You are standing 5 miles away from the peak. You look up at a 47-degree angle to the peak. How tall is the mountain? Hint: 5280 feet = 1 mile. Round your answer to the nearest foot.

Answers

Answer 1

Answer:

19272 feet

Step-by-step explanation:

We are given that the distance between the person and peak is 5 miles.

and angle is [tex]47^\circ[/tex] when we look up at the mountain peak.

The given situation is best represented as a right angled triangle as shown in the attached figure.

[tex]\triangle[/tex]IKJ where [tex]\angle K = 90^\circ[/tex]

IK is the mountain.

J is the point where we are standing.

Distance JI = 5 miles

[tex]\angle J = 47^\circ[/tex]

To find: Distance IK = ?

We can use trigonometric identities to find IK.

[tex]sin\theta = \dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]sinJ = \dfrac{IK}{JI}\\\Rightarrow sin47 = \dfrac{IK}{5}\\\Rightarrow IK = sin47^\circ \times 5\\\Rightarrow IK = 0.73 \times 5\\\Rightarrow IK = 3.65\ miles \\\Rightarrow IK = 3.65 \times 5280\ ft\\\Rightarrow IK = 19272\ ft[/tex]

Hence, height of mountain = 19272 ft

You Are Standing 5 Miles Away From The Peak. You Look Up At A 47-degree Angle To The Peak. How Tall Is

Related Questions

I need help pleaseee!

Answers

Step-by-step explanation:

we can use o as the center of the circle

OB=13

EB=12

OE=?

OE^2 +EB^2=OB^2

OE^2+12^2=13^2

OE^2=169-144

OE=

√25

OE=5

OC=OE+EC

EC =13-5

EC=8

what is the recursiveformula for this geometric sequence? 4,-12,36,108

Answers

Answer:

  a[1] = 4

  a[n] = -3·a[n-1]

Step-by-step explanation:

The sequence given is not a geometric sequence, since the ratios of terms are -3, -3, 3 -- not a constant.

If we assume that the last given term is supposed to be -108, then the common ratio is -3 and each term is -3 times the previous one. That is expressed in a recursive formula as ...

  a[1] = 4 . . . . . . . . . . .  first term is 4

  a[n] = -3·a[n-1] . . . . . each successive term is -3 times the previous one

What is the simplified form of the expression 3cubed root b^2

Answers

Answer:

Step-by-step explanation:

[tex](\sqrt{b^{2}})^{3}=b^{3}\\\\[/tex]

or If it is

[tex]\sqrt[3]{b^{2}} =(b^{2})^{\frac{1}{3}}=b^{2*\frac{1}{3}}=b^{\frac{2}{3}}[/tex]

. A bag contains 6 red and 3 black chips. One chip is selected, its color is recorded, and it is returned to the bag. This process is repeated until 5 chips have been selected. What is the probability that one red chip was selected?

Answers

Answer:

The probability that one red chip was selected is 0.0053.

Step-by-step explanation:

Let the random variable X be defined as the number of red chips selected.

It is provided that the selections of the n = 5 chips are done with replacement.

This implies that the probability of selecting a red chip remains same for each trial, i.e. p = 6/9 = 2/3.

The color of the chip selected at nth draw is independent of the other selections.

The random variable X thus follows a binomial distribution with parameters n = 5 and p = 2/3.

The probability mass function of X is:

[tex]P(X=x)={5\choose x}\ (\frac{2}{3})^{x}\ (1-\frac{2}{3})^{5-x};\ x=0,1,2...[/tex]

Compute the probability that one red chip was selected as follows:

[tex]P(X=1)={5\choose 1}\ (\frac{2}{3})^{1}\ (1-\frac{2}{3})^{5-1}[/tex]

                [tex]=5\times\frac{2}{3}\times \frac{1}{625}\\\\=\farc{2}{375}\\\\=0.00533\\\\\approx 0.0053[/tex]

Thus, the probability that one red chip was selected is 0.0053.

Answer:

0.0412

Step-by-step explanation:

Total chips = 6 red + 3 black chips

Total chips=9

n=5

Probability of (Red chips ) can be determined by

=[tex]\frac{6}{9}[/tex]

=[tex]\frac{2}{3}[/tex]

=0.667

Now we used the binomial theorem

[tex]P(x) = C(n,x)*px*(1-p)(n-x).....Eq(1)\\ putting \ the \ given\ value \ in\ Eq(1)\ we \ get \\p(x=1) = C(5,1) * 0.667^1 * (1-0.667)^4[/tex]

This can give 0.0412

A manager bought 12 pounds of peanuts for $30. He wants to mix $5 per pound cashews with the peanuts to get a batch of mixed nuts that is worth $4 per pound. How many pounds of cashews are needed

Answers

Answer:

18 pounds of cashews are needed.

Step-by-step explanation:

Given;

A manager bought 12 pounds of peanuts for $30.

Price of peanut per pound P = $30/12 = $2.5

Price of cashew per pound C = $5

Price of mixed nut per pound M = $4

Let x represent the proportion of peanut in the mixed nut.

The proportion of cashew will then be y = (1-x), so;

xP + (1-x)C = M

Substituting the values;

x(2.5) + (1-x)5 = 4

2.5x + 5 -5x = 4

2.5x - 5x = 4 -5

-2.5x = -1

x = 1/2.5 = 0.4

Proportion of cashew is;

y = 1-x = 1-0.4 = 0.6

For 12 pounds of peanut the corresponding pounds of cashew needed is;

A = 12/x × y

A = 12/0.4 × 0.6 = 18 pounds

18 pounds of cashews are needed.

The Environmental Protection Agency must visit nine factories for complaints of air pollution. In how many ways can a representative visit five of these to investigate this week? Since the representative's travel to visit the factories includes air travel, rental cars, etc., then the order of the visits will make a difference to the travel costs.

Answers

Answer:

The number of ways is  [tex]\left 9}\atop } \right. P _5 = 15120[/tex]

Step-by-step explanation:

From the question we are told that

   The number of factories visited is  [tex]n = 9[/tex]

    The number of factories to be visited by a representative  r = 5

The number of way to visit the 5 factories is mathematically represented as

         [tex]\left 9}\atop } \right. P _5 = \frac{9!}{(9-5)!}[/tex]

Where P represents  permutation

  =>   [tex]\left 9}\atop } \right. P _5 = \frac{9 \ !}{4\ !}[/tex]

 =>     [tex]\left 9}\atop } \right. P _5 = \frac{9 *8*7 * 6 * 5 * 4!}{4\ !}[/tex]

=>    [tex]\left 9}\atop } \right. P _5 = 15120[/tex]

Show all work to identify the asymptotes and zero of the faction f(x) = 4x/x^2 - 16.

Answers

Answer:

asymptotes: x = -4, x = 4zeros: x = 0

Step-by-step explanation:

The vertical asymptotes of the rational expression are the places where the denominator is zero:

  x^2 -16 = 0

  (x -4)(x +4) = 0 . . . . . true for x=4, x=-4

  x = 4, x = -4 are the equations of the vertical asymptotes

__

The zeros of a rational expression are the places where the numerator is zero:

  4x = 0

  x = 0 . . . . . . divide by 4

When planning a more strenuous hike, Nadine figures that she will need at least 0.6 liters of water for each hour on the trail. She also plans to always have at least 1.25 liters of water as a general reserve. If x represents the duration of the hike (in hours) and y represents the amount of water needed (in liters) for a hike, the following inequality describes this relation: y greater or equal than 0.6 x plus 1.25 Which of the following would be a solution to this situation?

Answers

Answer:

The solution for this is:

y = (0.6 * x) + 1.25

Hope it helps! :)

Answer:

Having 3.2 liters of water for 3 hours of hiking

Step-by-step explanation:

If x represents the number of hours and y represents the number of liters of water, then we can plug the possible solutions into our inequality to see which solution(s) work.

The first option is having 3 liters of water for 3.5 hours of hiking. We will plug 3 in for y and 3.5 in for x:

y > 0.6x + 1.25

3 > 0.6(3.5) + 1.25

3 > 3.35

But since 3 is not greater than 3.35, this does not work.

The next option is having 2 liters of water for 2.5 hours of hiking:

2 > 0.6(2.5) + 1.25

2 > 2.75

But 2 is not greater than 2.75, so this does not work.

Option c is having 2.3 liters of water for 2 hours of hiking:

2.3 > 0.6(2) + 1.25

2.3 > 2.45

Since 2.3 is not greater than 2.45, this solution does not work.

The last option is having 3.2 liters of water for 3 hours of hiking:

3.2 > 0.6(3) + 1.25

3.2 > 3.05

3.2 IS greater than 3.05, so this solution works!

If a coin is tossed 4 times, and then a standard six-sided die is rolled 3 times, and finally a group of two cards are drawn from a standard deck of 52 cards without replacement, how many different outcomes are possible?

Answers

Answer: 4,582,656

Step-by-step explanation:

A coin is tossed 4 times,

2^4 outcomes: 16

and then a standard six-sided die is rolled 3 times, 6^3

216 outcomes:

and finally, a group of two cards is drawn from a standard deck of 52 cards without replacements

It says a “group”, so, I guess the order doesn’t matter… So it is “52 choose 2”

52*51/ (2*1) = 26*51

how many different outcomes are possible?

16*216*26*51 = 4,582,656

The equation f(x) is given as x2_4=0. Considering the initial approximation at

x0=6 then the value of x1 is given as

Select one:

O A. 10/3

O B. 7/3

O C. 13/3

O D. 4/3

Answers

Answer:

The value of [tex]x_{1}[/tex] is given by [tex]\frac{10}{3}[/tex]. Hence, the answer is A.

Step-by-step explanation:

This exercise represents a case where the Newton-Raphson method is used, whose formula is used for differentiable function of the form [tex]f(x) = 0[/tex]. The expression is now described:

[tex]x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}}[/tex]

Where:

[tex]x_{n}[/tex] - Current approximation.

[tex]x_{n+1}[/tex] - New approximation.

[tex]f(x_{n})[/tex] - Function evaluated in current approximation.

[tex]f'(x_{n})[/tex] - First derivative of the function evaluated in current approximation.

If [tex]f(x) = x^{2} - 4[/tex], then [tex]f'(x) = 2\cdot x[/tex]. Now, given that [tex]x_{0} = 6[/tex], the function and first derivative evaluated in [tex]x_{o}[/tex] are:

[tex]f(x_{o}) = 6^{2} - 4[/tex]

[tex]f(x_{o}) = 32[/tex]

[tex]f'(x_{o})= 2 \cdot 6[/tex]

[tex]f'(x_{o}) = 12[/tex]

[tex]x_{1} = x_{o} - \frac{f(x_{o})}{f'(x_{o})}[/tex]

[tex]x_{1} = 6 - \frac{32}{12}[/tex]

[tex]x_{1} = 6 - \frac{8}{3}[/tex]

[tex]x_{1} = \frac{18-8}{3}[/tex]

[tex]x_{1} = \frac{10}{3}[/tex]

The value of [tex]x_{1}[/tex] is given by [tex]\frac{10}{3}[/tex]. Hence, the answer is A.

Find the original price of a pair of shoes if the sale price is $144 after a 25% discount.

Answers

Answer:

$192

Step-by-step explanation:

1: Subtract the discount from 100% then divide the sale price by this number (100%-25%=75%, $144/75%=$192)

hope this helped

Answer:

$192

Step-by-step explanation:

144 is actually 75% from the original price x:

0.75 x=144

x=144/0.75= $192

check : 192*0.25= $ 48 discount

192-48= $ 144 price of the shoe

The life of an electric component has an exponential distribution with a mean of 8.9 years. What is the probability that a randomly selected one such component has a life more than 8 years? Answer: (Round to 4 decimal places.)

Answers

Answer:

[tex] P(X>8)[/tex]

And for this case we can use the cumulative distribution function given by:

[tex] F(x) = 1- e^{-\lambda x}[/tex]

And if we use this formula we got:

[tex] P(X>8)= 1- P(X \leq 8) = 1-F(8) = 1- (1- e^{-\frac{1}{8.9} *8})=e^{-\frac{1}{8.9} *8}= 0.4070[/tex]

Step-by-step explanation:

For this case we can define the random variable of interest as: "The life of an electric component " and we know the distribution for X given by:

[tex]X \sim exp (\lambda =\frac{1}{8.9}) [/tex]

And we want to find the following probability:

[tex] P(X>8)[/tex]

And for this case we can use the cumulative distribution function given by:

[tex] F(x) = 1- e^{-\lambda x}[/tex]

And if we use this formula we got:

[tex] P(X>8)= 1- P(X \leq 8) = 1-F(8) = 1- (1- e^{-\frac{1}{8.9} *8})=e^{-\frac{1}{8.9} *8}= 0.4070[/tex]

multiply and remove all perfect square roots. Assume y is positive. √12

Answers

Answer:

2√3

Step-by-step explanation:

Step 1: Find perfect square roots

√4 x √3

Step 2: Convert

2 x √3

Step 3: Answer

2√3

Which division sentence is related to the product of a/3 (a/3) when A is not equal to 0?

Answers

Answer:

Option 4.

Step-by-step explanation:

Reciprocal of the second fraction turns the product into the division of the two fractions, which equals to 1.

[tex]a/3(a/3)[/tex]

[tex]a/3 \div 3/a=1[/tex]

Two fractions are said to be the reciprocal or multiplicative inverse of each other, if their product is 1.

Answer:

D. a/3 divided by 3/a = 1

Step-by-step explanation:

edge

The cost of unleaded gasoline in the Bay Area once followed a normal distribution with a mean of $4.74 and a standard deviation of $0.16. Sixteen gas stations from the Bay area are randomly chosen. We are interested in the average cost of gasoline for the 15 gas stations. What is the approximate probability that the average price for 15 gas stations is over $4.99?

Answers

Answer:

Approximately 0% probability that the average price for 15 gas stations is over $4.99.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

[tex]\mu = 4.74, \sigma = 0.16, n = 16, s = \frac{0.16}{\sqrt{16}} = 0.04[/tex]

What is the approximate probability that the average price for 15 gas stations is over $4.99?

This is 1 subtracted by the pvalue of Z when X = 4.99. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{4.99 - 4.74}{0.04}[/tex]

[tex]Z = 6.25[/tex]

[tex]Z = 6.25[/tex] has a pvalue very close to 1.

1 - 1 = 0

Approximately 0% probability that the average price for 15 gas stations is over $4.99.

Angle bisectors $\overline{AX}$ and $\overline{BY}$ of triangle $ABC$ meet at point $I$. Find $\angle C,$ in degrees, if $\angle AIB = 109^\circ$.

Answers

Answer:

<C = [tex]38^{o}[/tex]

Step-by-step explanation:

Given that: <AIB = [tex]109^{o}[/tex]

<AIB + <BIX = [tex]180^{o}[/tex] (sum of angles on a straight line)

[tex]109^{o}[/tex] + <BIX =  [tex]180^{o}[/tex]  

<BIX =  [tex]180^{o}[/tex] - [tex]109^{o}[/tex]

<BIX = [tex]71^{o}[/tex]

But,

<AIB = <YIX = [tex]109^{o}[/tex] (opposite angle property)

<XIB = <AIY = [tex]71^{o}[/tex]  (opposite angle property)

Therefore,

[tex]\frac{A}{2}[/tex] + [tex]\frac{B}{2}[/tex] =  [tex]71^{o}[/tex] (Exterior angle property)

[tex]\frac{A + B}{2}[/tex] =  [tex]71^{o}[/tex]

A + B = [tex]142^{o}[/tex]

A + B + C =  [tex]180^{o}[/tex] (sum of angles in a triangle)

 [tex]142^{o}[/tex] + C = [tex]180^{o}[/tex]

C = [tex]180^{o}[/tex] - [tex]142^{o}[/tex]

C = [tex]38^{o}[/tex]

Thus, angle C is [tex]38^{o}[/tex].

Carlos is almost old enough to go to school! Based on where he lives, there are 666 elementary schools, 333 middle schools, and 222 high schools that he has the option of attending.

Answers

Answer:

There are 36 education paths available to Carlos based on the schools around where he lives.

Step-by-step explanation:

Complete Question

Carlos is almost old enough to go to school. Based on where he lives, there are 6 elementary schools, 3 middle schools, and 2 high schools that he has the option of attending. How many different education paths are available to Carlos? Assume he will attend only one of each type of school.

Solution

We can use mathematics or manually writing out the possible combinations of elementary, middle and high school that Carlos can attend.

Using Mathematics

There are 6 elementary schools, meaning Carlos can make his choice in 6 ways.

There are 3 middle schools, meaning Carlos can make his choice in 3 ways.

Together with the elementary school choice, Carlos can make these two choices in 6 × 3 ways.

There are 2 high schools, Carlos can make his choice in 2 ways.

Combined with the elementary and middle school choices, Carlos can make his choices in 6×3×2 ways = 36 ways.

Manually

If we name the 6 elementary schools letters A, B, C, D, E and F.

Name the 3 middle schools letters a, b and c.

Name the 2 high schools numbers 1 and 2.

The different combinations of the 3 choices include

Aa1, Aa2, Ab1, Ab2, Ac1, Ac2

Ba1, Ba2, Bb1, Bb2, Bc1, Bc2

Ca1, Ca2, Cb1, Cb2, Cc1, Cc2

Da1, Da2, Db1, Db2, Dc1, Dc2

Ea1, Ea2, Eb1, Eb2, Ec1, Ec2

Fa1, Fa2, Fb1, Fb2, Fc1, Fc2

Evident now that there are 36 ways in which the 3 stages of schools can be combined. There are 36 education paths available to Carlos based on the schools around where he lives assuming that he will attend only one of each type of school.

Hope this Helps!!!

Answer:

36 education paths

Step-by-step explanation:

Hope this helps!

please - i got this wrong so plz help

Answers

Answer:

Area = 108 cm^2

Perimeter = 44 cm

Step-by-step explanation:

Area, -->

24 + 30 + 24 + 30 -->

24(2) + 30(2)

48 + 60 = 108 cm^2

108 = area

10 + 12 + 10 + 12, -->

10(2) + 12(2) = 44 cm

44 = perim.

Hope this helps!

Answer:

Step-by-step explanation:

Draw the diagram.

This time put in the only one line for the height. That is only 1 height is 8 cm. That's it.

The base is 6 +  6 = 12 cm.

The slanted line is 10 cm

That's all your diagram should show. It is much clearer without all the clutter.

Now you are ready to do the calculations.

Area

The Area = the base * height.

base = 12

height = 8

Area = 12 * 8 = 96

Perimeter.

In a parallelagram the opposite sides are equal to one another.

One set of sides = 10 + 10 = 20

The other set = 12 + 12 = 24

Both sets = 20 + 24

Both sets = 44

Answer

Area = 96

Perimeter = 44

Please answer this correctly

Answers

Answer:

50%

OR

1/2

Step-by-step explanation:

The box and whisker plot shows the time spent from 4 to 6 hours is Quartile 1 to 3 which makes it 50%.

What is the area of this triangle?

Answers

Answer:

Option (D)

Step-by-step explanation:

Formula for the area of a triangle is,

Area of a triangle = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]

For the given triangle ABC,

Area of ΔABC = [tex]\frac{1}{2}(\text{AB})(\text{CD})[/tex]

Length of AB = [tex](y_2-y_1)[/tex]

Length of CD = [tex](x_3-x_1)[/tex]

Now area of the triangle ABC = [tex]\frac{1}{2}(y_2-y_1)(x_3-x_1)[/tex]

Therefore, Option (D) will be the answer.

The null hypothesis for this ANOVA F test is: the population mean load failures for the three etch times are all different the population mean load failure is lowest for the 15‑second condition and highest for 60‑second condition at least one population mean load failure differs the sample mean load failure is lowest for the 15‑second condition and highest for 60‑second condition the sample mean load failures for the three etch times are all different the population mean load failures for the three etch times are all equal

Answers

Answer:

The population mean load failures for the three etch times are all equal

Step-by-step explanation:

For an ANOVA F test, the null hypothesis always assumes that mean which is also the average value of the dependent variable which is continuously are the same/ there is no difference in the means. The alternative is to test against the null and it is always the opposite of the null hypothesis.

Let f(x)= x^3 −6x^2+11x−5 and g(x)=4x^3−8x^2−x+12. Find (f−g)(x). Then evaluate the difference when x=−3 x=−3 .

Answers

Answer: (f-g)(x)= -138

Step-by-step explanation:

Please answer this correctly

Answers

Answer:

6 pizzas

Step-by-step explanation:

At least 10 and fewer than 20 makes it 10-19

So,

10-19 => 6 pizzas

6 pizzas have at least 10 pieces of pepperoni but fewer than 20 pieces of pepperoni.

Solve for x. 9x-2c=k

Answers

the value of k=1
Explanation the perfect square is 9x2+6x+k=(3x+k)2.=9x2+6x/k+k2.comparing the 2 sides

I. In the testing of a new production method, 18 employees were selected randomly and asked to try the new method. The sample mean production rate for the 18 employees was 80 parts per hour and the sample standard deviation was 10 parts per hour. Provide 90% confidence intervals for the populations mean production rate for the new method, assuming the population has a normal probability distribution.

Answers

Answer:

The 90% confidence interval for the mean production rate fro the new method is (75.9, 84.1).

Step-by-step explanation:

We have to calculate a 90% confidence interval for the mean.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.

The sample mean is M=80.

The sample size is N=18.

When σ is not known, s divided by the square root of N is used as an estimate of σM:

[tex]s_M=\dfrac{s}{\sqrt{N}}=\dfrac{10}{\sqrt{18}}=\dfrac{10}{4.24}=2.36[/tex]

The degrees of freedom for this sample size are:

[tex]df=n-1=18-1=17[/tex]

The t-value for a 90% confidence interval and 17 degrees of freedom is t=1.74.

The margin of error (MOE) can be calculated as:

[tex]MOE=t\cdot s_M=1.74 \cdot 2.36=4.1[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=M-t \cdot s_M = 80-4.1=75.9\\\\UL=M+t \cdot s_M = 80+4.1=84.1[/tex]

The 90% confidence interval for the mean production rate fro the new method is (75.9, 84.1).

According to a report an average person watched 4.55 hours of television per day in 2005. A random sample of 20 people gave the following number of hours of television watched per day for last year. At the 10% significance level, do the data provide sufficient evidence to conclude that the amount of television watched per day last year by the average person differed from that in 2005? 1.0 4.6 5.4 3.7 5.2 1.7 6.1 1.9 7.6 9.1 6.9 5.5 9.0 3.9 2.5 2.4 4.7 4.1 3.7 6.2 a. identify the claim and state and b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic Sketch a graph decide whether to reject or fail to reject the null hypothesis, and d. interpret the decision in the context of the original claim. e. Obtain a 95%confidence interval

Answers

Answer:

a. The claim is that the amount of television watched per day last year by the average person differed from that in 2005.

b. The critical values are tc=-1.729 and tc=1.729.

The acceptance region is defined by -1.792<t<1.729. See the picture attached.

c. Test statistic t=0.18.

The null hypothesis failed to be rejected.

d. At a significance level of 10%, there is not enough evidence to support the claim that the amount of television watched per day last year by the average person differed from that in 2005.

e. The 95% confidence interval for the mean is (2.29, 7.23).

Step-by-step explanation:

We have a sample of size n=20, which has mean of 4.76 and standard deviation of 5.28.

[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{20}(1+4.6+5.4+. . .+6.2)\\\\\\M=\dfrac{95.2}{20}\\\\\\M=4.76\\\\\\s=\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2\\\\\\s=\dfrac{1}{19}((1-4.76)^2+(4.6-4.76)^2+(5.4-4.76)^2+. . . +(6.2-4.76)^2)\\\\\\s=\dfrac{100.29}{19}\\\\\\s=5.28\\\\\\[/tex]

a. This is a hypothesis test for the population mean.

The claim is that the amount of television watched per day last year by the average person differed from that in 2005.

Then, the null and alternative hypothesis are:

[tex]H_0: \mu=4.55\\\\H_a:\mu\neq 4.55[/tex]

The significance level is 0.1.

The sample has a size n=20.

The sample mean is M=4.76.

As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=5.28.

The estimated standard error of the mean is computed using the formula:

[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{5.28}{\sqrt{20}}=1.181[/tex]

Then, we can calculate the t-statistic as:

[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{4.76-4.55}{1.181}=\dfrac{0.21}{1.181}=0.18[/tex]

The degrees of freedom for this sample size are:

[tex]df=n-1=20-1=19[/tex]

The critical value for a level of significance is α=0.10, a two tailed test and 19 degrees of freedom is tc=1.729.

The decision rule is that if the test statistic is above tc=1.729 or below tc=-1.729, the null hypothesis is rejected.

As the test statistic t=0.18 is within the critical values and lies in the acceptance region, the null hypothesis failed to be rejected.

There is not enough evidence to support the claim that the amount of television watched per day last year by the average person differed from that in 2005.

We have to calculate a 95% confidence interval for the mean.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.

The sample mean is M=4.76.

The sample size is N=20.

The standard error is s_M=1.181

The degrees of freedom for this sample size are df=19.

The t-value for a 95% confidence interval and 19 degrees of freedom is t=2.093.

The margin of error (MOE) can be calculated as:

[tex]MOE=t\cdot s_M=2.093 \cdot 1.181=2.47[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=M-t \cdot s_M = 4.76-2.47=2.29\\\\UL=M+t \cdot s_M = 4.76+2.47=7.23[/tex]

The 95% confidence interval for the mean is (2.29, 7.23).

What is the measure of AC?
Enter your answer in the box.

Answers

Answer:

21

Step-by-step explanation:

Since angle ABC is an inscribed angle, its measure is half that of arc AC. Therefore:

[tex]2(3x-1.5)=3x+9 \\\\6x-3=3x+9 \\\\3x-3=9 \\\\3x=12 \\\\x=4 \\\\AC=3(4)+9=12+9=21[/tex]

Hope this helps!

Use the Inscribed Angle theorem to get the measure of AC. The intercepted arc AC is,  21°.

What is the Inscribed Angle theorem?

We know that, Inscribed Angle Theorem stated that the measure of an inscribed angle is half the measure of the intercepted arc.

Given that,

The inscribed angle is, (3x - 1.5)

And the Intercepted arc AC is, (3x + 9)

So, We get;

(3x - 1.5) = 1/2 (3x + 9)

2 (3x - 1.5) = (3x + 9)

6x - 3 = 3x + 9

3x =  9 + 3

3x = 12

x = 4

Thus, The Intercepted arc AC is,

(3x + 9) = 3×4 + 9

           = 21°

Learn more about the Inscribed Angle theorem visit:

brainly.com/question/5436956

#SPJ2

The histogram shows the number of miles driven by a sample of automobiles in New York City.


What is the minimum possible number of miles traveled by an automobile included in the histogram?

Answers

Answer:

0 miles

Step-by-step explanation:

The computation of the minimum possible number of miles traveled by  automobile is shown below:

As we can see that in the given histogram it does not represent any normal value i.e it is not evenly distributed moreover, the normal distribution is symmetric that contains evenly distribution data

But this histogram shows the asymmetric normal distribution that does not have evenly distribution data

Therefore the correct answer is 0 miles

Answer:

2,500

That is your correct answer.

Solve for X. Show all work

Answers

Answer:

About 11.77 centimeters

Step-by-step explanation:

By law of sines:

[tex]\dfrac{50}{\sin 62}=\dfrac{x}{\sin 12} \\\\\\x=\dfrac{50}{\sin 62}\cdot \sin 12\approx 11.77cm[/tex]

Hope this helps!

Solve: x + 7 < 3 plsss help me

Answers

Answer:

The answer is -4.

Step-by-step explanation:

You should get this answer if you do 3 - 7.

Other Questions
5. (LC)Which word creates the most ominous feeling? (5 points)AskedCalledInvitedSummoned Crisp Cookware's common stock is expected t opay a dividend of $1.50 a share at the end of this year; its beta is 0.6. The risk free rate is 5.6% and the market risk premium is 4%. The dividend is expected to grow at some constant rate and the stock currently sells for $50 a share. Asuming the market is in equilibrium, what does the market believe will be the stock price at the end of 3 years The next 3 options are: A: x=1 or x= -3A: x= -1 or x=3 B: Since the quadratic equation has two real solutions, the graph of the quadratic equation intercepts the x axis at (-1,0) and (3,0)please please help. Thank you so much. "On January 1, MM Co. borrows $360,000 cash from a bank and in return signs an 8% installment note for five annual payments of $90,164 each. 1. Prepare the journal entry to record issuance of the note. 2. For the first $90,164 annual payment at December 31, what amount goes toward interest expense Whats the answer I need help 95 students choose to attend one of three after school activities: footbal,l tennis or running. There are 28 boys. 38 students choose football, of which 26 are girls. 23 students choose tennis. 29 girls choose running. A student is selected at random. What is the probability this student choose running? Give your answer in its simplest form. Calculate the amount of money you'll have at the end of the indicated time period.You invest $1000 in an account that pays simple interest of 6% for 30 years.The amount of money you'll have at the end of 30 years is $ A bridge constructed over a bayou has a supporting arch in the shape of an inverted parabola. Find the equation of the parabolic arch if the length of the road over the arch is 100 meters and the maximum height of the arch is 40 meters. -12.48 -(-2.99)-5.62 (a) The perimeter of a rectangular parking lot is 332 m.If the width of the parking lot is 75 m, what is its length?Length of the parking lot:m Help meeeee and thank u so much god bless u haha Which of the following does the endocrine system regulate? Blood sugar Reflexes Respiration Senses Which of the following are equations for the line shown below? Check all that apply.A. Y= x-2 B. Y-1=(x-3)C. Y=x-2D. Y+4=(x+2) ABC has been translated right to create triangle XYZ. Based on this information, which of the following is a true statement? answers: A) B) C) A C D) B X The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a point charge) at its center. The total positive charge equals the electronic charge e. Prove that when the electron is at a distance r from the center of the sphere of positive charge, it is attracted with a force F=\frac{e^2r}{4\pi\varepsilon_oR^3} where R is the radius of the sphere. Each term in the sequence below is 9 more than 1/3 the previous term. What is the value of y-x? 81, 36, x, y,... Plz explain I dont know how to solve help pls Find the 8th term of geometric sequence 2,-10,50... A large amount of peanuts was divided equally into 6 small bags. The total number of peanuts, p, was 342 which statement can be used to write an expression and then find the number of peanuts that ended up in each bag Plsss help me ASAP !