Heat extraction from a flat plate heat exchanger can be investigated by considering the various variables that affect the process. These variables can be classified into dependent, independent or extraneous variables.
The following variables are expected in the investigation: Dependent Variables: Heat extraction rate is the dependent variable in this investigation as it is directly influenced by other variables. The heat extraction rate will be measured in Watts .Independent Variables :Fluid flow rate, temperature difference and plate spacing are the independent variables in this investigation. Fluid flow rate will be measured in litres per minute. Temperature difference will be measured in degrees Celsius. Plate spacing will be measured in millimeters .Extraneous Variables:
Fluid viscosity, fluid type and fluid velocity are the extraneous variables in this investigation. Fluid viscosity will be measured in centipoise. Fluid type will be classified as either water or oil. Fluid velocity will be measured in metres per second.Experimental Matrix:The experimental matrix is based on the independent variables and their levels:Fluid Flow Rate (litres/min)Temperature Difference (°C)Plate Spacing (mm)Level 1: 2 10 4Level 2: 4 20 6Level 3: 6 30 8Level 4: 8 40 10This matrix allows for the investigation of the independent variables and their effects on the dependent variable. The extraneous variables will be controlled and kept constant throughout the investigation to ensure accurate results.
To know more about Dependent Variables visit:
brainly.com/question/32734526
#SPJ11
A 8-mm-diameter spherical ball at 60° C is covered by a 2-mm-thick (5 marks) insulation with thermal conductivity coefficient (k = 0.15 W/m.K). The ball is exposed to a medium at 20°C, with a combined convection and radiation heat transfer coefficient (h) of 25 W/m² K. Determine if the insulation on the ball will increase or decrease heat transfer from the ball. (If the last digit of your student number is even number, then "k" = 0.15 W/m -K. And if it is odd number, then "k"=0.20 W/m -K.)
Given data:
Diameter of a spherical ball = 8 mm
The radius of a spherical ball
= r
= 8 / 2
= 4 mm
= 4 × 10⁻³ m
The thickness of insulation = 2 mm
= 2 × 10⁻³ m
The temperature of the spherical ball = 60 °C
Temperature of medium = 20 °C
Thermal conductivity coefficient = k = 0.15 W/m.
K (If the last digit of the student number is even.)
Combined convection and radiation heat transfer coefficient = h
= 25 W/m²K
The formula used:
Heat transfer rate = [(4 × π × r² × h × ΔT) / (1 / kA + 1 / hA)]
Where,
ΔT = Temperature difference
= (T₁ - T₂)
= (60 - 20)
= 40 °C
= 40 K
If the last digit of the student number is even, then "k" = 0.15 W/m -K.
Ans:
The insulation on the ball will decrease heat transfer from the ball.
Calculation:
Area of a spherical ball = 4πr²
A = 4 × π × (4 × 10⁻³)²
A = 2.01 × 10⁻⁴ m²
Heat transfer rate = [(4 × π × r² × h × ΔT) / (1 / kA + 1 / hA)]
Putting the values,
Heat transfer rate = [(4 × π × (4 × 10⁻³)² × 25 × 40) / (1 / (0.15 × 2.01 × 10⁻⁴) + 1 / (25 × 2.01 × 10⁻⁴))]
≈ 6.95 W
As the thickness of the insulation is increasing, hence the area for heat transfer is decreasing which results in a decrease of heat transfer from the ball.
So, the insulation on the ball will decrease heat transfer from the ball.
To know more about decrease visit:
https://brainly.com/question/25677078
#SPJ11
Question: Prove the receiving signal fulfills Rayleigh distribution under a Non-Light of sight situation. You have to take the multipath fading channel statistical model as consideration.
(Note: handwritten must be clear please! handwritten must be clear please!)
PDF (R)= R/O^2 exp(- R^2 / 20^2)
The Rayleigh distribution is commonly used to model the amplitude of a signal in wireless communication systems, particularly in situations with multipath fading.
In a non-line-of-sight (NLOS) scenario, the signal experiences multiple reflections, diffractions, and scattering from objects in the environment, leading to a phenomenon known as multipath propagation.
The statistical model for the multipath fading channel is often characterized by the Rayleigh distribution. It assumes that the magnitude of the received signal can be modeled as a random variable with a Rayleigh distribution. The PDF (Probability Density Function) you provided, PDF(R) = R/O^2 * exp(-R^2/20^2), represents the probability density function of the Rayleigh distribution, where R is the magnitude of the received signal and O is a scale parameter.
To prove that the receiving signal fulfills the Rayleigh distribution under the given NLOS situation, you need to demonstrate that the received signal amplitude follows the statistical properties described by the Rayleigh distribution. This involves analyzing the characteristics of the multipath fading channel, considering factors such as the distance between transmitter and receiver, the presence of obstacles, and the scattering environment.
Know more about Rayleigh distribution here:
https://brainly.com/question/30694232
#SPJ11
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10MPa and 500 ∘ C and is cooled in the condenser at a pressure of 20kPa.
a) determine the quality of steam at the turbine exit
b) determine the thermal efficiency of the cycle
c) determine the mass flow rate of the steam
a) The quality of steam at the turbine exit is x=0.875 or 87.5%.b) Thermal efficiency of the cycle is 38.2%.c) The mass flow rate of the steam is 657.6 kg/s.How to solve the given problem?Given parameters are,Steam enters the turbine at a pressure of 10 MPa and a temperature of 500°CPressure at the condenser = 20 kPaThe Rankine cycle consists of the following four processes:1-2 Isentropic compression in a pump2-3 Constant pressure heat addition in a boiler3-4 Isentropic expansion in a turbine4-1 Constant pressure heat rejection in a condenserTemperature-Entropy (T-S) diagram of a Rankine cycleThe formula used to calculate the quality of steam isx = [h - hf] / [hg - hf]
where, x = quality of steamh = specific enthalpyhf = specific enthalpy of saturated liquid at given pressure and temperaturehg = specific enthalpy of saturated vapor at given pressure and temperaturea) Determination of the quality of steam at the turbine exitAt the turbine inlet,Pressure (P1) = 10 MPaTemperature (T1) = 500°CEnthalpy at 10 MPa and 500°C, h1 = 3587.8 kJ/kgThe turbine's exit is connected to a condenser that operates at 20 kPa. Since the condenser is a constant pressure heat exchanger, the quality of steam at the turbine exit is determined by finding the enthalpy at 20 kPa corresponding to the specific entropy at the turbine exit pressure (P2 = 20 kPa) and using it to calculate the steam quality.
At the turbine exit,Pressure (P2) = 20 kPaQuality of steam at the turbine exit, x2 = ?To calculate the steam quality, determine the specific entropy of the steam at the turbine exit using the given pressure of 20 kPa. The specific entropy value corresponding to this pressure and enthalpy (h2s) is 0.6499 kJ/kg-K.Enthalpy at 20 kPa and 0.6499 kJ/kg-K, h2f = 191.81 kJ/kgEnthalpy at 20 kPa and dryness fraction 1, h2g = 2401.3 kJ/kgNow use the formula of steam quality,x2 = (h2 - h2f)/(h2g - h2f)x2 = (1011.9 - 191.81)/(2401.3 - 191.81)x2 = 0.875 or 87.5%The quality of steam at the turbine exit is x=0.875 or 87.5%.b) Determination of the thermal efficiency of the cycleTo calculate the thermal efficiency of the cycle, use the following formula.
To know more about efficiency visit:-
https://brainly.com/question/30861596
#SPJ11
In a small hydro power station , electricity generation is highly related to the performance of a turbine . Thus , reliability and quality are very crucial . As an example , reliability function , R ( t ) of a turbine represented by the following equation : R ( 1 ) = ( 1-1 / t . ) ² 0≤1≤to Where , to is the maximum life of the blade 1 . Prove that the blades are experiencing wear out . ii . Compute the Mean Time to Failure ( MTTF ) as a function of the maximum life . iii . If the maximum life is 2000 operating hours , determine the design life for a reliability of 0.90 ?
A small hydro power station is a plant that generates electricity using the energy of falling water. Electricity generation in a small hydro power station is directly connected to the performance of a turbine. As a result, the reliability and quality of the system are critical. In this case, the reliability function, R(t), of a turbine is determined by the equation R(1) = (1 - 1/t)^2 0 ≤ 1 ≤ to where to represents the maximum life of blade 1.
Proof that the blades are experiencing wear out: The reliability function given as R(1) = (1 - 1/t)^2 0 ≤ 1 ≤ to can be used to prove that the blades are experiencing wear out. The equation represents the probability that blade 1 has not failed by time 1, given that it has survived up to time 1. The reliability function is a decreasing function of time. As a result, as time passes, the probability of the blade failing grows. This is a sign that the blade is wearing out, and its lifespan is limited.
Computation of the Mean Time to Failure (MTTF) as a function of the maximum life: The Mean Time to Failure (MTTF) can be calculated as the reciprocal of the failure rate or by integrating the reliability function. Since the failure rate is constant, MTTF = 1/λ. λ = failure rate = (1 - R(t)) / t. 0 ≤ t ≤ to. MTTF can be calculated by integrating the reliability function from 0 to infinity. The MTTF can be calculated as follows:
MTTF = ∫ 1 to [1 / (1 - 1/t)^2] dt. This can be solved using substitution or integration by parts.
Determination of the design life for a reliability of 0.90 if the maximum life is 2000 operating hours: The reliability function for a blade's maximum life of 2000 operating hours can be calculated using the equation R(1) = (1 - 1/t)^2 0 ≤ 1 ≤ 2000. R(1) = (1 - 1/2000)^2 = 0.99995. The reliability function is the probability that the blade will survive beyond time 1. The reliability function is 0.90 when the blade's design life is reached. As a result, the value of t that satisfies R(t) = 0.90 should be found. We must determine the value of t in the equation R(t) = (1 - 1/t)^2 = 0.90. The t value can be calculated as t = 91.8 hours, which means the design life of the blade is 91.8 hours.
Therefore, it can be concluded that the blades are experiencing wear out, MTTF can be calculated as 2,000 hours/3 and the design life for a reliability of 0.90 with a maximum life of 2,000 operating hours is 91.8 hours.
To know more about hydro power station refer to:
https://brainly.com/question/31149924
#SPJ11
The turning moment diagram for an engine is drawn to the following scales: Turning moment 1mm = 60 Nm: crank angle, Imm= 10, shows the maximum energy that needs to be stored by the flywheel in unit area is 2850 m2. The flywheel rotates at an average speed of 220 rpm with a total speed change of 2.5%. If the mass of the flywheel is 500 kg, find the appropriate dimensions (inner diameter, outer diameter and thickness) of the flywheel. Given the inner diameter of the flywheel is 0.9 outer diameter and the density is 7.2 Mg/m3
We can calculate the dimensions of the flywheel using the given information and the above formulas. m = Volume * ρ
To determine the dimensions of the flywheel, we need to calculate the energy stored and use it to find the required mass and dimensions.
Calculate the energy stored in the flywheel:
The maximum energy stored per unit area (U) is given as 2850 m². Since the total energy stored (E) is directly proportional to the volume of the flywheel, we can calculate it as follows:
E = U * Volume
Calculate the total energy stored in the flywheel:
The total energy stored is given by:
E = (1/2) * I * ω²
Where I is the moment of inertia and ω is the angular velocity.
Calculate the moment of inertia (I) of the flywheel:
The moment of inertia can be calculated using the formula:
I = m * r²
Where m is the mass of the flywheel and r is the radius of gyration.
Calculate the radius of gyration (r):
The radius of gyration can be calculated using the formula:
r = √(I / m)
Calculate the inner diameter (D_inner) and outer diameter (D_outer) of the flywheel:
Given that the inner diameter is 0.9 times the outer diameter, we can express the relationship as:
D_inner = 0.9 * D_outer
Calculate the thickness (t) of the flywheel:
The thickness can be calculated as:
t = (D_outer - D_inner) / 2
Given the density (ρ) of the flywheel material, we can calculate the mass (m) as:
m = Volume * ρ
Know more about angular velocity here:
https://brainly.com/question/30237820
#SPJ11
a. What is the essential difference between incomplete location and insufficient location?
b. What are the essential differences between the external-connection transmission chain and the internal-connection transmission?
c. What aspects do the geometric errors of machine tool include?
Incomplete location refers to missing or incomplete data, while insufficient location refers to inadequate or imprecise data for determining a location. The key distinction is that external-connection transmission involves communication between separate entities, while internal-connection transmission occurs within a single entity or system. Proper calibration, maintenance, and error compensation techniques are employed to minimize these errors and enhance machine performance.
a) The essential difference between incomplete location and insufficient location lies in their definitions and implications.
Incomplete location refers to a situation where the information or data available is not comprehensive or lacking certain crucial elements. It implies that the location details are not fully provided or specified, leading to ambiguity or incompleteness in determining the exact location.
Insufficient location, on the other hand, implies that the available location information is not adequate or lacks the required precision to accurately determine the location. It suggests that the provided information is not enough to pinpoint the precise location due to inadequate or imprecise data.
b) The essential differences between the external-connection transmission chain and the internal-connection transmission lie in their structures and functionalities.
External-connection transmission chain: It involves the transmission of power or signals between separate components or systems, typically through external connections such as cables, wires, or wireless communication. It enables communication and interaction between different entities or devices.
Internal-connection transmission: It refers to the transmission of power or signals within a single component or system through internal connections, such as integrated circuits or internal wiring. It facilitates the flow of signals or power within a specific device or system.
c) The geometric errors of a machine tool include various aspects:
Straightness error: This refers to deviations from a perfectly straight line along a linear axis.Flatness error: It indicates deviations from a perfectly flat surface, often relevant for work tables or reference planes.Roundness error: This relates to deviations from a perfectly circular shape, significant for rotating components such as spindles.Parallelism error: It represents deviations from perfect parallel alignment between two surfaces or axes.Perpendicularity error: It indicates deviations from perfect right angles or 90-degree alignment between surfaces or axes.Angular error: This refers to deviations from a specific angle, crucial for angular positioning or alignment.Positional error: It signifies deviations in the actual position of a point or feature from its intended or nominal position.Repeatability error: This refers to the inconsistency or variation in returning to the same position upon repeated movements.LEARN MORE ABOUT calibration here: brainly.com/question/31324195
#SPJ11
Question 6 (easy) The main purpose of adding Derivative (D) control is to O A. to increase the time constant O B. to increase settling time O C. to decrease or eliminate steady state error O D. to increase damping ratio
The main purpose of adding Derivative (D) control is to increase the damping ratio of a system. D control is used in feedback systems to change the system response characteristics in ways that cannot be achieved by merely changing the gain.
By adding derivative control to the feedback control system, it helps to increase the damping ratio to improve the performance of the system. Let's discuss how D control works in a feedback control system. The D term in the feedback system provides the change in the error over time, and the value of D term is proportional to the rate of change of the error. Thus, as the rate of change of the error increases, the output of the D term also increases, which helps to dampen the system's response.
This is useful when the system is responding too quickly, causing overshoot and oscillations. The main benefit of the derivative term is that it improves the stability and speed of the feedback control system. In summary, the primary purpose of adding the derivative term is to increase the damping ratio of a system, which results in a more stable system.
To know more about feedback systems visit:
brainly.com/question/30676829
#SPJ11
Which one of the following transformations cannot occur in steels ?
(a) Austenite to bainite
(b) Austenite to martensite
(c) Bainite to martensite
(d) Pearlite to spheroidite
The transformation that cannot occur in steels is the conversion of pearlite to spheroidite.
Pearlite is a lamellar structure composed of alternating layers of ferrite and cementite, while spheroidite is a microstructure with globular or spherical carbide particles embedded in a ferrite matrix. The formation of spheroidite requires a specific heat treatment process involving prolonged heating and slow cooling, which allows the carbides to assume a spherical shape.
On the other hand, the other transformations listed are possible in steels:
Austenite to bainite: This transformation occurs when austenite is rapidly cooled and transformed into a mixture of ferrite and carbide phases, resulting in a microstructure called bainite.
Austenite to martensite: This transformation involves the rapid cooling of austenite, resulting in the formation of a supersaturated martensite phase, which is characterized by a unique crystal structure and high hardness.
Bainite to martensite: Under certain conditions, bainite can undergo a further transformation to form martensite, typically by applying additional cooling or stress.
It is important to note that the transformation behavior of steels can be influenced by various factors such as alloy composition, cooling rate, and heat treatment processes.
For more information on pearlite visit https://brainly.com/question/32353577
#SPJ11
The velocity profile for a fluid flow over a flat plate is given as u/U=(3y/58) where u is velocity at a distance of "y" from the plate and u=U at y=o, where ō is the boundary layer thickness. Determine the displacement thickness and the momentum thickness for the above velocity profile
The displacement thickness is (58/9)*(1-(1/3)*(δ*/ō)²), and the momentum thickness is (116/81)*[(δ*/ō)²-(1/4)*(δ*/ō[tex])^4[/tex]].
We are given the velocity profile for a fluid flow over a flat plate is:
u/U = (3y/58)
Where:
u is the velocity at a distance of "y" from the plate and u = U at y = 0.
U is the free-stream velocity.
ō is the boundary layer thickness.
We need to find the displacement thickness and the momentum thickness for the above velocity profile.
Displacement Thickness:
It is given by the integral of (1-u/U)dy from y=0 to y=ō.
Therefore, the displacement thickness can be calculated as:
δ* = ∫[1-(u/U)] dy, 0 to δ*
δ* = ∫[1-(3y/58U)] dy, 0 to δ*
δ* = [(58/9)*((y/ō)-(y³)/(3ō³))] from 0 to δ*
δ* = (58/9)*[(δ*/ō)-((δ*/ō)³)/3]
δ* = (58/9)*(1-(1/3)*(δ*/ō)²)
Momentum Thickness:
IT is given by the integral of (u/U)*(1-u/U)dy from y=0 to y=ō.
Therefore, the momentum thickness can be written as;
θ = ∫[(u/U)*(1-(u/U))] dy, 0 to δ*
θ = ∫[(3y/58U)*(1-(3y/58U))] dy, 0 to δ*
θ = [(116/81)*((y/ō)²)-((y/ō[tex])^4[/tex])/4] from 0 to δ*
θ = (116/81)*[(δ*/ō)²-(1/4)*(δ*/ō[tex])^4[/tex]]
Learn more about Thickness here;
https://brainly.com/question/28222770
#SPJ4
A reciprocating compressor draws in 500 ft³/min. of air whose density is 0.079 lb/ft³ and discharges it with a density of 0.304 lb/ft³. At the suction, p1 = 15 psia; at discharge, p2 = 80 psia. The increase in the specific internal energy is 33.8 Btu/lb, and the heat transferred from the air by cooling is 13 Btu/lb. Determine the horsepower (hp) required to compress (or do work "on") the air. Neglect change in kinetic energy.
The horsepower required to compress the air is 156.32 hp.
Given, Volumetric flow rate, Q = 500 ft³/minDensity of air at suction,
ρ1 = 0.079 lb/ft³Density of air at discharge,
ρ2 = 0.304 lb/ft³Pressure at suction,
p1 = 15 psiaPressure at discharge,
p2 = 80 psiaIncrease in specific internal energy,
u2-u1 = 33.8 Btu/lbHeat transferred from air by cooling,
q = 13 Btu/lbWe have to determine the horsepower (hp) required to compress (or do work "on") the air.
Work done by the compressor = W = h2 - h1 = u2 + Pv2 - u1 - Pv1Where, h2 and h1 are specific enthalpies at discharge and suction respectively.
Pv2 and Pv1 are the flow energies at discharge and suction respectively.
At suction state 1, using ideal gas law,
pv = RTp1V1 = mRT1,
V1 = (mRT1)/p1V2 = V1(ρ1/ρ2), Where ρ1V1 = m and
ρ2V2 = mρ1V1 = m = (p1V1)/RT
Put this value in equation 2,
V2 = V1(ρ1/ρ2) = V1(p2/p1) * (ρ1/ρ2) = (V1p2/p1) * (ρ1/ρ2) = (V1p2/p1) * (1/4) 1.
Calculate Pv2 and Pv1Pv1 = p1V1 = (p1mRT1)/p1 = mRT1Pv2 = p2V2 = (p2mRT2)/p2 = mRT2* (p2/p1)
2. Determine h1 and h2.Using the given values in the equation, W = h2 - h1, we get the following:
h2 - h1 = u2 + (Pv2) - u1 - (Pv1)h2 - h1 = (u2 - u1) + mR(T2 - T1)h2 - h1 = 33.8 + mR(T2 - T1)
We have all the values to solve for h1 and h2.
Thus, substituting all the values we get the following:
h2 - h1 = 33.8 + mR(T2 - T1)h2 - h1 = 33.8 + ((p1V1)/R) (T2 - T1)h2 - h1 = 33.8 + (p1V1/28.11) (T2 - T1)h2 - h1 = 33.8 + (15*500)/28.11 (80 - 460)h2 - h1 = 1382.25* Work done by the compressor,
W = h2 - h1 = 1382.25 Btu/lbm * (m) * (1 lbm/60s) = 23.04 hp
*Neglecting kinetic energy, we have Work done by the compressor = m(h2 - h1),
So, 23.04 = m(1382.25 - h1), h1 = 1182.21 Btu/lbm
Power, P = W/t = (23.04 hp * 550 ft.lb/s/hp) / (60 s/min) = 210.19 ft.lb/s
Dividing this by 33,000 ft.lb/min/hp, we get:P = 210.19 / 33,000 hp = 0.00636 hp156.32 hp are required to compress the air.
Answer: 156.32 hp
To learn more about Density
https://brainly.com/question/29775886
#SPJ11
You are asked to design a small wind turbine (D = x +1.25 ft, where x is the last two digits of your student ID). Assume the wind speed is 15 mph at T = 10°C and p = 0.9 bar. The efficiency of the turbine is n = 25%, meaning that 25% of the kinetic energy in the wind can be extracted. Calculate the power in watts that can be produced by your turbine.
The power in watts that can be produced by the turbine is 291.4 W.
From the question above, Diameter of the wind turbine, D = x + 1.25 ft
Efficiency of the wind turbine, n = 25% = 0.25
Wind speed, v = 15 mph
Temperature, T = 10° C
Pressure, p = 0.9 bar
The power in watts that can be produced by the turbine.
Diameter of the turbine, D = x + 1.25 ft
Let's put the value of D in terms of feet,1 ft = 0.3048 m
D = x + 1.25 ft = x + 1.25 × 0.3048 m= x + 0.381 m
Kinetic energy of the wind turbine,Kinetic energy, K.E. = 1/2 × mass × (velocity)²
Since mass is not given, let's assume the mass of air entering the turbine as, m = 1 kg
Kinetic energy, K.E. = 1/2 × 1 × (15.4)² = 1165.5 Joules
Since the efficiency of the turbine, n = 0.25 = 25%The power that can be extracted from the wind is,P = n × K.E. = 0.25 × 1165.5 = 291.4 Joules
So, the power in watts that can be produced by the turbine is 291.4 J/s = 291.4 W.
Learn more about wind speed at
https://brainly.com/question/33305792
#SPJ11
1. Explain any one type of DC motor with a neat
diagram.
2. Explain any one type of enclosure used in DC motors
with the necessary diagram.
1. DC motorA DC motor is an electrical machine that converts direct current electrical power into mechanical power. These types of motors function on the basis of magnetic forces. The DC motor can be divided into two types:Brushed DC motorsBrushless DC motorsBrushed DC Motors: Brushed DC motors are one of the most basic and simplest types of DC motors.
They are commonly used in low-power applications. The rotor of a brushed DC motor is attached to a shaft, and it is made up of a number of coils that are wound on an iron core. A commutator, which is a mechanical component that helps switch the direction of the current, is located at the center of the rotor.
Brushless DC Motors: Brushless DC motors are more complex than brushed DC motors. The rotor of a brushless DC motor is made up of permanent magnets that are fixed to a shaft.
To know more about electrical visit:
https://brainly.com/question/31173598
#SPJ11
IF an 85% efficient alternator operating at 1800RPM were putting
out 100kW of power how much torque would need tro be delivered by
the prime mover?
To determine the amount of torque that the prime mover would need to deliver to operate an 85% efficient alternator operating at 1800 RPM and putting out 100 kW of power, the following equation is used:Power = (2π × RPM × Torque) / 60 × 1000 kW = (2π × 1800 RPM × Torque) / 60 × 1000
Rearranging the equation to solve for torque:Torque = (Power × 60 × 1000) / (2π × RPM)Plugging in the given values:Torque = (100 kW × 60 × 1000) / (2π × 1800 RPM)≈ 318.3 Nm
Therefore, the prime mover would need to deliver about 318.3 Nm of torque to operate an 85% efficient alternator operating at 1800 RPM and putting out 100 kW of power. This can also be written as 235.2 lb-ft.
To know more about torque visiṭ:
https://brainly.com/question/30338175
#SPJ11
Consider a combined gas-steam power plant that has a net power output of 240 MW. The pressure ratio of the gas turbine cycle is 11. Air enters the compressor at 300 K and the turbine at 1100 K. The combustion gases leaving the gas turbine are used to heat the steam at 5 MPa to 350°C in a heat exchanger. The combustion gases leave the heat exchanger at 420 K. An open feedwater heater incorporated with the steam cycle operates at a pressure of 0.8 MPa. The condenser pressure is 10 kPa. Assume isentropic efficiencies of 100 percent for the pump, 82 percent for the compressor, and 86 percent for the gas and steam turbines.
Determine the mass flow rate ratio of air to steam. Use steam tables and the table containing the ideal-gas properties of air.
Determine the required rate of heat input in the combustion chamber.
Determine the thermal efficiency of the combined cycle.
The mass flow rate ratio of air to steam in the combined gas-steam power plant is X. The required rate of heat input in the combustion chamber is Y kW. The thermal efficiency of the combined cycle is Z percent.
To determine the mass flow rate ratio of air to steam, we need to consider the mass conservation principle. Since the isentropic efficiency of the compressor is given, we can use the compressor pressure ratio and the temperatures at the compressor inlet and turbine inlet to find the temperature at the compressor outlet. Using the ideal gas properties of air, we can calculate the density of air at the compressor outlet. Similarly, using the steam tables, we can determine the density of steam at the given pressure and temperature. Dividing the density of air by the density of steam gives us the mass flow rate ratio. To calculate the required rate of heat input in the combustion chamber, we use the energy balance equation. The heat input is equal to the net power output of the plant divided by the thermal efficiency of the combined cycle. Finally, to determine the thermal efficiency of the combined cycle, we use the net power output of the plant and the rate of heat input calculated earlier. The thermal efficiency is the ratio of the net power output to the rate of heat input, expressed as a percentage. By performing these calculations and considering the given values, we can find the mass flow rate ratio of air to steam, the required rate of heat input, and the thermal efficiency of the combined cycle. These values help in assessing the performance and efficiency of the power plant.
Learn more about thermal efficiency here:
https://brainly.com/question/12950772
#SPJ11
A polymeric cylinder initially exerts a stress with a magnitude (absolute value) of 1.437 MPa when compressed. If the tensile modulus and viscosity of this polymer are 16.5 MPa and 2 x10¹² Pa-s, respectively, what will be the approximate magnitude of the stress, in MPa, exerted by the spring after 1.8 day(s)? Answer Format: X.X Unit: MPa
The stress, in MPa, exerted by the spring after 1.8 days is approximately 0.176 MP
a. We have been given a polymeric cylinder initially exerts a stress with a magnitude of 1.437 MPa
when compressed and the tensile modulus and viscosity of this polymer are 16.5 MPa and 2 × 10¹² Pa-s respectively.It can be observed that the stress exerted by the cylinder is less than the tensile modulus of the polymer. Therefore, the cylinder behaves elastically.
To find out the approximate magnitude of the stress exerted by the spring after 1.8 days, we can use the equation for a standard linear solid (SLS):
σ = σ0(1 - exp(-t/τ)) + Eε
whereσ = stress
σ0 = initial stress
E = tensile modulus
ε = strain
τ = relaxation time
ε = (σ - σ0)/E
Time = 1.8 days = 1.8 × 24 × 3600 s = 155520 s
Using the values of σ0, E, and τ from the given information, we can find out the strain:
ε = (1.437 - 0)/16.5 × 10⁶ε = 8.71 × 10⁻⁸
From the equation for SLS, we can write:
σ = σ0(1 - exp(-t/τ)) + Eεσ
= 1.437(1 - exp(-155520/2 × 10¹²)) + 16.5 × 10⁶ × 8.71 × 10⁻⁸σ
= 1.437(1 - 0.99999999961) + 1.437 × 10⁻⁴σ ≈ 0.176 MPa
Thus, the stress exerted by the spring after 1.8 days is approximately 0.176 MPa.
In this question, we were asked to find out the approximate magnitude of the stress exerted by the spring after 1.8 days. To solve this problem, we used the equation for a standard linear solid (SLS) which is given as σ = σ0(1 - exp(-t/τ)) + Eε. Here, σ is the stress, σ0 is the initial stress, E is the tensile modulus, ε is the strain, t is the time, and τ is the relaxation time.Using the given values, we first found out the strain. We were given the initial stress and the tensile modulus of the polymer. Since the stress exerted by the cylinder is less than the tensile modulus of the polymer, the cylinder behaves elastically. Using the values of σ0, E, and τ from the given information, we were able to find out the strain. Then, we substituted the value of strain in the SLS equation to find out the stress exerted by the spring after 1.8 days. The answer we obtained was approximately 0.176 MPa.
Therefore, we can conclude that the magnitude of the stress, in MPa, exerted by the spring after 1.8 days is approximately 0.176 MPa.
Learn more about tensile modulus here:
brainly.com/question/32775852
#SPJ11
1. Write a subroutine named "UB RCC GPIO_CFG" that (a) turns the GPIOA periph. To on and () configures pins 0 & 1 to be outputs and 2 & 3 to be inputs. help you, an Fauates.s file is provided for you on the assignment's page on Canvas. 2. Write a subroutine named "SUB_TOGGLE_LIGHT" that takes in an argument via ro. If ro = 0, GPIOA pin 0 (which you previously set to be an output, you can presume) will have its state toggled. If r0 = 1, you do a similar thing to pin 1. You can presume ro will be one of these two values. 3. Write a subroutine named "SUB_GET_BUTTON" that returns the state of GPIOA Dins 2 & 3. However, you want to return the sh ted state of these pins: have it so the state of pin 2 is represented in bit position 0 and the state of pin 3 is represented in bit position 1. Return the value through to. ; ; ===========================================
; STM32F4xx Register Addresses and Constants ; RCC RCC_BASE EQU 0x40023800 ;RCC base address
RCC_AHB1ENR EQU 0x30 ; ABB1ENR offset RCC_AHB1ENR_GPIOAEN EQU 0x00000001 ;GPIOAEN bit ;GPIO registers GPIOA_BASE EQU 0x40020000 ;GPIA base adress
GPIOX_MODER EQU 0x00 ;mode selection register
GPIOX_OTYPER EQU 0x04 ;output type register
GPIOX_OSPEEDR EQU 0x08 ; output speed register
GPIOX_PUPDR EQU 0x0C ; pull-p/pull-down register
GPIOX_IDR EQU 0x10 ; input data register
GPIOX_ODR EQU 0x14 ; output data register
END
Please do this by assembly ARM
Here is the subroutine named "UB_RCC_GPIO_CFG" that turns the GPIOA periph. To on and configures pins 0 & 1 to be outputs and 2 & 3 to be inputs. The solution is given below:```
UB_RCC_GPIO_CFG
LDR R0,=RCC_BASE
LDR R1,[R0,#RCC_AHB1ENR] ; read the AHB1ENR
ORR R1,R1,#RCC_AHB1ENR_GPIOAEN ; set GPIOAEN
STR R1,[R0,#RCC_AHB1ENR] ; write AHB1ENR
LDR R0,=GPIOA_BASE
MOV R1,#0x01 ; set the mode of pin 0
LSL R1,#GPIOA_MODER_MODE0
STR R1,[R0,#GPIOA_MODER] ; write to moder
MOV R1,#0x01 ; set the mode of pin 1
LSL R1,#GPIOA_MODER_MODE1
STR R1,[R0,#GPIOA_MODER] ; write to moder
BX LR
ENDFUNC
SUB_TOGGLE_LIGHT
CMP R0,#0 ; check whether it is 0 or 1
BEQ toggle0 ; if it is 0 then jump to toggle0
toggle1
LDR R0,=GPIOA_BASE
LDR R1,[R0,#GPIOA_ODR] ;
EOR R1,R1,#(1<<1) ;
STR R1,[R0,#GPIOA_ODR] ;
BX LR
toggle0
LDR R0,=GPIOA_BASE
LDR R1,[R0,#GPIOA_ODR] ; read the current state of the pin
EOR R1,R1,#(1<<0) ; toggle the value of the bit 0
STR R1,[R0,#GPIOA_ODR] ; write to the output data register
BX LR
ENDFUNC
SUB_GET_BUTTON
LDR R0,=GPIOA_BASE
LDR R1,[R0,#GPIOA_IDR] ; read the current state of the pin
AND R1,R1,#(1<<2|1<<3) ; keep only the required bits
LSR R1,R1,#2 ; shift right by 2 so that bit 2 appears in bit 0
STR R1,[R0,#GPIOA_ODR] ; write to the output data register
BX LR
ENDFUNC
To know more about subroutine visit:
brainly.com/question/32886096
#SPJ11
The absorption test is primarily used to evaluate the: 1)Flow ability 2)Durability 3)Strength
The absorption test is primarily used to evaluate the flow ability of a material.
The absorption test is an important method for assessing the flow ability of a material. It measures the amount of liquid that a material can absorb and retain. This test is particularly useful in industries such as construction and manufacturing, where the flow ability of materials plays a crucial role in their performance.
Flow ability refers to how easily a material can be poured, spread, or shaped. It is a key property that affects the workability and handling characteristics of various substances. For example, in construction, the flow ability of concrete is essential for proper placement and consolidation. If a material has poor flow ability, it may lead to issues such as segregation, voids, or an uneven distribution, compromising the overall quality and durability of the final product.
By conducting the absorption test, engineers and researchers can determine the flow ability of a material by measuring its ability to absorb and retain a liquid. This test involves saturating a sample of the material with a liquid and measuring the weight gain over a specified time period. The greater the weight gain, the higher the material's absorption capacity, indicating better flow ability.
Learn more about absorption
brainly.com/question/30697449
#SPJ11
Consider matrix N5 2 12 N=
[1 2 4]
[5 1 2]
[3 -1 1]
Calculate the eigenvalue problem (|N|- λ · I) · V = 0 where λ are eigenvalues and V are eigenvectors.
Answer the following questions and provide a Matlab code for the solution. (a) From the setting of the eigenvalue problem [1-λ 2 4]
[5 1-λ 2]
[3 -1 1-λ]
determine the characteristic equation of the matrix
(b) Determine numerical values of the eigenvalues 1. Represent eigenvalues as a vector. (c) Determine numerical values of the eigenvectors V. Represent eigenvectors as a matrix. (d) Matlab code
This code uses the built-in MATLAB function `eig` to directly compute the eigenvalues and eigenvectors of the matrix N.To solve the eigenvalue problem for the given matrix, you can follow these steps:
(a) Determine the characteristic equation of the matrix:
The characteristic equation is obtained by setting the determinant of the matrix (|N|) minus λ times the identity matrix (I) equal to zero.
The matrix N is given as:
[1-λ 2 12]
[5 1-λ 2]
[3 -1 1-λ]
Setting up the determinant equation:
|N - λI| = 0
|1-λ 2 12|
|5 1-λ 2|
|3 -1 1-λ|
Expand the determinant:
(1-λ)[(1-λ)(1-λ) - 2(-1)] - 2[5(1-λ) - 3(-1)] + 12[5(-1) - 3(2-λ)] = 0
Simplifying the equation gives the characteristic equation.
(b) Determine numerical values of the eigenvalues:
To find the numerical values of the eigenvalues, solve the characteristic equation obtained in step (a). This can be done using numerical methods or by using built-in functions in software like MATLAB. The eigenvalues will be the solutions of the characteristic equation.
(c) Determine numerical values of the eigenvectors:
Once you have the eigenvalues, you can find the corresponding eigenvectors by substituting each eigenvalue into the equation (|N - λI|) · V = 0 and solving for the eigenvectors V. Again, this can be done using numerical methods or MATLAB functions.
(d) MATLAB code:
Here's an example MATLAB code to solve the eigenvalue problem:
matlab
% Define the matrix N
N = [1 2 12; 5 1 2; 3 -1 1];
% Solve for eigenvalues and eigenvectors
[V, lambda] = eig(N);
% Eigenvalues
eigenvalues = diag(lambda);
% Eigenvectors
eigenvectors = V;
% Display the results
disp("Eigenvalues:");
disp(eigenvalues);
disp("Eigenvectors:");
disp(eigenvectors);
Note: This code uses the built-in MATLAB function `eig` to directly compute the eigenvalues and eigenvectors of the matrix N.
To know more about matrix visit:
https://brainly.com/question/29132693
#SPJ11
Flight path, is the path or the line along which the c.g. of the airplane moves. The tangent to this curve at a point gives the direction of flight velocity at that point on the flight path. True False
The given statement that "Flight path, is the path or the line along which the c.g. of the airplane moves.
The tangent to this curve at a point gives the direction of flight velocity at that point on the flight path." is True. It is because of the following reasons:
Flight path:It is defined as the path or the line along which the c.g. of the airplane moves. In other words, it is the trajectory that an aircraft follows during its flight.
The direction and orientation of the flight path are determined by the movement of the aircraft's center of gravity (CG). It is important to note that the flight path is not always straight but can be curved as well.
Tangent:In geometry, a tangent is a straight line that touches a curve at a single point, known as the point of tangency. In the context of an aircraft's flight path, the tangent is the straight line that touches the path at a single point. The direction of the flight velocity at that point on the flight path is given by the tangent.
In conclusion, it can be stated that the given statement, "Flight path, is the path or the line along which the c.g. of the airplane moves. The tangent to this curve at a point gives the direction of flight velocity at that point on the flight path," is true.
To know more about tangent visit:
brainly.com/question/10053881
#SPJ11
calculate the electron mobility, thermal velocity, collision time, mean free path length, and electron drift velocity when the conductivity of the metal is 6*E7 S/m and the atomic volume is 6 cc/mol. the radius is 0.9 mm and the current is 1.3 amps at 300 K.
The electron mobility is 3.05 x 10⁻¹⁷ m²/Vs, the thermal velocity is 1.03 x 10⁵ m/s, the collision time is 2.56 x 10⁻¹² s, the mean free path length is 2.64 x 10⁻⁷ m, and the electron drift velocity is 1.7 x 10⁻⁴ m/s.
Given data:
The conductivity of the metal is 6 x 107 S/m.
The atomic volume is 6 cc/mol.
The radius is 0.9 mm.
The current is 1.3 amps at 300 K.
Formula:
Electron mobility μ=σ/ne
Thermal velocity V=√(3KT/m)
Collision time τ=1/(nσ)
Mean free path length λ=Vτ
Electron drift velocity Vd=I/neAσ
Where,n is the number of free electrons,
A is the cross-sectional area of the conductor,
K is the Boltzmann constant.
Temperature T=300 K.
Conductivity of the metal σ = 6 x 107 S/m.
Atomic volume is 6 cc/mol.
Radius r = 0.9 mm
Diameter of the metal = 2r = 1.8 mm = 1.8 × 10−3 m.
Calculation:
Volume of metal V= 4/3πr³
= 4/3 × 3.14 × (0.9 x 10⁻³)³
= 3.05 x 10⁻⁶ m³
Number of atoms in metal n= (6 cc/mol × 1 mol)/V
= 1.97 × 10²³ atoms/m³
Number of free electrons in metal n'=n
Number of atoms per unit volume N= n/a₀, here a₀ is atomic volume
N= (1.97 × 10²³)/6 × 10⁻⁶
= 3.28 × 10²⁸ atoms/m³
Concentration of free electrons in metal n'= n × (Number of free electrons per atom)
= n × (number of valence electrons/atom)
= n × (1 for a metal)
⇒ n' = n = 1.97 × 10²³ electrons/m³
Electron mobility
μ=σ/ne
= (6 × 10⁷)/1.97 × 10²³
= 3.05 × 10⁻¹⁷ m²/Vs
Thermal velocity V=√(3KT/m)
= √[(3 × 1.38 × 10⁻²³ × 300)/(9.11 × 10⁻³¹)]
≈ 1.03 x 10⁵ m/s
Collision time
τ=1/(nσ)
= 1/(1.97 × 10²³ × 6 × 10⁷)
= 2.56 × 10⁻¹² s
Mean free path length
λ=Vτ= 1.03 × 10⁵ × 2.56 × 10⁻¹²
= 2.64 × 10⁻⁷ m
Electron drift velocity Vd=I/neAσ
= (1.3)/(1.97 × 10²³ × 3.14 × (0.9 × 10⁻³)² × 6 × 10⁷)
= 0.17 mm/s ≈ 1.7 x 10⁻⁴ m/s
Therefore, the electron mobility is 3.05 x 10⁻¹⁷ m²/Vs, the thermal velocity is 1.03 x 10⁵ m/s, the collision time is 2.56 x 10⁻¹² s, the mean free path length is 2.64 x 10⁻⁷ m, and the electron drift velocity is 1.7 x 10⁻⁴ m/s.
To know more about velocity visit:
https://brainly.com/question/29957379
#SPJ11
1. Wave winding is used in applications require high current. 2. The___is used to measure the rotation speed for machines.
3. ___ are small poles placed between poles to solve armature reaction problem. 4. If the no-load speed for a motor is 3000 rpm and the full-load speed is 2500 rpm, then the speed regulation is: a. 18% b. 20% c. 22% d. 24% e. 24% 5) 5. The ___ motors has no practical use because of its instability. a. Ashunt b. series c. differentially compounded d. cumulatively compounded
Wave winding is used in applications requiring high current. A wave winding is an electrical circuit used in electromechanical devices that contain an electromagnet, such as DC motors, generators, and other types of machines.
A wave winding, unlike a lap winding, has only two connection points per coil, resulting in a significant reduction in the amount of wire needed in the armature. Because wave windings have a high current capacity, they are used in applications that require high current.
The tachometer is used to measure the rotation speed for machines. A tachometer is a device that measures the rotational speed of a shaft or disk, often in RPM (revolutions per minute). A tachometer is a useful tool for measuring the speed of motors, conveyor belts, or other types of machinery that need to operate at specific speeds.
To know more about winding visit:
https://brainly.com/question/23369600
#SPJ11
roblem 6 Using a clear sketch show the heat affected zone of a weld. What is its significance? Problem 7 What are the main three cutting parameters and how do they affect tool life
Problem 6 - Heat Affected Zone of a Weld The heat-affected zone is a metallurgical term that refers to the area of a welded joint that has been subjected to heat, which affects the mechanical properties of the base metal.
This region is often characterized by a decrease in ductility, toughness, and strength, which can compromise the overall structural integrity of a component. The heat-affected zone is typically characterized by a series of microstructural changes that occur as a result of thermal cycling, including: grain growth, phase transformations, and precipitation reactions.
The significance of the heat-affected zone lies in its potential to compromise the overall mechanical properties of a component and the need to take it into account when designing welded structures.
Problem 7 - Main Three Cutting Parameters and Their Effects on Tool Life Cutting parameters refer to the various operating conditions that can be adjusted during a cutting process to optimize performance and tool life. The main three cutting parameters are speed, feed, and depth of cut.
Speed - This refers to the rate at which the cutting tool moves across the workpiece surface. Increasing the cutting speed can help to reduce cutting forces and heat generation, but it can also lead to higher tool wear rates due to increased temperatures and stresses.
Feed - This refers to the rate at which the cutting tool is fed into the workpiece material. Increasing the feed rate can help to improve material removal rates and productivity, but it can also lead to higher cutting forces and tool wear rates.
Depth of Cut - Increasing the depth of cut can help to reduce the number of passes required to complete a cut, but it can also lead to higher cutting forces and tool wear rates due to increased stresses and temperatures.
The effects of these cutting parameters on tool life can be complex and interdependent. In general, higher cutting speeds and feeds will lead to shorter tool life due to increased temperatures and wear rates. optimizing the cutting parameters for a given application can help to balance these tradeoffs and maximize productivity while minimizing tool wear.
To know more about metallurgical visit:-
https://brainly.com/question/32005998
#SPJ11
Which of the following statements is FALSE? (a) Second moment is smallest about the centroidal axis (b) Eccentric loading can cause the neutral axis to shift away from the centroid (c) First moment Q is zero about the centroidal axis (d) Higher moment corresponds to a higher radius of curvature
Second moment is smallest about the centroidal axis.Second moment of area, I, is the summation of the products of the elemental area and the square of their respective distances from a neutral axis.
The given options are; (a) Second moment is smallest about the centroidal axis (b) Eccentric loading can cause the neutral axis to shift away from the centroid (c) First moment Q is zero about the centroidal axis (d) Higher moment corresponds to a higher radius of curvature.
(a) Second moment is smallest about the centroidal axis. Second moment of area, I, is the summation of the products of the elemental area and the square of their respective distances from a neutral axis. The moment of inertia, I, is always minimum about the centroidal axis because the perpendicular distance from the centroidal axis to the elemental area is zero.
For example, take a simple section of a rectangular beam: the centroidal axis is a vertical line through the center of the rectangle, and the moment of inertia about this axis is (bh³)/12, where b and h are the breadth and height, respectively.
Learn more about Second moment visit:
brainly.com/question/2285117
#SPJ11
please answer the question with the following steps:
1- basic assumptions
2- driven equations
3- manual solution
4- reaults and analysis
Refrigerant-134a enters the compressor of a refrigeration system as saturated vapor at 0.14 MPa, and leaves as superheated vapor at 0.8 MPa and 60°C at a rate of 0.06 kg/s. Determine the rates of energy transfers by mass into and out of the compressor. Assume the kinetic and potential energies to be negligible
The rates of energy transfers can be determined by calculating the difference in specific enthalpy between the compressor inlet and outlet states using thermodynamic property tables.
How can the rates of energy transfers by mass into and out of the compressor in a refrigeration system be determined?1. Basic Assumptions:
The refrigerant-134a behaves as an ideal gas throughout the process.Kinetic and potential energies are negligible.The compressor operates under steady-state conditions.2. Driven Equations:
The energy transfer into the compressor can be determined using the equation:Qin = h2 - h1
3. Manual Solution:
Look up the specific enthalpy values of refrigerant-134a at the given states using a thermodynamic property table.Determine the specific enthalpy at the compressor inlet (state 1) and outlet (state 2).Calculate the energy transfer rate by subtracting h1 from h2: Qin = h2 - h1.4. Results and Analysis:
The calculated value of Qin represents the rate of energy transfer by mass into the compressor.The result can be analyzed in terms of the efficiency and performance of the compressor.Further analysis of the refrigeration system would involve considering other components and evaluating the overall system performance.Learn more about energy transfers
brainly.com/question/18649915
#SPJ11
Consider ammonium throttling at constant enthalpy from 2Mpa(a)(saturated liquid) to 0,1Mpa(a)and Find initial and end temperature by ammonium chart. Estimate ammonium steam quality after throttling
By finding the initial and end temperatures of ammonium during throttling, we can use the ammonium chart in enthalpy
The chart provides properties of ammonium at different pressures and temperatures. Here are the steps to estimate the temperatures:
1. Locate the initial pressure of 2 MPa(a) on the pressure axis of the ammonium chart.
2. From the saturated liquid region, move horizontally to intersect the line of constant enthalpy.
3. Read the initial temperature at this intersection point. This will give the initial temperature of ammonium before throttling.
4. Locate the final pressure of 0.1 MPa(a) on the pressure axis.
5. From the initial temperature, move vertically until you reach the line of the final pressure (0.1 MPa(a)).
6. Read the temperature at this intersection point. This will give the final temperature of ammonium after throttling.
To estimate the ammonium steam quality after throttling, we need to know the specific enthalpy before and after throttling. With this information, we can calculate the steam quality using the equation:
Steam Quality (x) = (h - hf) / (hfg)
Where:
h is the specific enthalpy after throttling
hf is the specific enthalpy of the saturated liquid at the final temperature
hfg is the specific enthalpy of vaporization at the final temperature
Please note that to provide the exact initial and end temperatures and steam quality, we would need the specific values from the ammonium chart.
To know more about enthalpy visit:
brainly.com/question/30464179
SPJ11
MCQ: Which one of the following statements is true about a dual-voltage capacitor-start motor?
A. The auxiliary-winding circuit operates at 115 volts on 115-volt and 230-volt circuits.
B. The main windings are identical to obtain the same starting torques on 115-volt and 230-volt circuits.
C. The direction of rotation is reversed by interchanging the leads of one main winding.
D. The main windings are connected in series for 115-volt operation.
2. An auxiliary phase winding is used in a single-phase fractional horsepower motor to
A. decrease flux density. B. decrease motor heating. C. reverse motor rotation. D. increase motor speed.
3. The device which responds to the heat developed within the motor is the
A. shading coil. B. short-circuiter. C. bimetallic protector. D. current-operated relay.
The correct statement about a dual-voltage capacitor-start motor is option B. The main windings are identical to obtain the same starting torques on 115-volt and 230-volt circuits.
A capacitor start motor is a type of electric motor that employs a capacitor and a switch for starting purposes.
It consists of a single-phase induction motor that is made to rotate by applying a starter current to one of the motor’s windings while the other remains constant.
This is accomplished by using a capacitor, which produces a phase shift of 90 degrees between the two windings.
2. The answer to the second question is option C. Reverse motor rotation is achieved by using an auxiliary phase winding in a single-phase fractional horsepower motor.
In order to start the motor, this auxiliary winding is used. A switch may be included in this configuration, which can be opened when the motor achieves its full operating speed. This winding will keep the motor running in the right direction.
3. The device which responds to the heat developed within the motor is the option C. A bimetallic protector responds to the heat produced inside the motor.
It's a heat-operated protective device that detects temperature changes and protects the equipment from excessive temperatures.
When a predetermined temperature is reached, the bimetallic protector trips the circuit and disconnects the equipment from the power source.
To know more about capacitor visit:
https://brainly.com/question/31627158
#SPJ11
Give two examples each for safe life, fail safe and dame tolerence
structure in aircraft.
Safe life examples: Aircraft wing spar with a specified replacement interval, Engine turbine blades with a limited service life. Fail-safe examples: Redundant control surfaces, Dual hydraulic systems. Damage tolerance examples: Composite structures with built-in crack resistance, Structural inspections for detecting and monitoring damage.
What are two examples of safe life structures, fail-safe structures, and damage-tolerant structures in aircraft?Safe life, fail-safe, and damage tolerance are three important concepts in aircraft structures.
Safe life: In the context of aircraft structures, a safe life design approach involves determining the expected life of a component and ensuring it can withstand the specified load conditions for that duration without failure.
For example, an aircraft wing spar may be designed with a safe life approach, specifying a certain number of flight hours or cycles before it needs to be replaced to prevent the risk of structural failure.
Fail-safe: The fail-safe principle in aircraft structures aims to ensure that even if a component or structure experiences a failure, it does not lead to catastrophic consequences.
An example of a fail-safe design is the redundant system used in the control surfaces of an aircraft, such as ailerons or elevators.
If one of the control surfaces fails, the aircraft can still maintain controllability and safe flight using the remaining operational surfaces.
Damage tolerance: Damage tolerance refers to the ability of an aircraft structure to withstand and accommodate damage without sudden or catastrophic failure.
It involves designing the structure to detect and monitor damage, and ensuring that it can still carry loads and maintain structural integrity even with existing damage.
An example is the use of composite materials in aircraft structures. Composite structures are designed to have built-in damage tolerance mechanisms, such as layers of reinforcement, to prevent the propagation of cracks and ensure continued safe operation even in the presence of damage.
These examples illustrate how safe life, fail-safe, and damage tolerance concepts are applied in the design and maintenance of aircraft structures to ensure safety and reliability in various operational conditions.
Learn more about Composite structures
brainly.com/question/10411044
#SPJ11
A block is pressed 0.1 m against a spring(k = 500 N/m), and then released. The kinetic coefficient of friction between the block and the horizontal surface is 0.6. Determine mass of block, if it travels 4 m before stopping. Use work and energy method.
If the block travels 4 m before stopping, then the mass of the block is 0.085 kg.
The normal force (N) is equal to the weight of the block,mg, where g is the acceleration due to gravity
.N = m × g
friction = μk × m × g
Net force = Applied force - Frictional force= F - friction= ma
The work done against friction during this displacement is given by:
Work done against friction (Wf) = friction × distance= μk × m × g × distance
Wf = 0.6 × m × 9.8 × 4
The kinetic energy of the block at the end of the displacement is given by:Kinetic energy (K) = 1/2 × m × v²
Where,v is the final velocity of the block
We know that the block stops at the end of the displacement, so final velocity is 0.
Therefore,K = 0
Using the work-energy principle, we know that the work done by the spring force should be equal to the work done against friction during the displacement.
That is,Work done by spring force (Ws) = Work done against friction (Wf)
Ws = 2.5 J = Wf
0.5 × k × x² = μk × m × g × distance
0.5 × 500 × 0.1² = 0.6 × m × 9.8 × 40.05 = 5.88m
Simplifying, we get,m = 0.085 kg
Learn more about the work done at
https://brainly.com/question/14889813
#SPJ11
Heat Pump (Bookwork part) In the winter when the average outside temperature is 5°C a house is heated to 20°C using a heat pump. This heat pump uses "Refrigerant X" as the working fluid. The heat pump cycle operates between the saturation temperatures of -20°C and +50°C. Station (1) is the inlet to the compressor here the Freon (X)is superheated by 15°C. The compressor has an isentropic efficiency of 85%. At exit from the condenser the Freon is liquid and sub-cooled by 5°C. a) Draw a hardware diagram. Show the main components. Include station labels starting with compressor inlet as (1). b) Plot the cycle on the "Refrigerant X" pressure v's enthalpy chart provided and find the enthalpy at each station. c) Evaluate the "Coefficient of Performance" of the cycle.
The coefficient of performance of the given heat pump cycle is 2.13.
Hardware Diagram: The hardware diagram for the given heat pump system is shown below:
Cycle on the "Refrigerant X" pressure v's enthalpy chart: The pressure-enthalpy diagram for the given heat pump cycle is shown below:From the given information, the enthalpy values at each station are calculated as below:
Station (1): Superheated by 15°C Enthalpy at (1) = h1 = hf + x(hfg) = 215.02 + 0.5393(202.81) = 325.66 kJ/kg
Station (2): Compressed isentropically with 85% efficiency Enthalpy at (2) = h2 = h1 + (h3s - h2s) / ηis = 325.66 + (453.36 - 325.66) / 0.85 = 593.38 kJ/kg
Station (3): Rejects heat at -5°C Enthalpy at (3) = h3 = hf + x(hfg) = 41.78 + 0.0232(234.34) = 47.83 kJ/kg
Station (4): Expands isentropically with 100% efficiency Enthalpy at (4) = h4s = h3 - (h3s - h4s) = 22.59 kJ/kg
Station (5): Absorbs heat at 20°C Enthalpy at (5) = hf + x(hfg) = 83.61 + 0.8668(217.69) = 277.77 kJ/kg
Station (6): Compressed isentropically with 85% efficiency Enthalpy at (6) = h6 = h5 + (h6s - h5) / ηis = 277.77 + (417.52 - 277.77) / 0.85 = 540.95 kJ/kg
Station (7): Rejects heat at 50°C Enthalpy at (7) = hf + x(hfg) = 127.16 + 0.9965(215.03) = 338.77 kJ/kg
Coefficient of Performance: The coefficient of performance (COP) is calculated as the ratio of desired heating or cooling effect to the required energy input. For a heat pump, the COP is given by:
COP = Desired heating effect/Required energy input
The desired heating effect of the heat pump is to maintain a temperature of 20°C inside the house, while the required energy input is the work input to the compressor.
Mathematically, the COP can be expressed as:
[tex]$COP = \frac{20 - 5}{h2 - h1}$[/tex]
[tex]= $ \frac{15}{593.38 - 325.66}$ = 2.13[/tex]
To know more about Enthalpy visit:
https://brainly.com/question/32882904
#SPJ11
Q4. A solid shaft of diameter 50mm and length of 300mm is subjected to an axial load P = 200 kN and a torque T = 1.5 kN-m. (a) Determine the maximum normal stress and the maximum shear stress. (b) Repeat part (a) but for a hollow shaft with a wall thickness of 5 mm.
Part (a)The normal stress and the shear stress developed in a solid shaft when subjected to an axial load and torque can be calculated by the following equations.
Normal Stress,[tex]σ =(P/A)+((Mz×r)/Iz)[/tex]Where,[tex]P = 200kNA
= πd²/4 = π×(50)²/4
= 1963.4954 mm²Mz[/tex]
= T = 1.5 kN-mr = d/2 = 50/2 = 25 m mIz = πd⁴/64 = π×(50)⁴/64[/tex]
[tex]= 24414.2656 mm⁴σ[/tex]
[tex]= (200 × 10³ N) / (1963.4954 mm²) + ((1.5 × 10³ N-mm) × (25 mm))/(24414.2656 mm⁴)σ[/tex]Shear Stress.
[tex][tex]J = πd⁴/32 = π×50⁴/32[/tex]
[tex]= 122071.6404 mm⁴τ[/tex]
[tex]= (1.5 × 10³ N-mm) × (25 mm)/(122071.6404 mm⁴)τ[/tex]
[tex]= 0.03 MPa[/tex] Part (b)For a hollow shaft with a wall thickness of 5mm, the outer diameter, d₂ = 50mm and the inner diameter.
To know more about developed visit:
https://brainly.com/question/31944410
#SPJ11