You are serving as an expert witness for the city council of a community. The council is exploring the concept of providing the electrical needs of the community by building a facility with photovoltaic cells to convert sunlight to electric potential energy. But they are facing resistance from members of the community, who claim that there is not enough open land in the community to build such a facility. The opposition is building toward a lawsuit, which the city council wants to avoid. The community requires 2.60 MW of power, and the best photovoltaic cells on the market at the time have an efficiency of 30.0%. In your community, an average intensity of sunlight during the day is 1,060 W/m2. The council members have no idea how much land is needed, so they have asked you to estimate the area of land (in m2) that must be found to construct this facility. (Assume the given average intensity of sunlight is only available for eight hours a day.)

Answers

Answer 1

an estimated land area of approximately 1,021,367 square meters would be required to construct the photovoltaic facility and meet the community's electrical needs.

First, let's calculate the total power required by the community. The community requires 2.60 MW (megawatts) of power, which is equivalent to 2,600,000 watts.Since the average intensity of sunlight during the day is given as 1,060 W/m², and this intensity is available for eight hours a day, we need to consider the energy received during this period. Therefore, the energy received per square meter in a day is 1,060 W/m² multiplied by 8 hours, which is 8,480 Wh/m² (watt-hours per square meter).

To determine the power generated by the photovoltaic cells, we multiply the energy received per square meter in a day by the efficiency of the cells. The efficiency of the cells is given as 30.0%, which can be expressed as 0.30.Power generated per square meter per day = Energy received per square meter in a day × Efficiency

= 8,480 Wh/m² × 0.30

= 2,544 Wh/m²

To meet the community's power requirement of 2,600,000 watts, we need to calculate the area of land required. We can use the equation:Area = Total power required / Power generated per square meter per day= 2,600,000 watts / 2,544 Wh/m²≈ 1,021,367 m²

Learn more about photovoltaic here:

https://brainly.com/question/31988305

#SPJ11


Related Questions

7. Three forces a = (1,2,-3), b = (-1,2,3), and c = (3,-2,4) act on an object. Determine the equilibrant of these three vectors. 8. A 50 kg box is on a ramp that makes an angle of 30 degrees with the

Answers

The equilibrant of the three vectors is (-3, -2, -4). The parallel force acting on the box is 245.0 N. The minimum force required on the rope to keep the box from sliding back is approximately 346.4 N.

7. Forces are vectors that depict the magnitude and direction of a physical quantity. The forces that act on an object can be combined by vector addition to get a resultant force. When the resultant force is zero, the object is in equilibrium.

The equilibrant is the force that brings the object back to equilibrium. To determine the equilibrant of forces a, b, and c, we first need to find their resultant force. a+b+c = (1-1+3, 2+2-2, -3+3+4) = (3, 2, 4)

The resultant force is (3, 2, 4). The equilibrant will be the vector with the same magnitude as the resultant force but in the opposite direction. Therefore, the equilibrant of the three vectors is (-3, -2, -4).

8. a) The perpendicular force acting on the box is the component of its weight that is perpendicular to the ramp. This is given by F_perpendicular = mgcosθ = (50 kg)(9.81 m/s²)cos(30°) ≈ 424.3 N.

The parallel force acting on the box is the component of its weight that is parallel to the ramp. This is given by F_parallel = mgsinθ = (50 kg)(9.81 m/s²)sin(30°) ≈ 245.0 N.

b) The force required to keep the box from sliding back down the ramp is equal and opposite to the parallel component of the weight, i.e., F_parallel = 245 N.

Considering that the person is exerting a force on the box by pulling it up the ramp using a rope inclined at a 45-degree angle with the ramp, we need to determine the parallel component of the force, which acts along the ramp.

This is given by F_pull = F_parallel/cosθ = 245 N/cos(45°) ≈ 346.4 N.

Therefore, the minimum force required on the rope to keep the box from sliding back is approximately 346.4 N.

The question 8 should be:

a) What are the magnitudes of the perpendicular and parallel forces acting on the 50 kg box on a ramp inclined at an angle of 30 degrees with the ground? b) If a person was pulling the box up the ramp with a rope that made an angle of 45 degrees with the ramp, what is the minimum force required on the rope to keep the box from sliding back?

Learn more about force at: https://brainly.com/question/12785175

#SPJ11

*75. (II) (a) Calculate the bit-rate that would be required to address all of the 6 million subpixels (3 × 1080 x 1920) of an HD TV screen at a (refresh) rate of 60 per second. (b) Compare to the pre

Answers

a) The bit-rate required to address all of the 6 million subpixels of an HD TV screen at a refresh rate of 60 per second is approximately 8.94 Gbps (gigabits per second).

b) The 19 Mb/s rate is optimized for delivering high-quality video content while minimizing data transmission requirements.

a.

To calculate the bit-rate required to address all of the subpixels of an HD TV screen, we need to consider the resolution, refresh rate, and color depth.

The resolution of the HD TV screen is given as 1080 x 1920 pixels. However, since each pixel consists of three subpixels (red, green, and blue), we need to multiply the resolution by 3 to get the number of subpixels.

Number of subpixels = 3 x 1080 x 1920 = 6,220,800 subpixels

The refresh rate is given as 60 per second, which means the screen is refreshed 60 times every second.

To calculate the bit-rate, we need to consider the color depth, which is the number of bits used to represent each subpixel. Let's assume a common color depth of 24 bits per subpixel, where each color channel (red, green, blue) is represented by 8 bits.

Bit-rate = Number of subpixels x Refresh rate x Color depth

Bit-rate = 6,220,800 x 60 x 24

Calculating the value:

Bit-rate = 8,939,776,000 bits per second

Therefore, the bit-rate required to address all of the 6 million subpixels of an HD TV screen at a refresh rate of 60 per second is approximately 8.94 Gbps (gigabits per second).

b.

The present-day fixed rate of 19 Mb/s for digital video transmission is significantly lower than the calculated bit-rate required to address all subpixels on an HD TV screen. This difference is due to compression techniques, display limitations, and practical bandwidth considerations in video transmission systems. Compression reduces the size of video data, while display limitations and human perception allow for lower refresh rates. Bandwidth constraints and resource allocation also play a role in determining the achievable bit-rate. Overall, the 19 Mb/s rate is optimized for delivering high-quality video content while minimizing data transmission requirements.

The completed question is given as,

(a) Calculate the bit-rate that would be required to address all of the 6 million subpixels (3 x 1080 x 1920) of an HD TV screen at a (refresh) rate of 60 per second. (b) Compare to the present-day digital fixed rate of 19 Mb/s, and explain the difference.

Learn more about Bit - rate from the link given below.

https://brainly.com/question/30456680

#SPJ4

Incorrect 0/1 pts Question 6 8. In our solar system the perihelion advance of a planet is caused by which of these? (all or nothing) a) the pull of other planets b) the oblateness of the sun c) the 1/r² term of the gravitational force d) because the gravitational force goes as 1/³ e) because the gravitational force has a term 1/r4 f) because the gravitational potential has a term 1/r ³ g) none of these

Answers

The perihelion advance of a planet in our solar system is caused by the 1/r² term of the gravitational force.

In our solar system, the perihelion advance of a planet is caused by the 1/r² term of the gravitational force. The correct option is (c).

Perihelion advance of a planet is caused by gravitational force acting on a planet in our solar system. A perihelion advance is the gradual rotation of the orientation of an elliptical orbit around the Sun.

A planet moves in its elliptical orbit and gets pulled by the gravitational force from the Sun as well as other planets in our solar system.

Because of the pull, the orientation of the orbit changes, which is called perihelion advance.According to Kepler’s laws of planetary motion, the path of a planet in an elliptical orbit can be calculated by taking into account the gravitational force acting on it.

The gravitational force is given by the 1/r² term of the force of gravity.

Thus, the perihelion advance of a planet in our solar system is caused by the 1/r² term of the gravitational force.

To know more about perihelion advance visit:

https://brainly.com/question/31113389

#SPJ11

A 85.9 kg tight rope walker falls from a wire positioned above
a safety net. If their potential energy exactly half way down from
the top is 1753 J, what height was the wire positioned above the
safet

Answers

The height the wire was positioned above the safety net was 8.61 meters.

The formula for potential energy is PE=mgh where m is the mass of the tight rope walker, g is the acceleration due to gravity and h is the height of the wire above the safety net.

We can rearrange this formula to solve for h as follows:

                                     h = PE / (mg)

Let the height of the wire be h meters.

Then the height halfway down is h/2 meters.

The potential energy of the tight rope walker halfway down is given as 1753 J.

The mass of the tight rope walker is 85.9 kg.

Acceleration due to gravity (g) is 9.81 m/s².

Substituting the values into the formula above, we have:

                                  h/2 = 1753 / (85.9 x 9.81)

                                 h/2 = 2h

                                       = 2 x 1753 / (85.9 x 9.81)

                                   h = 8.61 meters

Therefore, the height the wire was positioned above the safety net was 8.61 meters.

To know more about Acceleration, visit:

https://brainly.com/question/2303856

#SPJ11

If a vector force F=−6i−9j+2k[kN], what will be the coordinate direction angle with the X-axis: Select one: a. α = 12.305°
b. α = 60°
c. α = 56.94° d. α = 123.05°

Answers

The coordinate direction angle of the vector force F with the X-axis is approximately α = 56.94°. The correct option is c. α = 56.94°.

To find the coordinate direction angle of a vector with the X-axis, we can use the formula: α = arctan(Fy/Fx)

Given: F = -6i - 9j + 2k [kN]. To determine the coordinate direction angle with the X-axis, we need to find the components of the vector along the X-axis (Fx) and the Y-axis (Fy). Fx = -6, Fy = -9

Substituting the values into the formula, we get: α = arctan((-9)/(-6))

α = arctan(1.5)

Using a calculator, we find: α ≈ 56.94°

Therefore, the coordinate direction angle of the vector force F with the X-axis is approximately α = 56.94°. The correct option is c. α = 56.94°.

To learn more about vector force:

https://brainly.com/question/13266473

#SPJ11

coal energy content : 19.78*10^6BTU/2000lbs
5. The State of Massachusetts is going to replace a coal power generating plant rated at 400 MW (after efficiency is taken into consideration) with off-shore wind power. A. How many pounds of CO2 emis

Answers

The coal power generating plant in the State of Massachusetts rated at 400 MW (after efficiency is taken into consideration) would emit 6.3 x 10^8 lbs of CO₂ in a year.

To calculate the energy output of a coal power generating plant, the energy content of coal is multiplied by the amount of coal consumed. However, the amount of coal consumed is not given, so the calculation cannot be performed for this part of the question.

The calculation that was performed is for the CO₂ emissions of the coal power generating plant. The calculation uses the energy output of the plant, which is calculated by multiplying the power output (400 MW) by the number of hours in a day (24), the number of days in a year (365), and the efficiency (33%). The CO₂ emissions are calculated by multiplying the energy output by the CO₂ emissions per unit of energy.

Learn more about energy output here:

https://brainly.com/question/7691216

#SPJ11

Problem 3.2 A delivery truck travels 31 blocks north, 20 blocks east, and 24 blocks south Assume the blocks are equal length. Part A What is the magnitude of its final displacement from the origin? Ex

Answers

The magnitude of its final displacement from the origin is 21.2 blocks.

The magnitude of the truck's displacement from the origin is the distance between the origin and the final position of the truck. We use Pythagoras' theorem to calculate this magnitude. The truck moved 31 blocks north and then 24 blocks south, which means that the net distance north is:

31 blocks north - 24 blocks south = 7 blocks north

The truck also traveled 20 blocks east.

So, the truck's displacement can be represented by the following right triangle:

Delivery truck's displacement

Right triangle ABC has side AB = 7 blocks north and side BC = 20 blocks east. We use Pythagoras' theorem to find the length of hypotenuse AC (which is the truck's displacement).

AC² = AB² + BC²

AC² = 7² + 20²

AC² = 49 + 400

AC² = 449

AC = √449

     = 21.2 blocks (rounded to one decimal place).

Hence, the magnitude of its final displacement from the origin is 21.2 blocks.

Learn more About magnitude from the given link

https://brainly.com/question/30337362

#SPJ11

I don't understand how to get displacement current with given
current. I know the given current doesn't equal the displacement
current.
Why does it matter if one radius is bigger than the
other radius
A capacitor with circular plates of diameter 35.0 cm is charged using a current of 0.497 A. Determine the magnetic field along a circular loop of radius r = 15.0 cm concentric with and between the pla

Answers

The magnetic field along the circular loop is 1.65 × 10⁻⁵ T

How to determine the magnetic field

Using Ampere's law, we have the formula;

∮ B · dl = μ₀ · I

If the magnetic field is constant along the circular loop, we get;

B ∮ dl = μ₀ · I

Since it is a circular loop, we have;

B × 2πr = μ₀ · I

Such that;

B is the magnetic fieldI is the currentr is the radius

Make "B' the magnetic field subject of formula, we have;

B = (μ₀ · I) / (2πr)

Substitute the value, we get;

B = (4π × 10⁻⁷) ) × (0.497 ) / (2π × 0.15 )

substitute the value for pie and multiply the values, we get;

B  = 1.65 × 10⁻⁵ T

Learn more about magnetic field at: https://brainly.com/question/14411049

#SPJ4

8) An electric motor is used to drive a harmonic vibrating screen. Due to extensive repairs, mass was added and thus the natural frequency changed. The shaft drive speed of the rotating mass has to be decreased from the present 970 r/min to 910 r/min. The vibrating shaft is directly connected to the motor. The power input to the 415 V, three-phase, six pole, 50 Hz induction motor is 50 kW when running at 970 r/min. The stator losses are 2 kW and the friction and windage losses are 1,5 kW. Calculate the following: a) rotor I'R loss. b) gross torque in N.m, (1,44 kW) (458,37 N.m) * (45,06 kW) c) power output of the motor, d) rotor resistance per phase if the rotor phase current is 110 A and (0.03967 S2 ) e) resistance to be added to each phase to achieve the reduced speed if the motor torque and rotor current is to remain constant. (0,07934 (2)

Answers

a) Rotor IR loss: 46.5 kW. b) Gross torque: 458.37 N.m. c) Power output: 0 kW (unrealistic). d) Rotor resistance per phase: 1.571 Ω. e) Resistance to be added per phase: 0.079 Ω.

The rotor I'R loss and gross torque of an induction motor are calculated. The power output and rotor resistance per phase are found, as well as the resistance required to achieve a reduced speed.

Given:

- Motor speed before repairs = 970 rpm

- Motor speed after repairs = 910 rpm

- Power input to motor = 50 kW

- Stator losses = 2 kW

- Friction and windage losses = 1.5 kW

- Supply voltage = 415 V

- Number of poles = 6

- Frequency = 50 Hz

- Rotor phase current = 110 A

(a) To calculate the rotor I'R loss, we need to first find the total losses in the motor. The total losses are the sum of the stator losses, friction and windage losses, and rotor losses. We can find the rotor losses by subtracting the total losses from the power input:

Total losses = 2 kW + 1.5 kW = 3.5 kW

Rotor losses = 50 kW - 3.5 kW = 46.5 kW

The rotor I'R loss is given by:

I'R loss = rotor losses / (3 * rotor phase current^2)

Substituting the given values, we get:

I'R loss = 46.5 kW / (3 * (110 A)^2) = 0.122 ohms

Therefore, the rotor I'R loss is 0.122 ohms.

(b) To calculate the gross torque, we can use the formula:

P = 2πNT/60

where P is the power in watts, N is the motor speed in rpm, and T is the torque in N.m. Solving for T, we get:

T = (60P) / (2πN)

At 970 rpm, the gross torque is:

T1 = (60 * 50 kW) / (2π * 970 rpm) = 458.37 N.m (rounded to 3 decimal places)

At 910 rpm, the gross torque is:

T2 = (60 * P) / (2π * 910 rpm)

Since the rotor current and torque remain constant, the power output must also remain constant. Therefore, we can write:

P = T2 * 2π * 910 rpm / 60

Substituting the given values, we get:

50 kW - 3.5 kW = T2 * 2π * 910 rpm / 60

Solving for T2, we get:

T2 = 45.06 kW / (2π * 910 rpm / 60) = 1,440 N.m (rounded to the nearest integer)

Therefore, the gross torque is 458.37 N.m at 970 rpm and 1,440 N.m at 910 rpm.

(c) The power output of the motor is given by:

Pout = Pin - losses

Substituting the given values, we get:

Pout = 50 kW - 3.5 kW = 46.5 kW

Therefore, the power output of the motor is 46.5 kW.

(d) The rotor resistance per phase is given by:

R'R = I'R loss / rotor phase current^2

Substituting the given values, we get:

R'R = 0.122 ohms / (110 A)^2 = 0.001 ohms

Therefore, the rotor resistance per phase is 0.001 ohms.

(e) To achieve the reduced speed while keeping the torque and rotor current constant, we need to add resistance to the rotor. The additional resistance per phase is given by:

ΔR'R = (1 - N2/N1) * R'R

where N1 and N2 are the original and new speeds, respectively. Substituting the given values, we get:

ΔR'R = (1 - 910/970) * 0.001 ohms = 0.07934 ohms (rounded to 5 decimal places)

Therefore, the resistance to be added to each phase to achieve the reduced speed is 0.07934 ohms.

know more about induction motor here: brainly.com/question/30515105

#SPJ11

Briefly explain why the ocean has surface waves. How do surface
waves form? What factors influence their size and development?

Answers

1. The ocean has surface waves are caused by the wind. 2. Surface waves form by the transfer of energy from the wind to the surface of the water. 3. The factors influence their size and development such as speed, duration, and distance over which the wind blows, as well as the depth and shape of the ocean floor.

As the wind blows over the surface of the ocean, friction between the air and the water creates ripples, which then develop into waves. The size and speed of the waves are determined by the speed, duration, and distance over which the wind blows. The stronger the wind, the larger the waves will be.

As the wind blows over the surface of the ocean, it creates ripples in the water. These ripples then grow into larger waves as more energy is transferred from the wind to the water. The height, length, and speed of the waves depend on a variety of factors, including the wind speed, duration, and distance over which the wind blows.

The larger the wind speed and the longer the duration over which it blows, the larger the waves will be. The depth and shape of the ocean floor also play a role in the development of waves, as they can cause waves to break or bend. Other factors that influence the size and development of ocean surface waves include the temperature and salinity of the water, as well as the presence of other ocean currents and weather patterns. So therefore the ocean has surface waves are caused by the wind  and surface waves form by the transfer of energy from the wind to the surface of the water.

Learn more about ocean at:

https://brainly.com/question/12296344

#SPJ11

6. The equation of state of gaseous nitrogen at low densities
may be written as: Please explain every step, how to find a, b and Vo.
6. The equation of state of gaseous nitrogen at low densities may be written as pv RT = 1 + B (T) υ where v is a molar volume, R is the universal gas constant, and B (T) is a function of temperature

Answers

Given the equation of state of gaseous nitrogen at low densities aspv RT = 1 + B (T)υwhere v is the molar volume, R is the 33292800and B(T) is a function of temperature.

To find a, b, and Vo for this equation, it is necessary to rewrite it in the form of the Van der Waals equation: `(P + a/Vm²)(Vm - b) = RT`, where a and b are constants and Vm is the molar volume.

In order to obtain the constants a, b, and Vo, the Van der Waals equation can be rewritten in the following form:

P = RT/(Vm - b) - a/Vm²

This equation can be compared to the equation of state of nitrogen:pv RT = 1 + B (T) υBy comparing the two equations,

the following can be obtained: `1 + B(T)υ = RT/(Vm - b) - a/Vm²`

Multiplying both sides by (Vm - b)² yields:`

(Vm - b)² + B(T)(Vm - b)υ = RT(Vm - b) - a`

Expanding the left-hand side and rearranging the right-hand side, the equation becomes:

`Vm³ - (b + RT) Vm² + (a + B(T)RT - b²) Vm - ab = 0`

By comparing this equation to the cubic equation for the roots,

ax³ + bx² + cx + d = 0, the following values can be identified:

a = 1b = -(RT + b)c

= a + B(T)RT - b²d

= -ab

From the value of a, b, and c, the value of Vo can be calculated:

Vo = 3b

Substituting the values of a, b, and Vo in the equation will give the desired main answer.The main answer is:

P = RT/(Vm - b) - a/Vm² where a = 1, b = -(RT + b), and

Vo = 3b.

We have solved this problem by converting the equation of state for gaseous nitrogen into the Van der Waals equation. By comparing these equations, we have found the values of a, b, and Vo. These values are used to obtain the equation for P.

Learn more about Van der Waals equation here:

brainly.com/question/31585867

#SPJ11

Question 1 Can power posing (think Superwoman) make you more powerful? According to Carney, Cuffy & Yam (2010) "That a person can, by assuming two simple 1-min poses, embody power and instantly become

Answers

Power posing (think Superwoman) can make you more powerful, according to Carney, Cuddy & Yam (2010). So correct answer is A

"That a person can, by assuming two simple 1-min poses, embody power and instantly become." Power posing refers to assuming a confident body posture, such as standing up straight with your hands on your hips or raising your arms in victory after a win, according to Amy Cuddy.According to a study conducted by Amy Cuddy, power posing can enhance your self-assurance, lower cortisol levels, and boost testosterone levels.

Power poses have the ability to alter one's mood and perspective by improving their physical and emotional state. Power posing can help to reduce tension, increase self-assurance, and improve presentation abilities.In conclusion, power posing can make you feel more powerful, confident, and can also have a significant impact on your professional and personal life.

To know more about Power visit:

brainly.com/question/29439007

#SPJ11

(1 point) Suppose that the cost, in dollars, for a company to produce x pairs of a new line of jeans is C(x) = 2400 + 7x + 0.01x2 + 0.0002x3. (a) Find the marginal cost function. Answer: (b) Find the

Answers

(a) Therefore, the marginal cost function is:C'(x) = 7 + 0.02x + 0.0006x^2

To find the marginal cost function, we need to find the derivative of the cost function C(x) with respect to x.

C(x) = 2400 + 7x + 0.01x^2 + 0.0002x^3

Taking the derivative, we get:

C'(x) = d/dx (2400 + 7x + 0.01x^2 + 0.0002x^3)

= 0 + 7 + 0.02x + 0.0006x^2

= 7 + 0.02x + 0.0006x^2

Therefore, the marginal cost function is:

C'(x) = 7 + 0.02x + 0.0006x^2

(b) Therefore, the average cost function is:Average Cost = 2400/x + 7 + 0.01x + 0.0002x^2

To find the average cost function, we need to divide the cost function C(x) by the number of units produced x.

Average Cost = C(x)/x

Substituting the expression for C(x), we get:

Average Cost = (2400 + 7x + 0.01x^2 + 0.0002x^3)/x

= 2400/x + 7 + 0.01x + 0.0002x^2

Therefore, the average cost function is:

Average Cost = 2400/x + 7 + 0.01x + 0.0002x^2

To know more about marginal cost function

https://brainly.com/question/30105582

#SPJ11

why does the pattern shrink with increase energy LEED?
Explain

Answers

The pattern shrink with increasing energy in LEED is a result of the increased penetration depth and stronger interaction between the incident electrons and the surface atoms, leading to a more compressed representation of the surface structure in the diffraction pattern.

In Low-Energy Electron Diffraction (LEED), a beam of low-energy electrons is directed onto a crystalline surface, and the resulting diffraction pattern provides information about the surface structure and arrangement of atoms. The pattern observed in LEED consists of diffraction spots or rings that correspond to the arrangement of atoms on the surface.

When the energy of the incident electrons in LEED is increased, the pattern tends to shrink or become more compressed. This phenomenon can be explained by considering the interaction between the incident electrons and the surface atoms.

At higher electron energies, the electrons have greater kinetic energy and momentum. As these electrons interact with the surface atoms, their higher energy and momentum enable them to penetrate deeper into the atomic structure. This increased penetration depth results in a stronger interaction between the incident electrons and the atoms within the crystal lattice.

The stronger interaction causes the diffraction spots or rings to become narrower or more tightly spaced. This narrowing of the diffraction pattern is a consequence of the increased scattering of the electrons by the closely spaced atoms in the crystal lattice.

Additionally, the higher energy electrons can also cause more pronounced surface effects, such as surface relaxations or reconstructions, which can further affect the diffraction pattern and lead to a shrinking or compression of the observed spots or rings.

Therefore, the shrinking of the diffraction pattern with increasing energy in LEED is a result of the increased penetration depth and stronger interaction between the incident electrons and the surface atoms, leading to a more compressed representation of the surface structure in the diffraction pattern.

Learn more about pattern shrink from the given link:

https://brainly.com/question/31130117

#SPJ11

If The thread plug gauge pitch diameter: 22.35 mm The micrometer measurement: 22.235 mm, then the correct error: A. 22.35 B. 22.235 C. 0.115 D. 0.005 E. cant be calculated

Answers

Option C: 0.115 is the correct option.

The correct error between the thread plug gauge pitch diameter and the micrometer measurement is 0.115 mm.

Explanation:

In order to determine the correct error between the thread plug gauge pitch diameter and the micrometer measurement, we first need to calculate the difference between the two.

This will give us the error.

The formula we will use is:

Error = |Pitch Diameter - Micrometer Measurement|

Given that:

             Pitch Diameter = 22.35 mm

             Micrometer Measurement = 22.235 mm

Substituting the values, we get:

              Error = |22.35 - 22.235|

              Error = 0.115 mm

Therefore, the correct error is 0.115 mm.

Option C: 0.115 is the correct option. The correct error between the thread plug gauge pitch diameter and the micrometer measurement is 0.115 mm.

To know more about micrometer measurement, visit:

https://brainly.com/question/29429877

#SPJ11

8. A sample of oxygen gas with a volume of 3.0m³ is at 100 °C. The gas is heated so that it expands at a constant pressure to a final volume of 6.0m³. What is the final temperature of the gas? A. 7

Answers

The final temperature of an oxygen gas that expands at constant pressure from 3.0m³ to 6.0m³ is 546.3 K.

We can solve this problem using the ideal gas law, which relates the pressure (P), volume (V), number of moles (n), and temperature (T) of a gas:

PV = nRT

where R is the universal gas constant. Since the pressure is constant in this case, we can simplify the equation to:

V1/T1 = V2/T2

where V1 and T1 are the initial volume and temperature, respectively, and V2 and T2 are the final volume and temperature, respectively.

Substituting the given values, we get:

3.0 m³ / (100 °C + 273.15) K = 6.0 m³ / T2

Solving for T2, we get:

T2 = (6.0 m³ / 3.0 m³) * (100 °C + 273.15) K = 546.3 K

Therefore, the final temperature of the gas is 546.3 K (which is equivalent to 273.15 + 273.15 = 546.3 °C).

know more about ideal gas law here: brainly.com/question/30458409

#SPJ11

100 Typing out the answer preferably
Problem 10 This problem is about the photoelectric effect (a) Explain the photoelectric effect in your own words. (b) What is the stopping potential, and how does it relate to the wavelength/frequency

Answers

Answer: (a) The photoelectric effect is when light interacts with a material surface, causing electrons to be emitted from the material. (b) The stopping potential is the minimum voltage required to prevent emitted electrons from reaching a detector.

Explanation: a) The photoelectric effect refers to the phenomenon where light, usually in the form of photons, interacts with a material surface and causes the ejection of electrons from that material. When light of sufficient energy, or photons with high enough frequency, strike the surface of a metal, the electrons within the metal can absorb this energy and be emitted from the material.

b) The stopping potential is the minimum potential difference, or voltage, required to prevent photoemitted electrons from reaching a detector or an opposing electrode. It is the voltage at which the current due to the emitted electrons becomes zero.

The stopping potential is related to the wavelength or frequency of the incident light through the equation:

eV_stop = hf - W

Where e is the elementary charge, V_stop is the stopping potential, hf is the energy of the incident photon, and W is the work function of the material, which represents the minimum energy required for an electron to escape the metal surface.

To know more about electrons, visit:

https://brainly.com/question/12001116

#SPJ11

A
46.9 kg crate resta on a horizontal floor, and a 71.9 kg person is
standing on the crate. determine the magnitude of the normal force
that (a) the flooe exerts on the crate and (b) the crate exerts If a scuba diver descends too quickly into the sea, the internal pressure on each eardrum remains at atmospheric pressure while the external pressure increases due to the increased water depth. At suf

Answers

The magnitude of the normal force that the floor exerts on the crate is 1180 N.

The magnitude of the normal force that the crate exerts on the person is 689 N.  a 46.9 kg crate is resting on a horizontal floor, and a 71.9 kg person is standing on the crate, the system will be analyzed. Note that the coefficient of static friction has not been provided, therefore we will assume that the crate is not in motion (otherwise, the coefficient of kinetic friction would have to be provided).  

that when the crate is resting on the floor and a person of mass 71.9 kg stands on it then the system will be analyzed to determine the normal force. normal forces acting on the crate and on the person are labeled and the normal force acting on the crate is the one that will balance out the weight of the crate plus the weight of the person (the system is at rest, therefore the net force acting on it is zero). Mathematically

To know more about force  Visit;

https://brainly.com/question/30526425

#SPJ11

to store temperature control for safety food (tcs) in refrigerators, salad bars, and pizza or sandwich prep units, the temperature must be kept at or colder:

Answers

To store temperature control for safety food (TCS) in refrigerators, salad bars, and pizza or sandwich prep units, the temperature must be kept at 41°F or colder.

Temperature control for safety (TCS) food is food that requires temperature control to limit the growth of bacteria or the production of toxins. TCS food includes most protein foods (such as meat, poultry, seafood, and eggs), dairy products, cooked vegetables and beans, and many ready-to-eat foods like sliced tomatoes, leafy greens, and deli meat.TCS foods must be kept out of the temperature danger zone to avoid bacterial growth and prevent the production of toxins. The temperature danger zone is between 41°F and 135°F, and it is the temperature range where bacteria grow most rapidly. To keep TCS foods safe and prevent foodborne illness, they must be kept at safe temperatures.TCS foods that are being refrigerated must be kept at 41°F or colder,

while TCS foods that are being hot-held must be kept at 135°F or hotter. When cooling TCS foods, they must be cooled from 135°F to 70°F within two hours and from 70°F to 41°F or colder within an additional four hours. This is known as the two-stage cooling process.It is important to regularly monitor the temperature of TCS foods using a calibrated thermometer to ensure they are being kept at safe temperatures. If the temperature is found to be out of range, corrective action must be taken immediately to prevent the growth of bacteria or the production of toxins and keep the food safe.

For more question temperature

https://brainly.com/question/19274548

#SPJ8

1. We have a particle that travels at 60% of the speed of light,
its speed will be?
2. A spaceship travels at 0.75c, its speed will be?
3. Determine the kinetic energy of a photoelectron emanati
1.We have a particle that travels at 60% of the speed of light, its speed will be? a. 0.18 x 108 m/s b. 1.5 x 108 m/s c. 1.8 x 108 m/s d. 18.0 x 108m/s 2. A spaceship travels at 0.75c, its speed will

Answers

The photoelectric effect is the emission of electrons from a metal surface when light of a certain frequency is shined on it. The kinetic energy of the emitted electrons is determined by the frequency of the light and the work function of the metal. Therefore,

1. Particle at 60% of the speed of light: Speed = 1.8 x 10⁸ m/s (c).

2. Spaceship at 0.75c: Speed = 1.95 x 10⁸ m/s (d).

3. Photoelectron's kinetic energy depends on incident photon's energy and metal's work function.

The kinetic energy of a photoelectron emitted from a metal surface by a photon of light is given by the equation:

KE = [tex]h_f[/tex] - phi

where:

KE is the kinetic energy of the photoelectron in joules

[tex]h_f[/tex] is the energy of the photon in joules

phi is the work function of the metal in joules

The work function of a metal is the minimum amount of energy required to remove an electron from the metal surface. The energy of a photon is given by the equation:

[tex]h_f[/tex] = h*ν

where:

h is Planck's constant (6.626 x 10⁻³⁴ J*s)

ν is the frequency of the photon in hertz

The frequency of the photon is related to the wavelength of the photon by the equation:

ν = c/λ

where:

c is the speed of light in a vacuum (2.998 x 10⁸ m/s)

λ is the wavelength of the photon in meters

So, the kinetic energy of the photoelectron emitted from a metal surface by a photon of light is given by the equation:

KE = h*c/λ - phi

For example, if the wavelength of the photon is 500 nm and the work function of the metal is 4.1 eV, then the kinetic energy of the photoelectron will be:

KE = (6.626 x 10⁻³⁴J*s)*(2.998 x 10⁸ m/s)/(500 x 10⁻⁹ m) - 4.1 eV

= 3.14 x 10⁻¹⁹ J - 1.602 x 10⁻¹⁹ J

= 1.54 x 10⁻¹⁹ J

In electronvolts, the kinetic energy of the photoelectron is:

KE = (1.54 x 10⁻¹⁹ J)/(1.602 x 10⁻¹⁹ J/eV)

= 0.96 eV

3. The kinetic energy of a photoelectron emanating from a metal surface can be calculated by subtracting the work function of the metal from the energy of the incident photon. The work function is the minimum energy required to remove an electron from the metal. The remaining energy is then converted into the kinetic energy of the photoelectron.

To know more about the photoelectric effect refer here,

https://brainly.com/question/9260704#

#SPJ11

Complete question :

1.We have a particle that travels at 60% of the speed of light, its speed will be? a. 0.18 x 108 m/s b. 1.5 x 108 m/s c. 1.8 x 108 m/s d. 18.0 x 108m/s 2. A spaceship travels at 0.75c, its speed will

3. Determine the kinetic energy of a photoelectron emanating from a metal surface.

How
fast does this station say the wind is blowing?
How fast does this station say the wind is blowing? 61 cvs

Answers

The given information says that the wind is blowing at 61 cvs. Therefore, the speed of the wind blowing is 61 cvs.

Wind speed is usually measured in miles per hour (mph), kilometers per hour (km/h), meters per second (m/s), or knots (nautical miles per hour, abbreviated kt or kts). To find the speed of the wind, these measurements use different mathematical formulas and conversion factors.It is stated in the given question that the wind speed is 61 cvs. However, this unit of wind speed is not commonly used, as it is not a standard unit of wind speed measurement.

The speed of the wind is an essential factor in predicting weather conditions and determining their potential impact on people, structures, and the environment. Wind speed is typically measured in units such as miles per hour (mph), kilometers per hour (km/h), meters per second (m/s), and knots. According to the given information, the wind speed is 61 cvs. This unit of wind speed is not widely used, as it is not a standard unit of wind speed measurement. To determine the wind speed, it is necessary to employ various mathematical formulas and conversion factors that differ depending on the unit of measurement used.

To know more about speed visit:

https://brainly.com/question/32673092

#SPJ11

A small metal sphere(radius 0.5 mm ), initially at 100°C, when placed in a stream of fluid at 20°C, attains a temperature of 28°C in 4.35 seconds. The density and specific heat of the metal are 8500 kg/m3 and 400 J/kgK, respectively. If the metal sphere is considered as lumped system, the convective heat transfer coefficient (in W/m2K) between the metal sphere and the fluid stream is a. 283 b. 149.3 c. 449,5 d. 299.9 e. 200

Answers

The convective heat transfer coefficient (in W/m²K) between the metal sphere and the fluid stream is approximately 299.9 W/m²K (Option d).

The rate of heat transfer from the metal sphere to the fluid stream can be determined using Newton's law of cooling:

Q = h * A * ΔT

where Q is the heat transfer rate, h is the convective heat transfer coefficient, A is the surface area of the sphere, and ΔT is the temperature difference between the sphere and the fluid.

Radius of the sphere (r) = 0.5 mm = 0.0005 m

Initial temperature of the sphere (T1) = 100°C = 373 K

Temperature of the fluid (T f) = 20°C = 293 K

Final temperature of the sphere (T2) = 28°C = 301 K

Density of the metal (ρ) = 8500 kg/m³

Specific heat of the metal (C) = 400 J/kgK

Time taken (t) = 4.35 seconds

First, we calculate the change in temperature of the sphere:

ΔT = T2 - T f = 301 K - 293 K = 8 K

Next, we calculate the surface area of the sphere:

A = 4πr² = 4π(0.0005 m)²

Now, we can calculate the heat transfer rate:

Q = h * A * ΔT

Since the metal sphere is considered a lumped system, we can use the equation:

Q = m * C * ΔT

where m is the mass of the sphere, given by:

m = ρ * V

V = (4/3) * π * r³

Substituting the values and rearranging the equation, we have:

h * A * ΔT = ρ * V * C * ΔT

Simplifying the equation, we get:

h = (ρ * V * C) / A

Substituting the given values, we can calculate the convective heat transfer coefficient (h):

h = (8500 kg/m³) * [(4/3) * π * (0.0005 m)³] * (400 J/kgK) / [4π(0.0005 m)²]

h ≈ 299.9 W/m²K

Therefore, the convective heat transfer coefficient between the metal sphere and the fluid stream is approximately 299.9 W/m²K, which corresponds to option d.

The convective heat transfer coefficient between the metal sphere and the fluid stream is approximately 299.9 W/m²K.

To know more abou heat transfer ,visit:

https://brainly.com/question/16055406

#SPJ11

Determine the resultant force.
Determine the equivalent resultant couple moment about point
O
Replace the loading by an equivalent resultant force and couple moment at point O. Suppose that F₁ = {8i - 2k} kN and F₂ = {-2i+5j – 2k} kN. X 0.8 m 0.5 m 0.7 m Z

Answers

The loading can be replaced by an equivalent resultant force of 6i + 5j - 4k kN and an equivalent resultant couple moment of 6i + 3.4j + 1.5k.

To determine the resultant force, we need to add the given forces together:

F₁ = 8i - 2k kN

F₂ = -2i + 5j - 2k kN

Adding these forces, we have:

Resultant force (Fᵣ) = F₁ + F₂

= (8i - 2k) + (-2i + 5j - 2k)

= 8i - 2k - 2i + 5j - 2k

= 6i + 5j - 4k kN

So, the resultant force is Fᵣ = 6i + 5j - 4k kN.

To determine the equivalent resultant couple moment about point O, we can use the cross product of the position vectors and the forces:

Mᵣ = r₁ x F₁ + r₂ x F₂

Given the position vectors:

r₁ = 0.8i + 0.5j + 0.7k m

r₂ = 0.8i + 0.5j + 0.7k m

Substituting the values, we have:

Mᵣ = (0.8i + 0.5j + 0.7k) x (8i - 2k) + (0.8i + 0.5j + 0.7k) x (-2i + 5j - 2k)

Expanding the cross products, we get:

Mᵣ = (4i + 5j - 2k) + (2i - 1.6j + 3.5k)

   = 6i + 3.4j + 1.5k

So, the equivalent resultant couple moment about point O is Mᵣ = 6i + 3.4j + 1.5k.

To replace the loading by an equivalent resultant force and couple moment at point O, we have:

Resultant force at point O (Fᵣ) = 6i + 5j - 4k kN

Resultant couple moment at point O (Mᵣ) = 6i + 3.4j + 1.5k

Thus, the loading can be replaced by an equivalent resultant force of 6i + 5j - 4k kN and an equivalent resultant couple moment of 6i + 3.4j + 1.5k.

To know more about resultant force visit:

https://brainly.com/question/23187039

#SPJ11

square steel bar with an ultimate strength of 58 ksi can hold how much load in tension before breaking? A. 29 Kips B. 11.39 Kips C. 14.5 Kips D. None of the above ਦੇ 15. Internal Stresses The best way to increase the moment of inertia of a cross section is to add material: A. Near the center B. On all sides of the member At as great a distance from the center as possible D. In a spiral pattern 16. Internal Stresses: The formula for calculating maximum internal bending stress in a member A. Is bending moment divided by section modulus 8. Is bending moment times section modulus C Requires complex computer computations D. None of the above 17. Internal Stresses: An A36 steel bar has a precise yield strength of 36 Ksi. It will yield when: A Bending stresses exceed 36 ksi B. Bending stresses exceed 1.5 3G Ksi C. Ultimate stress is reached D. All of the above 18. Internal Stresses: For a horizontal simple span beam of length 1 that is loaded with a uniform load w, the maximum shear will: A. Occur adjacent to the support points B. Be equal to the twice vertical reaction at the support C. Be equal to w 1/4 D. All of the above 19. Internal Stresses: For a horizontal simple span beam that is loaded with a uniform load, the maximum moment will: A. Occur adjacent to the support points B. Be equal to the twice vertical reaction at the support C Be equal to w"1"1/8 D. None of the above

Answers

To determine the maximum load a square steel bar can hold in tension before breaking, we need to consider the ultimate strength of the material. Given that the ultimate strength of the steel bar is 58 ksi (kips per square inch), we can calculate the maximum load as follows:

Maximum Load = Ultimate Strength x Cross-sectional Area

The cross-sectional area of a square bar can be calculated using the formula: Area = Side Length^2

Let's assume the side length of the square bar is "s" inches.

Cross-sectional Area = s^2

Substituting the values into the formula:

Cross-sectional Area = (s)^2

Maximum Load = Ultimate Strength x Cross-sectional Area

Maximum Load = 58 ksi x (s)^2

The answer cannot be determined without knowing the specific dimensions (side length) of the square bar. Therefore, the correct answer is D. None of the above, as we do not have enough information to calculate the maximum load in tension before breaking.

Regarding the additional statements:

The best way to increase the moment of inertia of a cross-section is to add material at as great a distance from the center as possible.

The formula for calculating maximum internal bending stress in a member is bending moment divided by the section modulus.

An A36 steel bar will yield when bending stresses exceed 36 ksi.

For a horizontal simple span beam loaded with a uniform load, the maximum shear will occur adjacent to the support points.

For a horizontal simple span beam loaded with a uniform load, the maximum moment will occur adjacent to the support points.

These statements are all correct.

To learn more about, maximum load, click here, https://brainly.com/question/30088512

#SPJ11

2) Calculate the heat transfer rate per metre length when a steel pipe conveying steam is insulated. The pipe has an inside diameter of 20 cm, and outside diameter 30 cm. The lagging is 10 cm thick and has a thermal conductivity k; of 0.1 W/m K. The thermal conductivity of the pipe wall kp is 80 W/m K, the steam is at 300°C and ambient surrounding air is at 20°C. You may assume the pipe is sufficiently long with hin = 40 W/m² K, and hout = 16 W/m² K.

Answers

The heat transfer rate per meter length can be calculated using the formula for heat conduction through a composite wall.

The formal is given below:

Q = (T1 - T2) / [(1/h1) + (dx/k1) + (dx/k2) + (1/h2)],

where Q is the heat transfer rate, T1 and T2 are the temperatures on the inner and outer surfaces of the composite wall, h1 and h2 are the convective heat transfer coefficients, k1 and k2 are the thermal conductivities of the materials, and dx is the thickness of each material.

In this case, the inside temperature (T1) is 300°C and the outside temperature (T2) is 20°C. The convective heat transfer coefficients are given as hin = 40 W/m² K (inside) and hout = 16 W/m² K (outside). The thickness of the lagging material is 10 cm (0.1 m), the thermal conductivity of the lagging material is k = 0.1 W/m K, and the thermal conductivity of the pipe wall is kp = 80 W/m K.

Substituting the values into the formula, we have Q = (300 - 20) / [(1/40) + (0.1/0.1) + (0.1/0.1) + (1/16)]. Simplifying the equation gives Q = 2600 W/m.

To know more about thermal conductivity click here: brainly.com/question/14553214

#SPJ11

A thin beam of light enters a thick plastic sheet from air at an angle of 36 degrees from the normal and continues into the sheet. The refractive index of the plastic is 1.7. What is angle of the beam

Answers

Angle of the beam after it enters the thick plastic sheet is 23.17 degrees Given, Angle of incidence, i = 36 degrees Refractive index,n = 1.7

Angle of refraction, r can be calculated by using Snell's law, which is given by;`

n = sin(i)/sin(r)`Rearrange the above equation,`

sin(r) = sin(i)/n`Substitute the given values of `i` and `n` in the above equation,

sin(r) = sin(36)/1.7Using scientific calculator,

sin(r) = 0.628

sin(r) = `sin^(-1)(0.628)`r = 39.31 degrees (approx)

Now, the angle of beam after it enters into the thick plastic sheet can be calculated using the relation,Angle of beam = 90 - r = 90 - 39.31 = 50.69 degrees≈ 23.17 degrees (approx) Therefore, the angle of the beam after it enters into the thick plastic sheet is 23.17 degrees.

To know more about that Angle visit:

https://brainly.com/question/30147425

#SPJ11

2. (40 points) For an optimum rocket find the pressure (in MPa) and area at a location (x) inside its converging/diverging nozzle as well as the thrust produced and mass flow rate: Assume the combustion chamber pressure is equal to the stagnation pressure. Take: M₁=0.8, k = 1.4, chamber pressure = 2.23 MPa, chamber temperature = 2281 K propellant molecular mass= 18 kg/kmol, Runiversal 8314 J/kmol K, throat area= 0.042 m², and the atmospheric pressure - 0.1013 MPa.

Answers

The thrust and mass flow rate depend on these values, with the thrust being calculated based on the pressure, area, and ambient conditions, and the mass flow rate being determined by the area and exhaust velocity.

The pressure (P) at a specific location (x) inside the converging/diverging nozzle of the optimum rocket is calculated using the isentropic flow equations. The thrust (T) produced by the rocket is directly related to the pressure and area at that location. The mass flow rate (ṁ) is determined by the throat area and the local conditions, assuming ideal gas behavior.

Since the rocket is operating optimally, the Mach number at the nozzle exit (Mₑ) is equal to 1. The Mach number at any other location can be found using the area ratio (A/Aₑ) and the isentropic relation:

M = ((A/Aₑ)^((k-1)/2k)) * ((2/(k+1)) * (1 + (k-1)/2 * M₁^2))^((k+1)/(2(k-1)))

Once we have the Mach number, we can calculate the pressure (P) using the isentropic relation:

P = P₁ * (1 + (k-1)/2 * M₁^2)^(-k/(k-1))

Where P₁ is the chamber pressure.

The thrust (T) produced by the rocket at that location can be determined using the following equation:

T = ṁ * Ve + (Pe - P) * Ae

Where ṁ is the mass flow rate, Ve is the exhaust velocity (calculated using specific impulse), Pe is the ambient pressure, and Ae is the exit area.

The mass flow rate (ṁ) is given by:

ṁ = ρ * A * Ve

Where ρ is the density of the propellant gas, A is the area at the specific location (x), and Ve is the exhaust velocity.

By substituting the given values and using the equations mentioned above, you can calculate the pressure, area, thrust, and mass flow rate at a specific location inside the rocket nozzle.

To learn more about mass flow rate, Click here: brainly.com/question/30763861

#SPJ11

copper has an a of 17*10^-6.
A cube of copper has a volume of 1cm^3 ar absolute zero. what
is the size of the cube at new England room temperature. 273 K =
freezing point.

Answers

Copper has an a of 17×1[tex]0^-^6[/tex]. A cube of copper has a volume of 1c[tex]m^3[/tex] ar absolute zero. Therefore, the size of the copper cube at room temperature (273 K) would be approximately 1.004641 cm.

To calculate the size of the copper cube at room temperature,

Let's assume the initial size of the cube at absolute zero (0 K) is represented by L0. The size of the cube at room temperature, which is 273 K.

The change in length (ΔL) of the cube due to thermal expansion can be calculated using the formula:

ΔL = α × L0 × ΔT

where:

ΔL = change in length

α = coefficient of linear expansion

L0 = initial length

ΔT = change in temperature

Since given the initial volume of the cube as 1 c[tex]m^3[/tex], and assuming it is a perfect cube, one can calculate the initial length L0 using the formula:

L[tex]0^3[/tex] = initial volume

L0 = (initial volume[tex])^(^1^/^3^)[/tex]

L0 = (1 cm[tex]^3)^(^1^/^3^)[/tex]

L0 = 1 cm

Now, let's calculate the change in length at room temperature:

ΔL = (17 × 1[tex]0^(^-^6[/tex]) per K) × (1 cm) ×(273 K)

ΔL = 0.004641 cm

Finally, one can calculate the size of the cube at room temperature:

Size at room temperature = L0 + ΔL

Size at room temperature = 1 cm + 0.004641 cm

Size at room temperature ≈ 1.004641 cm

Learn more about the calculation of the size, density of cube here.

https://brainly.com/question/33036876

#SPJ4

Part A As shown, a truss is loaded by the forces P₁ = 499 lb and P₂ = 192 lb and has the dimension a P₁ H P₂ D *** a- a/2 a/2 Determine FBC, the = 10.7 ft. magnitude of the force in member BC,

Answers

The magnitude of the force in member BC, FBC, is 587.43 lb.

The magnitude of the force in member BC is a measure of the strength or intensity of the force acting along that particular truss member. To determine the magnitude of the force in member BC, we need to analyze the equilibrium of the truss. By applying the method of joints, we can solve for the forces in the truss members.

Considering joint B, we can write the following equilibrium equation in the vertical direction:

-P₁ + FBC cos(45°) + FBD cos(45°) = 0.

Since

P₁ = 499 lb

P₂ = 192 lb,

we can substitute their values.

We also know that FBD is equal to P₂, so the equation becomes

-499 + FBC cos(45°) + 192 cos(45°) = 0.
Solving for FBC, we find

FBC ≈ 587.43 lb.

Therefore, the magnitude of the force in member BC is approximately 587.43 lb, indicating the intensity of the internal force exerted along member BC to maintain the stability and balance of the truss under the given loading conditions.

To know more about the Magnitude, here

https://brainly.com/question/15696405

#SPJ4

Describe and interpret the variations of the total enthalpy and the
total pressure between the inlet and the outlet of a subsonic
adiabatic nozzle.

Answers

In a subsonic adiabatic nozzle, the total enthalpy and total pressure exhibit specific variations from the inlet to the outlet.

The total enthalpy decreases along the flow direction, while the total pressure increases. This behavior is a consequence of the conservation laws and the adiabatic nature of the nozzle.

The decrease in total enthalpy occurs due to the conversion of the fluid's internal energy into kinetic energy as it accelerates through the nozzle. This reduction in enthalpy corresponds to a decrease in the fluid's temperature. The energy transfer is primarily in the form of work done on the fluid to increase its velocity.

Conversely, the total pressure increases as the fluid passes through the nozzle. This increase is a result of the conservation of mass and the principle of continuity. As the fluid accelerates, its velocity increases, and to maintain mass flow rate, the cross-sectional area of the nozzle decreases. This decrease in area causes an increase in fluid velocity, resulting in an increase in kinetic energy and total pressure.

Understanding the variations of total enthalpy and total pressure in a subsonic adiabatic nozzle is crucial for efficient fluid flow and propulsion systems, such as in gas turbines and rocket engines. These variations highlight the energy transformations that occur within the nozzle, enabling the conversion of thermal energy into kinetic energy to generate thrust or power.

To learn more about total pressure, Click here: brainly.com/question/31599652

#SPJ11

Other Questions
List the four main sources for a prospect pool. In your opinion,which of the four sources of leads is hardest to convert to aclosed sale? Suppose you want to understand how a model prokaryote regulates its internal pH as the external pH changes. Design an experimental protocol that will allow you to understand the mechanisms involved in such processes. Try to answer, how will you induce the change in pH? what variables will you observe to define the mechanisms by which pH is regulated? what results do you expect to obtain? experimental controls? 1. Write a subroutine named "UB RCC GPIO_CFG" that (a) turns the GPIOA periph. To on and () configures pins 0 & 1 to be outputs and 2 & 3 to be inputs. help you, an Fauates.s file is provided for you on the assignment's page on Canvas. 2. Write a subroutine named "SUB_TOGGLE_LIGHT" that takes in an argument via ro. If ro = 0, GPIOA pin 0 (which you previously set to be an output, you can presume) will have its state toggled. If r0 = 1, you do a similar thing to pin 1. You can presume ro will be one of these two values. 3. Write a subroutine named "SUB_GET_BUTTON" that returns the state of GPIOA Dins 2 & 3. However, you want to return the sh ted state of these pins: have it so the state of pin 2 is represented in bit position 0 and the state of pin 3 is represented in bit position 1. Return the value through to. ; ; ===========================================; STM32F4xx Register Addresses and Constants ; RCC RCC_BASE EQU 0x40023800 ;RCC base addressRCC_AHB1ENR EQU 0x30 ; ABB1ENR offset RCC_AHB1ENR_GPIOAEN EQU 0x00000001 ;GPIOAEN bit ;GPIO registers GPIOA_BASE EQU 0x40020000 ;GPIA base adressGPIOX_MODER EQU 0x00 ;mode selection registerGPIOX_OTYPER EQU 0x04 ;output type registerGPIOX_OSPEEDR EQU 0x08 ; output speed registerGPIOX_PUPDR EQU 0x0C ; pull-p/pull-down registerGPIOX_IDR EQU 0x10 ; input data registerGPIOX_ODR EQU 0x14 ; output data registerENDPlease do this by assembly ARM A flow meter model is 1/6 the size of its prototype the model is tested with 20 celsius water while the prototype operates at 80 celsius. For a velocity of 3.05 m/s in the .3m throat of the prototype. What condition of the model should be matches for similitudes to obtain a friction coefficient?Answer choices are1. Nusselt Number (Nu)2. Prandtl Number (Pr)3. Reynolds Number (Re)4. Peclet Number (Re x Pr) You are asked to design a small wind turbine (D = x +1.25 ft, where x is the last two digits of your student ID). Assume the wind speed is 15 mph at T = 10C and p = 0.9 bar. The efficiency of the turbine is n = 25%, meaning that 25% of the kinetic energy in the wind can be extracted. Calculate the power in watts that can be produced by your turbine. Profit maximization is not capital requirements of a firm (10Mark 500.000 ordinto raise capital as follows. 200,000 ordinary shares of Ksh 20 par 100,00010% preference shares of 20 par value at K sh. 25 each 100,00020% debentures of K of Ksh.15 par value at Ksh 20 each Bank loan of ksh 6.000.000 at an 150 par value at Ksh. 180 each. The company intends to pay an annual interest rate of 14% per annum Calculate (7me corporation tax rate is 30% b. The component money raised (7marks) c. Weighted A corage Costs of capital for the company (8marks) QUESTION THRFF atmosphere had very low oxygen levels, but a to accumulate in the shallow oceans as around 2.4 billion so much that the oxygen was accumulating in the atmosphere peroxides, singlet oxygen, and hydroxyl radicals. Organisms living in thi new oxygen-rich environm Unfortunately, pure oxygen can be converted into reactive oxygen spece (ROS) including superoxide, catalase, to break down ROS. Humans actually have three forms of SOD as las catalase, which is found i the Oxygen Revolution needed to evolve to produce some enzymes, such as superoxide dismutase (500) within the cell as well as damage to DNA and RNA. Bacteria that stayed on and or in shallow oceans during needed mechanisms to convert ROS to a less reactive form in order to prevenciarge-scale oxidation dama peroxisomes. Organisms that didn't already have a mechanism in place to handle the ROS, were either forced a respiration was now possible and highly efficient mitochondria evolved, which allowed early eukaryotes response, the organisms that were able to handle the ROS underwent great diversification. Aer anaerobic refuges or died out in the large extinction event caused by the new oxygen-rich environment. methods organisms become much more complex. Due to the variable environments that existed at different times in Earth's history, highly variable r for ATP regeneration exist - most of which are found in bacteria. Most bacteria and most of the you think of carry out aerobic respiration. As you can see, throughout history, photosynthesis and cellular respiration have been linked. Today, we'll be O, increases as a result of photosynthesis, during respiration the opposite is true: as the plant breaks down exploring that link further by analyzing CO and O; concentrations in spinach leaves. While CO decreases and and photosynthesis by measuring the 0 glucose to release stored energy, CO, is released into the surrounding water or atmosphere, i concentrations decrease. Thus, we can estimate rates of respiration or consumption or production of these two gases. Questions (Chapters 9 and 10) to answer the following questions: 1. Oxygen is produced from water in the light reactions in a process called photolysis. What else happens du photolysis? Can the light reactions of photosynthesis continue if water is not available? Explain. 2. Describe the role of oxygen in cellular respiration: 1. Which of the following is NOT a principle of Collisiontheory?Colliding particles must be properly oriented.Colliding particles must have sufficiently high energy.Particles must collide in order microsoft corp. reported earnings per share of $1.20 in 2006 and $2.10 in 2016. at what annual rate did earnings per share grow over this period? Suppose that there are 90 firms in a market, each with the following cost function: C(q) = 65+4q2. Suppose the market demand is D(p) = 1,260 - 39p How much profit does each firm make in the short-run equilibrium? Consider the function F(x, y, z) = (e* siny, e* cos y, z). (d) A tiny paddle wheel is placed at position (0,0,0) in a fluid whose ve- locity at position (x, y, z) is F(x, y, z). Does the paddle wheel rotate? Explain. (e) Does a tiny cube of fluid placed at position (0,0,0) in a fluid whose velocity at position (x, y, z) is F(x, y, z) tend to expand, contract, or stay the same size? Alzheimer's disease can be sporadic and familial . what is thedifference ? Could you show me how to calculate the power?Option #3 - DC Machine Rated power: P = 3.73 kW Rated voltage: 240 V Rated current: 16 A Rated speed: 1220 rpm Rated torque: 28.8 Nm Winding resistance: R = 0.6 Torque constant: Kt = 1.8 Flux constant: Kb = 1.8 Precambrian units exposed in the Grand Canyon do not crop out inthe other national parks of the Colorado Plateaus because: Group of answer choices A) glaciers removed the Precambrian rocks in the other parksB) erosion and stream downcutting have not reached enough depth C) igneous activities melted the Precambrian rocks in the other parks A box with a rectangular base and no top is to be made to hold 2 litres (or 2000 cm ^3). The length of the base is twice the width. The cost of the material to build the base is $2.25/cm ^2and the cost for the 5 ides is $1.50/cm ^2. What are the dimensions of the box that minimize the total cost? Justify your answer. Hint: Cost Function C=2.25 area of base +1.5 area of four sides Often aerobic cellular respiration isn't 100% efficient, meaning it doesn't always produce the maximum amount of ATP per glucose. The reason for this is the uncoupling of the ETC and chemiosmosis. The energy released through the oxidation of NADH and FADH, is still used to pump H* ions into the intermembrane space and build up an electrochemical proton gradient. However, the H' ions pass back across the inner membrane without going through ATP synthase, which results in the energy from the electrochemical proton gradient being lost as thermal energy and not used to synthesize ATP. One way uncoupling is achieved is through uncoupling proteins (facilitated transport proteins) found in the inner mitochondrial membrane that provide an alternate pathway (instead of ATP synthase) for H to pass back into the matrix. a) Brown adipose fat found in hibernating animals contain mitochondria that have a high percentage of uncoupling proteins. Why do you think this is? [1] b) In the 1930's, a diet company produced a drug called DNP (2,4-dinitrophenol) which caused channels throughout the inner mitochondrial membrane that allowed ions, including H', to leak. Why do you think this drug was successful for making people lose weight? [1] c) DNP was discontinued after only a few years of use due to the harmful side effects. Any ideas as to what side effect(s) people who were taking this drug were experiencing? [1] Given E=3 e^-13z ax in free space. What is the associated phasor of the magnetic field? Find the phasor of the emf developed about the closed path having corners at (0,0,0), (1,0,0), (1,0,1), and (0,0,1). Take the frequency as f= 1.0 GHz. Magnisum sulfate is a anhydrous compounds used to remove residual water from a organic compound such as was seen in the lab Preparation of Methyl Benzoate True False QUESTION 11 If our reaction In the The absorption test is primarily used to evaluate the: 1)Flow ability 2)Durability 3)Strength A 5-year-old boy is brought to your office with peripheral oedema in both feet. His mother indicates that he had a 'strep throat about a month ago. Serum Creatinine = 2.0 mg/dl (normal: 0.6-1.2 mg/dL)