

Many nocturnal animals demonstrate the phenomenon of eyeshine, in which their eyes glow various colors at night when illuminated by a flashlight or the headlights of a car (see the photo). Their eyes react this way because of a thin layer of reflective tissue called the tapetum lucidum that is located directly behind the retina. This tissue reflects the light back through the retina, which increases the available light that can activate photoreceptors, and thus improve the animal’s vision in low-light conditions. If we assume the tapetum lucidum acts like a concave spherical mirror with a radius of curvature of 0.750 cm, how far in front of the tapetum lucidum would an image form of an object located 30.0 cm away? Neglect the effects of

Answers

The question is related to the phenomenon of eyeshine exhibited by many nocturnal animals. The animals' eyes react in a particular way due to a thin layer of reflective tissue called the tapetum lucidum that is present directly behind the retina.

This tissue reflects the light back through the retina, which increases the available light that can activate photoreceptors and, thus, improve the animal's vision in low-light conditions.We need to calculate the distance at which an image would be formed of an object situated 30.0 cm away from the tapetum lucidum if we assume the tapetum lucidum acts like a concave spherical mirror with a radius of curvature of 0.750 cm. Neglect the effects of aberrations. Therefore, by applying the mirror formula we get the main answer as follows:

1/f = 1/v + 1/u

Here, f is the focal length of the mirror, v is the image distance, and u is the object distance. It is given that the radius of curvature, r = 0.750 cm

Hence,

f = r/2

f = 0.375 cm

u = -30.0 cm (The negative sign indicates that the object is in front of the mirror).

Using the mirror formula, we have:

1/f = 1/v + 1/u

We get: v = 0.55 cm

Therefore, an image of the object would be formed 0.55 cm in front of the tapetum lucidum. Hence, in conclusion we can say that the Image will form at 0.55 cm in front of the tapetum lucidum.

to know more about nocturnal animals visit:

brainly.com/question/31402222

#SPJ11

A load is suspended from a steel wire with a radius of 1 mm. The load extends the wire the same amount as heating by 20°С. Find the weight of the load

Answers

The weight of the load is 0.128 kg.

Radius of the wire = 1 mm

Extension in the wire = Heating by 20°С

Weight of the load = ?

Formula used: Young's Modulus (Y) = Stress / Strain

When a wire is extended by force F, the strain is given as,

Strain = extension / original length

Where the original length is the length of the wire before loading and extension is the increase in length of the wire after loading.

Suppose the cross-sectional area of the wire be A. If T be the tensile force in the wire then Stress = T/A.

Now, according to Young's modulus formula,

Y = Stress / Strain

Solving the above expression for F, we get,

F = YAΔL/L

Where F is the force applied

YA is the Young's modulus of the material

ΔL is the change in length

L is the original length of the material

Y for steel wire is 2.0 × 1011 N/m2Change in length, ΔL = Original Length * Strain

Where strain is the increase in length per unit length

Original Length = 2 * Radius

                          = 2 * 1 mm

                          = 2 × 10⁻³ m

Strain = Change in length / Original length

Let x be the weight of the load, the weight of the load acting downwards = Force (F) acting upwards

F = xN

By equating both the forces and solving for the unknown variable x, we can obtain the weight of the load.

Solution:

F = YAΔL/L

F = (2.0 × 1011 N/m²) * π (1 × 10⁻³ m)² * (20°C) * (2 × 10⁻³ m) / 2 × 10⁻³ m

F = 1.256 N

f = mg

x = F/g

  = 1.256 N / 9.8 m/s²

  = 0.128 kg

Therefore, the weight of the load is 0.128 kg.

Learn more About Young's Modulus from the given link

https://brainly.com/question/13257353

#SPJ11

Please show all work clearly. Also, this problem is not meant to take the literal calculation of densities and pressure at high Mach numbers and high altitudes. Please solve it in the simplest way with only the information given and easily accessed values online.
A scramjet engine is an engine which is capable of reaching hypersonic speeds (greater than about Mach 5). Scramjet engines operate by being accelerated to high speeds and significantly compressing the incoming air to supersonic speeds. It uses oxygen from the surrounding air as its oxidizer, rather than carrying an oxidant like a rocket. Rather than slowing the air down for the combustion stage, it uses shock waves produced by the fuel ignition to slow the air down for combustion. The supersonic exhaust is then expanded using a nozzle. If the intake velocity of the air is Mach 4 and the exhaust velocity is Mach 10, what would the expected pressure difference to be if the intake pressure to the combustion chamber is 50 kPa. Note: At supersonic speeds, the density of air changes more rapidly than the velocity by a factor equal to M^2. The inlet density can be assumed to be 1.876x10^-4 g/cm^3 at 50,000 feet. The relation between velocity and air density change, taking into account the significant compressibility due to the high Mach number (the ration between the local flow velocity and the speed of sound), is:
−^2 (/) = /
The speed of sound at 50,000 ft is 294.96 m/s.

Answers

The expected pressure difference between the intake and exhaust of a scramjet engine with an intake velocity of Mach 4 and an exhaust velocity of Mach 10 is 1.21 MPa.

The pressure difference in a scramjet engine is determined by the following factors:

The intake velocity

The exhaust velocity

The density of the air

The speed of sound

The intake velocity is Mach 4, which means that the air is traveling at four times the speed of sound. The exhaust velocity is Mach 10, which means that the air is traveling at ten times the speed of sound.

The density of the air at 50,000 feet is 1.876x10^-4 g/cm^3. The speed of sound at 50,000 feet is 294.96 m/s.

The pressure difference can be calculated using the following equation:

ΔP = (ρ1 * v1^2) - (ρ2 * v2^2)

where:

ΔP is the pressure difference in Pascals

ρ1 is the density of the air at the intake in kg/m^3

v1 is the intake velocity in m/s

ρ2 is the density of the air at the exhaust in kg/m^3

v2 is the exhaust velocity in m/s

Plugging in the known values, we get the following pressure difference:

ΔP = (1.876x10^-4 kg/m^3 * (4 * 294.96 m/s)^2) - (1.876x10^-4 kg/m^3 * (10 * 294.96 m/s)^2) = 1.21 MPa

To learn more about pressure difference click here: brainly.com/question/26504865

#SPJ11

suppose that the magnitude of the charge on the yellow sphere is determined to be 2q2q . calculate the charge qredqredq red on the red sphere. express your answer in terms of qqq , d1d1d 1 , d2d2d 2 , and θθtheta .

Answers

To calculate the charge qred on the red sphere, we need to use the concept of Coulomb's Law. According to Coulomb's Law, the electric force between two charges is given by the equation:
F = k * (q1 * q2) / r^2

Where F is the force between the charges, k is the electrostatic constant, q1 and q2 are the magnitudes of the charges, and r is the distance between the charges. In this case, we have the yellow sphere with charge magnitude 2q, and the red sphere with charge magnitude qred. The distance between the spheres can be expressed as d1 + d2.

Now, let's assume that the force between the charges is zero when the charges are in equilibrium. Therefore, we have: F = 0
k * (2q * qred) / (d1 + d2)^2 = 0
Now, solving for qred:
2q * qred = 0
qred = 0 / (2q)
Therefore, the charge qred on the red sphere is 0.

To know more about charge visit :

https://brainly.com/question/13871705

#SPJ11

The average power used by a stereo speaker is 55 W. Assuming that the speaker can be treated as a 4.0 n resistance, find the peak value of the ac voltage applied to the speaker

Answers

The peak value of the AC voltage applied to the speaker is approximately 14.8 V.

To find the peak value of the AC voltage applied to the speaker, we can use the formula P = (V^2)/R, where P is the power, V is the voltage, and R is the resistance.

By rearranging the formula, we can solve for the peak voltage, which is equal to the square root of the product of the power and resistance. Therefore, the peak value of the AC voltage applied to the speaker is the square root of (55 W * 4.0 Ω).

The formula P = (V^2)/R relates power (P), voltage (V), and resistance (R). By rearranging the formula, we can solve for V:

V^2 = P * R

V = √(P * R)

In this case, the average power used by the speaker is given as 55 W, and the resistance of the speaker is 4.0 Ω. Substituting these values into the formula, we can calculate the peak voltage:

V = √(55 W * 4.0 Ω)

V = √(220 WΩ)

V ≈ 14.8 V

Therefore, the peak value of the AC voltage applied to the speaker is approximately 14.8 V.

Learn more about AC voltage from the given link:

https://brainly.com/question/13507291

#SPJ11

Calculate the mass of ice that remains at thermal equilibrium when 1 kg of ice at -43°C is added to 1 kg of water at 24°C. Please report the mass of ice in kg to 3 decimal places. Hint: the latent h

Answers

The mass of ice remaining at thermal equilibrium is approximately 0.125 kg, assuming no heat loss or gain from the environment.

To calculate the mass of ice that remains at thermal equilibrium, we need to consider the heat exchange that occurs between the ice and water.

The heat lost by the water is equal to the heat gained by the ice during the process of thermal equilibrium.

The heat lost by the water is given by the formula:

Heat lost by water = mass of water * specific heat of water * change in temperature

The specific heat of water is approximately 4.186 kJ/(kg·°C).

The heat gained by the ice is given by the formula:

Heat gained by ice = mass of ice * latent heat of fusion

The latent heat of fusion for ice is 334 kJ/kg.

Since the system is in thermal equilibrium, the heat lost by the water is equal to the heat gained by the ice:

mass of water * specific heat of water * change in temperature = mass of ice * latent heat of fusion

Rearranging the equation, we can solve for the mass of ice:

mass of ice = (mass of water * specific heat of water * change in temperature) / latent heat of fusion

Given:

mass of water = 1 kgchange in temperature = (24°C - 0°C) = 24°C

Plugging in the values:

mass of ice = (1 kg * 4.186 kJ/(kg·°C) * 24°C) / 334 kJ/kg

mass of ice ≈ 0.125 kg (to 3 decimal places)

Therefore, the mass of ice that remains at thermal equilibrium is approximately 0.125 kg.

The complete question should be:

Calculate the mass of ice that remains at thermal equilibrium when 1 kg of ice at -43°C is added to 1 kg of water at 24°C.

Please report the mass of ice in kg to 3 decimal places.

Hint: the latent heat of fusion is 334 kJ/kg, and you should assume no heat is lost or gained from the environment.

To learn more about thermal equilibrium, Visit:

https://brainly.com/question/14556352

#SPJ11

1. A centrifuge in a medical laboratory rotates at a constant angular speed of 3950 rpm (rotations per minute). The centrifuge's moment of inertia is 0.0425 kg-m'. When switched off, it rotates 20.0 times in the clockwise direction before coming to rest. a. Find the constant angular acceleration of the centrifuge while it is stopping. b. How long does the centrifuge take to come to rest? c. What torque is exerted on the centrifuge to stop its rotation? d. How much work is done on the centrifuge to stop its rotation?

Answers

a) The constant angular acceleration of the centrifuge while stopping is approximately -0.337 rad/s^2.

b) The centrifuge takes about 59.24 seconds to come to rest.

c) The torque exerted on the centrifuge to stop its rotation is approximately 0.140 Nm.

d) The work done on the centrifuge to stop its rotation is approximately 5.88 J.

a) To find the constant angular acceleration of the centrifuge while it is stopping, we can use the formula:

ω^2 = ω₀^2 + 2αθ

where ω is the final angular velocity, ω₀ is the initial angular velocity, α is the angular acceleration, and θ is the angular displacement.

Given that the centrifuge rotates 20.0 times in the clockwise direction before coming to rest, we can convert this to radians by multiplying by 2π:

θ = 20.0 * 2π

The final angular velocity is zero, as the centrifuge comes to rest, and the initial angular velocity can be calculated by converting the given constant angular speed from rpm to rad/s:

ω₀ = 3950 X (2π/60)

Now we can rearrange the formula and solve for α:

α = (ω^2 - ω₀^2) / (2θ)

Substituting the known values, we find that the constant angular acceleration is approximately -0.337 rad/s^2.

b) The time taken for the centrifuge to come to rest can be determined using the formula:

ω = ω₀ + αt

Rearranging the formula and solving for t:

t = (ω - ω₀) / α

Substituting the known values, we find that the centrifuge takes about 59.24 seconds to come to rest.

c) The torque exerted on the centrifuge to stop its rotation can be calculated using the formula:

τ = Iα

where τ is the torque, I is the moment of inertia, and α is the angular acceleration.

Substituting the known values, we find that the torque exerted on the centrifuge is approximately 0.140 Nm.

d) The work done on the centrifuge to stop its rotation can be determined using the formula:

W = (1/2) I ω₀^2

where W is the work done, I is the moment of inertia, and ω₀ is the initial angular velocity.

Substituting the known values, we find that the work done on the centrifuge to stop its rotation is approximately 5.88 J.

To learn more about torque here brainly.com/question/30338175

#SPJ11

As part of Jayden's aviation training, they are practicing jumping from heights. Jayden's 25 m bungee cord stretches to a length of 33 m at the end of his jump when he is suspended (at rest) waiting to be raised up again. Assuming Jayden has a mass of 85 kg, use Hooke's law to find the spring constant of the bungee cord.

Answers

The spring constant of Jayden's bungee cord is approximately 104.125 N/m.

To find the spring constant of the bungee cord, we can utilize Hooke's law, which states that the force exerted by a spring is directly proportional to the displacement of the spring from its equilibrium position. In this case, the displacement is the difference in length between the unstretched and stretched bungee cord.

The change in length of the bungee cord during Jayden's jump can be calculated as follows:

Change in length = Stretched length - Unstretched length

= 33 m - 25 m

= 8 m

Now, Hooke's law can be expressed as:

F = k * x

where F is the force exerted by the spring, k is the spring constant, and x is the displacement.

Since Jayden is at rest when suspended, the net force acting on him is zero. Therefore, the force exerted by the bungee cord must balance Jayden's weight. The weight can be calculated as:

Weight = mass * acceleration due to gravity

= 85 kg * 9.8 m/s^2

= 833 N

Using Hooke's law and setting the force exerted by the bungee cord equal to Jayden's weight:

k * x = weight

Substituting the values we have:

k * 8 m = 833 N

Solving for k:

k = 833 N / 8 m

= 104.125 N/m

Therefore, the spring constant of Jayden's bungee cord is approximately 104.125 N/m.

To learn more about spring constant

https://brainly.com/question/23885190

#SPJ11

A8C charge is moving in a magnetic held with a velocity of 26x10m/s in a uniform magnetic field of 1.7. the velocity vector is making a 30° angle win the direction of magnetic field, what is the magnitude of the force experienced by the charge

Answers

The magnitude of the force experienced by the charge in a magnetic field with a velocity of 26 x 10 m/s is 932.8 N

We are given the following information in the question:

Charge on the moving charge, q = 8 C

The velocity of the charge, v = 26 × 10 m/s

Magnetic field strength, B = 1.7 T

The angle between the velocity vector and magnetic field direction, θ = 30°

We can use the formula for the magnitude of the magnetic force experienced by a moving charge in a magnetic field, which is : F = qvb sin θ

where,

F = force experienced by the charge

q = charge on the charge

m = mass of the charge

n = number of electrons

v = velocity of the charger

b = magnetic field strength

θ = angle between the velocity vector and magnetic field direction

Substituting the given values, we get :

F = (8 C)(26 × 10 m/s)(1.7 T) sin 30°

F = (8)(26 × 10)(1.7)(1/2)F = 932.8 N

Thus, the magnitude of the force experienced by the charge is 932.8 N.

To learn more about magnetic field :

https://brainly.com/question/14411049

#SPJ11

An ice cube of volume 50 cm 3 is initially at the temperature 250 K. How much heat is required to convert this ice cube into room temperature (300 K)? Hint: Do not forget that the ice will be water at room temperature.

Answers

An ice cube of volume 50 cm³ is initially at the temperature of 250K. Let's find out how much heat is required to convert this ice cube into room temperature (300 K)

Solution:

It is given that the initial temperature of the ice cube is 250K and it has to be converted to room temperature (300K).

Now, we know that to convert ice at 0°C to water at 0°C, heat is required and the quantity of heat required is given byQ = mL

where, Q = Quantity of heat required, m = Mass of ice/water and L = Latent heat of fusion of ice at 0°C.

Now, to convert ice at 0°C to water at 0°C, heat is required.

The quantity of heat required is given by:

Q1 = mL1

Where, m = mass of ice

= Volume of ice × Density of ice

= (50/1000) × 917 = 45.85g(1 cm³ of ice weighs 0.917 g)

L1 = Latent heat of fusion of ice = 3.34 × 10⁵ J/kg (at 0°C)

Therefore,

Q1 = mL1 = (45.85/1000) × 3.34 × 10⁵

= 153.32 J

Now, the water formed at 0°C has to be heated to 300K (room temperature).

Heat required is given byQ2 = mCΔT

Where, m = mass of water

= 45.85 g (from above)

C = specific heat capacity of water = 4.2 J/gK (at room temperature)

ΔT = Change in temperature = (300 - 0) K

= 300 K

T = Temperature of water at room temperature = 300K

Therefore, Q2 = mCΔT= 45.85 × 4.2 × 300= 57834 J

Therefore, total heat required = Q1 + Q2= 153.32 J + 57834 J= 57987.32 J

Hence, the heat required to convert the ice cube of volume 50 cm³ at a temperature of 250K to water at a temperature of 300K is 57987.32 J.

To know more about temperature visit :

https://brainly.com/question/7510619

#SPJ11

boy and a girl pull and push a crate along an icy horizontal surface, moving it 15 m a constant speed. The boy exerts 50 N of force at an angle of 52° above the orizontal, and the girl exerts a force of 50 N at an angle of 32° above the horizontal, calculate the total work done by the boy and girl together.

Answers

The total work done by the boy and girl together is 1112.7 J.

In this problem, a boy and a girl exert forces on a crate to pull and push it along an icy horizontal surface. The crate is moved 15 m at a constant speed. The boy exerts a force of 50 N at an angle of 52° above the horizontal, and the girl exerts a force of 50 N at an angle of 32° above the horizontal. The question is asking for the total work done by the boy and girl together.To solve this problem, we need to use the formula for work done, which is W = Fdcosθ, where W is work done, F is the force applied, d is the distance moved, and θ is the angle between the force and the displacement. We can calculate the work done by the boy and girl separately and then add them up to get the total work done.Let's start with the boy. The force applied by the boy is 50 N at an angle of 52° above the horizontal. The horizontal component of the force is Fx = Fcosθ = 50cos(52°) = 31.86 N.

The vertical component of the force is Fy = Fsinθ = 50sin(52°) = 39.70 N. Since the crate is moving horizontally, the displacement is in the same direction as the horizontal force. Therefore, the angle between the force and the displacement is 0°, and cosθ = 1. The work done by the boy is W = Fdcosθ = (31.86 N)(15 m)(1) = 477.9 J.Next, let's find the work done by the girl. The force applied by the girl is 50 N at an angle of 32° above the horizontal. The horizontal component of the force is Fx = Fcosθ = 50cos(32°) = 42.32 N.

The vertical component of the force is Fy = Fsinθ = 50sin(32°) = 26.47 N.

Again, the displacement is in the same direction as the horizontal force, so the angle between the force and the displacement is 0°, and cosθ = 1. The work done by the girl is W = Fdcosθ = (42.32 N)(15 m)(1) = 634.8 J.

To find the total work done by the boy and girl together, we simply add up the work done by each of them: Wtotal = Wboy + Wgirl = 477.9 J + 634.8 J = 1112.7 J.

To know more about total work:

https://brainly.com/question/31506558


#SPJ11

The diameter of an oxygen (2) molecule is approximately 0.300 nm.
For an oxygen molecule in air at atmospheric pressure and 18.3°C, estimate the total distance traveled during a 1.00-s time interval.

Answers

The oxygen molecule is estimated to travel approximately 0.94248 nm during a 1.00-second time interval in air at atmospheric pressure and 18.3°C.

To estimate the total distance traveled by an oxygen molecule during a 1.00-second time interval,

We need to consider its average speed and the time interval.

The average speed of a molecule can be calculated using the formula:

Average speed = Distance traveled / Time interval

The distance traveled by the oxygen molecule can be approximated as the circumference of a circle with a diameter of 0.300 nm.

The formula for the circumference of a circle is:

Circumference = π * diameter

Given:

Diameter = 0.300 nm

Substituting the value into the formula:

Circumference = π * 0.300 nm

To calculate the average speed, we also need to convert the time interval into seconds.

Given that the time interval is 1.00 second, we can proceed with the calculation.

Now, we can calculate the average speed using the formula:

Average speed = Circumference / Time interval

Average speed = (π * 0.300 nm) / 1.00 s

To estimate the total distance traveled, we multiply the average speed by the time interval:

Total distance traveled = Average speed * Time interval

Total distance traveled = (π * 0.300 nm) * 1.00 s

Now, we can approximate the value using the known constant π and convert the result to a more appropriate unit:

Total distance traveled ≈ 0.94248 nm

Therefore, the oxygen molecule is estimated to travel approximately 0.94248 nm during a 1.00-second time interval in air at atmospheric pressure and 18.3°C.

Learn more about Oxygen from the given link :

https://brainly.com/question/4030823

#SPJ11

Cyclotrons are widely used in nuclear medicine for producing short-lived radioactive isotopes. These cyclotrons typically accelerate H- (the hydride ion, which has one proton and two electrons) to an energy of 5 MeV to 20 MeV. A typical magnetic field in such cyclotrons is 2T. (a) What is the speed of a 10MeV H.? (b) If the H- has KE=10MeV and B=2T, what is the radius of this ion's circular orbit? (eV is electron- volts, a unit of energy; 1 eV =0.16 fJ) (c) How many complete revolutions will the ion make if the cyclotron is left operating
for 5 minutes?

Answers

(a) The speed of a 10 MeV H- ion can be calculated using relativistic equations,(b) The radius of the ion's circular orbit can be determined by balancing the magnetic force and the centripetal force acting on the ion,(c) The number of complete revolutions made by the ion can be calculated by considering the time period of one revolution and the total operating time of the cyclotron.

(a) To find the speed of a 10 MeV H- ion, we can use the relativistic equation E = γmc², where E is the energy, m is the rest mass, c is the speed of light, and γ is the Lorentz factor. By solving for v (velocity), we can find the speed of the ion.

(b) The radius of the ion's circular orbit can be determined by equating the magnetic force (Fm = qvB) and the centripetal force (Fc = mv²/r), where q is the charge of the ion, v is its velocity, B is the magnetic field strength, m is the mass of the ion, and r is the radius of the orbit.

(c) The number of complete revolutions made by the ion can be calculated by considering the time period of one revolution and the total operating time of the cyclotron. The time period can be determined using the velocity and radius of the orbit, and then the number of revolutions can be found by dividing the total operating time by the time period of one revolution.

By applying these calculations and considering the given values of energy, magnetic field strength, and operating time, we can determine the speed, radius of the orbit, and number of revolutions made by the H- ion in the cyclotron.

Learn more about cyclotrons from the given link:

https://brainly.com/question/6775569

#SPJ11

what is gravitational force 2-kg the wanitude of the between two 2m apart? bodies that are

Answers

The magnitude of the gravitational force between two 2 kg bodies that are 2 m apart is approximately 1.33 x 10^-11 N (newtons).

The gravitational force between two objects can be calculated using Newton's law of universal gravitation. The formula for the gravitational force (F) between two objects is given by:

F = (G * m1 * m2) / r^2

where G is the gravitational constant (approximately 6.67430 x 10^-11 N m^2/kg^2), m1 and m2 are the masses of the two objects, and r is the distance between the centers of the two objects.

Substituting the given values into the formula, where m1 = m2 = 2 kg and r = 2 m, we can calculate the magnitude of the gravitational force:

F = (6.67430 x 10^-11 N m^2/kg^2 * 2 kg * 2 kg) / (2 m)^2

≈ 1.33 x 10^-11 N

Therefore, the magnitude of the gravitational-force between two 2 kg bodies that are 2 m apart is approximately 1.33 x 10^-11 N.

To learn more about gravitational-force , click here : https://brainly.com/question/16613634

#SPJ11

Other Questions
Safranin and methylene blue are both examples of basic dyes. Basic dyes are cationic (positively charged) and react with negatively charged material such as the cytoplasm and cell membrane. For the Gram stain, could methylene-blue be substituted for safranin? If so, why do you think safranin is used instead of methylene blue?The acid-fast stain is another important differential stain used on some groups of bacteria. The primary stain is carbol fuchsin (deep pink; fuschia color), followed by an acid-alcohol decolorizer, and finally methylene blue (light blue color) counterstain. Acid-fast bacteria, such as Mycobacterium tuberculosis, retain the primary dye, whereas it is "washed" out of non-acid fast bacteria such as Escherichia coli. What colors would distinguish these two bacteria by this stain?Mycobacterium tuberculosisEscherichia coli A function of type II alveolar cells is toA.act as phagocytes.B.produce mucus in the upper respiratory tract.C.store oxygen until it can be transported into the blood.D.help control what passes between squamous epithelial cells of the alveoli.E.produce surfactant. Tim rents an apartment for $900 per month, pays his car payment of $450 per month, has utilities that cost $330 per month and spends $476 per month on food and entertainment. Determine Tim's monthly expenses. (show all work and write answers in complete sentances) Your employer automatically puts 10 percent of your salary into a 401(k) retirement account each year. The account earns 7% annual interest compounded continuously. Suppose you just got the job, your starting salary is $35000, and you expect your salary to grow at a continuous rate of 4% per year. Find the value of your retirement account after 25 years Value =$ : 5. Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards. a. setup a conservation of momentum equation. b. Use the equation above to determine the mass of the boat. c. What "Smokers should be allowed to smoke only in private where it does not offend anyone else. Would any smoker walk into a restaurant and start eating half-chewed food on someone s plate, or drink a glass of water that previously held someones teeth? Probably not, yet they expect non-smokers to inhale smoke from the recesses of their lungs. My privilege and right is to choose a clean and healthy life without interference."What is the primary subject of this argument? Consider LC circuit where at time t = 0, the energy in capacitor is maximum. What is the minimum time t (t> 0) to maximize the energy in capacitor? (Express t as L,C). (15pts) The primary aim of a therapist operating from the____ perspective is to help partners to identify and change the unspoken rules and beliefs that govern their recurring patterns of behavior. a. behavioral b. reframing c. systems d. cognitivee. emotionally focused 6 Complete the paragraph with Present Simple or Present Continuous. watching (watch) a pop concert on TV. It's 8 p.m. Jack is at home. He won He usually ... (do) his homework at this time of day. His mum ... (wash) her hair in the bathroom. And his dad? He... (not, like) spending the evening indoors because he ... (work) in an air- conditioned office all day. He ... (jog) in the nearby park. He usually ... (wear) only his track suit. This evening he ... (wear) a windbreaker because it ... (be) cold and the wind ... (blow). ... 7 Write the sentences in Present Simple or Present Continuous. A 1 Jill/always / leave the house / at 8.15 / in the morning 2 Jack and Jill / not go to school / by bus 3 Jill / eat ham and eggs / for breakfast / this morning B=[1 2 3 4 1 3; 3 4 5 6 3 4]Construct partition of matrix into 2*2 blocks (7) (5 points) Explain why the retained earnings are subtracted to arrive at the appropriate cash flow. 15.0 mg of a sparingly soluble salt (X3Y2(s)) with a solubility product constant of 1.50 x 1021 is placed into 100 cm3 of water. If the salt produces X2+(aq) and Y3(aq) ions, then its molar solubility is: ECE110 -- Final Project Guidelines For this project, you'll write a 2 to 3 page paper that explains safe indoor and outdoor learning environments for one of the following age groups: 6 to 12 months 1 to 3 years 3 to 5 years Include the following components: Introductory paragraph. Share an opening paragraph that shows the importance of providing a healthy and safe indoor and outdoor learning environment. Paragraph 2. Discuss an ideal location, space, and security of a center, school, or other facility, and explain appropriate facility maintenance and upkeep. Paragraph 3. Identify and describe two age-appropriate indoor learning activities that reinforce the importance of health, nutrition, and safety. Paragraph 4. Identify and describe two other age-appropriate outdoor learning activities that reinforce the importance of health, nutrition, and safety. Paragraph 5. Identify a disability or allergy that may have an impact on a child successfully completing at least one of the activities you identified. Share an adaptation that you could include to allow him or her to participate. Conclusion paragraph. Summarize the main points of the paper, and discuss the information mentioned in the body paragraphs. Final Project Essentials: A cover page that includes the title of the paper, the course title (ECE110-Wellness and Safety in Early Childhood), my name, and the date of submission A reference page, at the end of your project, that correctly lists each resource you used to support your thoughts in your paper Times New Roman or Arial, Size 12 font Your paper is 2 to 3 full pages (2 pages is the minimum) You should have a minimum of 2 research articles for this assignment, and they need to be cited correctly in APA formatting style Double-space your writing Review your work for clarity (complete sentences) and to avoid grammatical, punctuation, and spelling errors Your final project must be your own original work. You may not submit a previously written paper or submit any work other than your own. To avoid plagiarism, be sure to include citations for the outside sources (research, your textbook, etc.) that support your statements. It's always necessary to give another author credit! Here APA format (Links to an external site.) is more information about citing research in . It is always best to quote another source sparingly (aim for less than 20% of your total submission) and, instead, paraphrase (or summarize) the main idea of what the author is saying -- be sure to still give the original author credit (in-text citation). If you have any questions about citing your work, be sure to reach out to me. according to levy, which of these factor(s) contributed to a significant increase in the urban population of the us over the course of the 19th century (1800s)? Question 18 You want to use a blue-violet LED made with GaN semiconductor, that emits light at 430 nm in an electronic device. Enter your response to 2 decimal places. a) What is the value of the energy gap in this semiconductor? eV b) What is potential drop across this LED when it's operating? What is the function of the Stele of Hammurabi? Who was Hammurabi and what is the significance of the laws engraved on the stele? How does Hammurabi indicate that his laws are of "divine" origin? What do these laws tell us about what was important to ancient Babylonians? At a fruit stand, Dhruv is told that he may select one of the following fruits for free: an apple, a mango, or a pomegranate. Dhruv prefers mangoes to pomegranates and pomegranates to apples, so he selects a mango. The opportunity cost of the mango is: To review this concept, see the section Consumer and Producer Theory.an applean apple and a pomegranate.nothing since the fruit is free.a pomegranate A cell may respond to the presence of insulin only if OA. it has enough CAMP OB. it has nuclear insulin receptors OC. it has insulin receptors at the plasma membrane O D. it is a muscle fiber or a hepatocyte 10. Rotter proposed the concept of which is a pattern of beliefs about where responsibility for outcomes resides. A. locus of controlB. self-efficacy C. self-esteem D. traits1. Biological while 20 eri pas refers to the classification of people based on chromosomes and internal and external reproductive organs, refers to the categories or dimensions of masculinity and femininity based on social, cultural, and psychological characteristics. A. sex; gender B. gender; sex. C. sexuality; gender D. sexuality; sex Use the poem to complete the sentences.The first four lines of the poem make up asonnet quatrain coupletThe last two lines of the poem make up acouplet quatrain paraphrase