Answer:
32449.3
Step-by-step explanation:
use the formula A = P(1+r / 100)^t
20000 × (1+ (8.4 / 100))^6
=32449.3
Describe how to find the domain of a square root function just by looking at the function.
Answer:
Step 1: Set the expression inside the square root greater than or equal to zero. Step 2: Solve the equation found in step 1. In this case, we divided by a negative number, so had to reverse the direction of the inequality symbol. Step 3: Write the answer using interval notation.
QUESTION 5 - 1 POINT
An investment of $32,000 is worth $38,302 after being compounded monthly at 3%. How many years was the investment
for? (Round to the nearest whole year).
9514 1404 393
Answer:
6
Step-by-step explanation:
The compound interest formula tells you the future value of principal P invested at annual rate r compounded n times per year for t years is ...
A = P(1 +r/n)^(nt)
Solving for t, we get ...
t = log(A/P)/(n·log(1 +r/n))
Using the given values, we find t to be ...
t = log(38302/32000)/(12·log(1 +0.03/12)) ≈ 5.9997
The investment was for 6 years.
This graph shows the US unemployment rate from August 2010 to November 2011.
Sample Unemployment Rate
Graph
Unemployment Rate
10%
80%
6%
Unemployment Rate
Aug 10
Jan 11
Jun 11
Nov 11
This graph suggests unemployment in the United States
O will continue to fall.
O will continue to rise.
O will remain the same.
O will only change a little.
Answer: Will continue to rise
Step-by-step explanation:
Looking at the graph one notices that after a slight dip in the unemployment rate from August 2010 to January 2011, the unemployment rate began to rise and by November 2011 was still rising.
The arrow on the graph serves to indicate the direction the unemployment rate is going and as it is pointing upwards, this means that the Unemployment rate will continue to rise.
This was down to the fact that in 2011 the US was still yet to recover from the Great Recession of 2008 - 2009.
Answer:
EDGE 2021
Step-by-step explanation:
1) 4%
2) Increase
Find the missing side or angle.
Round to the nearest tenth.
Answer:
65.8
Step-by-step explanation:
Use the sin formula
100/sin (28) = x/ sin (18)
(sin (18) (100))/ sin (28) = x
x = 65.8223
x = 65.8
Answer:
65.8
Step-by-step explanation:
Accellus Correct
This is the ASVAB question If 500 people are at a concert and 70% are adults. How many children are there?
Answer:
150
Step-by-step explanation:
70% of 500 people are adults and the remainder are children.
30% of 500 are children30*500/100= 150There are 150 children
What is the length of the arc on a circle with radius 16 inches intercepted by a 45° angle?
Find the circumference:
Circumference = 2 x PI x radius:
Circumference = 2 x 3.14 x 16 = 100.48 inches.
A full circle is 360 degrees, a 45 degree angle is 1/8 of a full circle.
Arc length = 100.48 / 8 = 12.56 inches.
In a two-factor analysis of variance, the F-ratios for factor A, factor B, and the AxB interaction _____. Group of answer choices may have different df values but they all have the same denominator all have the same df values and they all have the same denominator may have different df values and may have different denominators all have the same df values but they may have different denominators
Answer:
may have different df values but they all have the same denominator
Step-by-step explanation:
In a two-factor analysis of variance, the F-ratios for factor A, factor B, and the AxB interaction _____. may have different df values but they all have the same denominator
In two--factor analysis of variance, the estimates of the variance can be obtained by partitioning the total sum of squares into three components corresponding to the three possible sources of variation , viz; Between Rows, Between Columns, and Within Samples or error.
As the number of rows and columns may differ the degrees of freedom differ with them.
In other words
Total df= Rows df + Columns df + Error df
Since the variance is identically the same for each row of the c values and variance is the same for each observation in the jth column of r values the sum of squares becomes an identity.
Therefore it may have different df values but they all have the same denominator.
Analyze the key features of the graph of the quadratic function f(x) = –x^2 + 4x – 3.
1. Does the parabola open up or down?
2. Is the vertex a minimum or a maximum?
3. Identify the axis of symmetry, vertex and the y-intercept of the parabola.
9514 1404 393
Answer:
downmaximumx=2; (2, 1), -3Step-by-step explanation:
1. The negative leading coefficient (-2) tells you the parabola opens downward.
__
2. The fact that the parabola opens downward tells you the vertex is a maximum.
__
3. For quadratic ax^2 +bx +c, the axis of symmetry is x = -b/(2a). For this parabola, that is x = -4/(2(-1)) = 2. The y-value of the vertex is f(2) = -2^2+4(2)-3 = -4+8-3 = 1. The y-intercept is the constant, c = -3.
axis of symmetry: x = 2vertex: (2, 1)y-intercept: (0, -3)A restaurant hands out a scratch-off game ticket with prizes being worth purchases at the restaurant. The back of the ticket lists the odds of winning each dollar value: 0.05 for $10, 0.04 for $25, 0.01 for $50, and 0.003 for $100. What are the odds that the ticket is worth at least $25?
Answer: 0.05412
Step-by-step explanation:
Formula : Odds of having an event is given by [tex]o=\dfrac{p}{1-p}[/tex], where p = probability that event happens.
In terms to find p , we use [tex]p=\dfrac{o}{1+o}[/tex]
Given, he back of the ticket lists the odds of winning each dollar value: 0.05 for $10, 0.04 for $25, 0.01 for $50, and 0.003 for $100.
Let X be the worth of ticket.
Then, the probability that the ticket is worth at least $25 =
[tex]P(X\geq 25)=P(X=25)+P(X=50)+P(X=100)[/tex]
[tex]=\dfrac{0.04}{1+0.04}+\dfrac{0.01}{1+0.01}+\dfrac{0.003}{1+0.003}\\\\=0.05135[/tex]
The odds that the ticket is worth at least $25 = [tex]\dfrac{0.05135}{1-0.05135}[/tex]
=0.05412
hence, the odds that the ticket is worth at least $25 is 0.05412 .
According to this diagram, what is tan 62°?
62°
17
18
280
90°
15
O A.
8
17
OB.끝
O c. 1
8
15
D.
15
8
O
E.
17
15
F.
15
17
Answer:
15/8
Step-by-step explanation:
tan(62)=P/B
tan(62)=15/8
Factor.
x2 + 11x
x2 + 11x
x(x + 11)
11(x + 11)
0(x2 + 11x)
Answer:
x(x + 11)
Step-by-step explanation:
x^2 + 11x when factored gives a result of x(x + 11)
Answer:
x(x+11)
Step-by-step explanation:
We are given the expression:
[tex]x^2+11x[/tex]
This can be factored using the Greatest Common Factor (GCF).
The GCF of x^2 and 11x is x.
Factor out an x.
[tex]x(x+11)[/tex]
x^2+11x factored is: x(x+11).
Find three consecutive integers such that the sum of the largest and 5 times the smallest is -244. Find the smallest integer.
Let the largest integer equal x, the 3rd number ( smallest-number) would be x - 2
The sum of the two would be:
X + 5(x-2) = -244
Simplify:
X + 5x -10
Combine like terms
6x -10 = -244
Add 10 to both sides:
6x = -234
Divide both sides by 6
X = -234/6
X = -39
The smallest number is x-2 = -39-2 = -41
The answer is -41
Determine whether the statement below makes sense or does not make sense. Explain clearly. Based on our sample, the 95% confidence interval for the mean amount of television watched by adults in a nation is 1.9 to 3.5 hours per day. Therefore, there is 95% chance that the mean for all adults in the nation will fall somewhere in this range and a 5% chance that it will not.
A. The statement makes sense. There is 95% probability that the confidence interval limits actually contain the true value of the population mean, so the probability it does not fall in this range is 100%−95% =5%.
B. The statement makes sense. There is 5% probability that the confidence interval limits do not contain the true value of the sample mean, so the probability it does not contain the true value of the population mean is also 5%.
C.The statement does not make sense. The probability the population mean is greater than the upper limit is 5% and the probability it is less than the lower limit is 5%, so the probability it does not is 5%+5%=10%.
D. The statement does not make sense. The population mean is a fixed constant that either falls within the confidence interval or it does not. There is no probability associated with this.
The correct option is A because
The statement makes sense. There is 95% probability that the confidence interval limits actually contain the true value of the population mean, so the probability it does not fall in this range is 100%−95% =5%.
From the question we are told that:
Confidence interval [tex]CI=95\%[/tex]
Mean [tex]\=x =1.9-3.5hours[/tex]
Level of significance (of the alternative hypothesis)
[tex]\alpha=100-95[/tex]
[tex]\alpha=5\%[/tex]
[tex]\alpha=0.05[/tex]
Generally
There is 95% probability that the confidence interval limits actually contain the true value of the population mean.
In conclusion
The it does not fall in this range is Level of significance (of the alternative hypothesis)
100%−95% =5%.
For more information on this visit
https://brainly.com/question/24131141?referrer=searchResults
State the correct polar coordinate for the graph shown:
Answer:
Solution : ( - 8, - 5π/3 )
Step-by-step explanation:
There are four cases to consider here, the first two with respect to r > 0, the second two with respect to r < 0. For r < 0 we have the coordinates ( - 8, 60° ) and ( - 8, - 300° ) . - 300° in radians is - 5π/3, and hence our solution is option d. But let me expand on how to receive the coordinates. Again r is the directed distance from the pole, and theta is the directed angle from the positive x - axis.
So when r is either negative or positive, we can tell that this point is 8 units from the pole. Therefore - r = - 8 in both our second cases ( we are skipping the first two cases for simplicity ). For r < 0 the point will lay on the ray pointing in the opposite direction of the terminal side of theta.
Our first coordinate is ( - 8, 60° ). Theta will be 2 / 3rd of 90 degrees, or 60 degrees, for - r. Respectively the remaining degrees will be negative, 360 - 60 = 300, - 300. Our second point for - r will thus be ( - 8, - 300° ) . - 300° = - 5π/3 radians, and our coordinate will be ( - 8, - 5π/3 ).
Find the equation of the line: parallel to 3x - y = 11 through (-2,0)
Answer:
y=3x+6
Step-by-step explanation:
The slope of the line is 3 and the equation will be y=3x+6
Answer:
3
Step-by-step explanation:
dont put this in cuz it wrong ♂️
Which equation is the result of subtracting the second equation from the first?
4x-6y=13
-5x+2y=5
Answer:
the answer is
-x-8y=8
or, x + 8y= -8
Step-by-step explanation:
4x - 6y = 13 - (5x + 2y = 5)
or, 4x - 6y = 13
- 5x - 2y = -5
-------------------------
- x - 8y = 8
find the area of square whose side is 2.5 cm
Answer:
6.25
Step-by-step explanation:
2.5 *2.5=6.25
Answer:
6.25cm^2.
Step-by-step explanation:
To find the area of a square, you multiply the two sides, 2.5✖️2.5.
This gives the area of 6.25cm^2.
Hope this helped!
Have a nice day:)
Find the value of w
A. 141
B. 110
C. 80
D. 100
Answer:
141
Step-by-step explanation:
Angle Formed by Two Chords= 1/2(SUM of Intercepted Arcs)
We know z+70 = 180 since they form a straight line
z = 110
z = 1/2 ( 79+w)
110 = 1/2 ( 79+w)
220 = 79+w
220-79 = w
141 =w
The value of w is found to be 141.
ChordWhat is chord of a circle?The line segment connecting any two locations on a circle's circumference is referred to as the chord of the circle.
It should be emphasised that the diameter is the circle's longest chord, which runs through its centre.
Relation between chord and arc:When two chords cross inside of a circle, the angle's measure is equal to the product of the lengths of the intersecting arcs and the vertical angle, divided by two.
Formula for chord angle:angle formed by two chords = 1/2 (sum of intercepted arcs)
Calculation for arc w:Estimate angle z by linear pair.
z + 70 = 180
z = 110
z is the angle formed between two chord of the circle.
Thus,
z = 1/2( 79 + w) {sum of intercepted arcs}
110 = 1/2( 79 + w)
Further solving,
w = 141
Therefore, the value of arc w comes out to be 141.
To know more about linear pair, here
https://brainly.com/question/8720873
#SPJ2
Starting with x1 = 2, find the third approximation x3 to the root of the equation x3 − 2x − 2 = 0.
Answer:
0.8989
Step-by-step explanation:
Using the Newton's Raphson approximation formula.
Xn+1 = Xn - f(Xn)/f'(Xn)
Given f(x) = x³-2x+2
f'(x) = 3x²-2
If the initial value X1 = 2
X2 = X1 - f(X1)/f'(X1)
X2 = 2 - f(2)/f'(2)
f(2) = 2³-2(2)+2
f(2) = 8-4+2
f(2) = 6
f'(2) = 3(2)²-2
f'(2) = 10
X2 = 2- 6/10
X2 = 14/10
X2 = 1.4
X3 = X2 - f(X2)/f'(X2)
X3 = 1.4 - f(1.4)/f'(1.4)
f(1.4) = 1.4³-2(1.4)+2
f(1.4) = 2.744-2.8+2
f(1.4) = 1.944
f'(1.4) = 3(1.4)²-2
f'(1.4) = 3.880
X3 = 1.4- 1.944/3.880
X3 = 1.4 - 0.5010
X3 = 0.8989
Hence the value of X3 is 0.8989
In which set(s) of numbers would you find the number -832 a. whole number b. irrational number c. integer d. rational number e. real number f. natural number
Answer:
integer of course
Step-by-step explanation:
an integer can either be negative or positive.
The probability that a graduate of the Faculty of Finance will defend the diploma “excellent” is 0.6. The probability that he will defend his diploma “perfectly” and receive an invitation to work at the bank is 0.4. Suppose a student defends a diploma. Find the probability that he will receive an invitation to work in a bank?
The probability that he receives an invitation to work in a bank given that he defends his diploma excellently is [tex]\mathbf{0. \overline 6}[/tex]
The reason for the above probability value is as follows;
The known parameters are;
The probability that a graduate of the Faculty of Finance will defend the diploma excellently, P(A) = 0.6
The probability that he will defend perfectly and receive an invitation to work at a bank, P(A∩B) = 0.4
The unknown parameter is;
The probability that the student will receive an invitation from the bank given that the student defend the diploma excellent, [tex]\mathbf {P(B \ | \ A)}[/tex]
The process;
[tex]\mathbf{ P(B \ | \ A)}[/tex] is found using the conditional probability formula as follows;
[tex]\mathbf {P(B \ | \ A) = \dfrac{P(A \cap B) }{P(A)}}[/tex]
Plugging in the values, we get;
[tex]P(B \ | \ A) = \dfrac{0.4 }{0.6} = \dfrac{2}{3} = 0. \overline 6[/tex]
The probability that the student will receive an invitation from the bank given that the student defend the diploma excellent, [tex]P(B \ | \ A)[/tex] = [tex]\mathbf {0. \overline 6}[/tex]
Learn more about conditional probability here;
https://brainly.com/question/10567654
The probability of winning a raffle is 2/5. What is the probability of not winning the raffle?
0
3/5
2/5
Answer:
3/5
Step-by-step explanation:
um 3/5+2/5 = 1
A function y = g(x) is graphed below. What is the solution to the equation g(x) = 3?
closed interval on x=3 and open at x=5
for all values between these numbers, y=3
so [3,5)
Please Show Work
Need Help
Answer:
The distance is 87.5 miles
Step-by-step explanation:
We can use a ratio to solve
1 in 3.5 inches
----------- = ----------------
25 miles x miles
Using cross products
1x = 3.5 * 25
x =87.5
The distance is 87.5 miles
━━━━━━━☆☆━━━━━━━
▹ Answer
87.5 miles
▹ Step-by-Step Explanation
[tex]\frac{1}{25} * \frac{3.5}{x} \\\\1 * 3.5 = 3.5\\25 * 3.5 = 87.5 \\\\Actual Distance = 87.5 miles[/tex]
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
What is the number of square units in the area of the triangle whose vertices are points A(2,0), B(6,0), and C(8,5)?
10 units squared. Hope this helped.
The area of the triangle is 10 square units.
The given coordinates are A(2,0), B(6,0), and C(8,5).
What is the formula to find the area of a triangle?The formula of area of triangle formula in coordinate geometry is the area of the triangle in the coordinate geometry is: [tex]A=\frac{1}{2} |x_{1} (y_{2}-y_{3})+x_{2} (y_{3}-y_{1})+x_{3} (y_{1}-y_{2})|[/tex]
Now, Area=1/2|2(0-5)+6(5-0)+8(0-0)|=0.5|20|
=10 square units
Therefore, the area of the triangle is 10 square units.
To learn more about the area of the triangle visit:
https://brainly.com/question/11952845.
#SPJ2
175 2/3 + 456 2/3
add and simplify
help pls
Answer:
460 1/3
Step-by-step explanation:
175 2/3 + 456 2/3
First convert to improper fraction,
527/3 + 854/3
=> 1381/3
Then After adding convert back to mixed fraction,
=> 460 1/3
Brainliest for the correct answer!! A calculator was used to perform a linear regression on the values in the table. The results are shown to the right of the table.What is the line of best fit?A.y = –0.984x + 13.5B.y = –2.9x + 13.5C.–0.984 = –2.9x + 13.5D.y = 13.5x – 2.9
Answer:
B. y = –2.9x + 13.5
Step-by-step explanation:
You can try to use the calculator to determine the best line for the values given; you will se that the calculator form, for the linear function is
y = a + bx, where a is the y intercept and b is the slope.
To determine the slope, we apply a formula, to calculate the product of the two xy and, x², plus the sum of each column.
x y xy x²
1 . 11 = 11 → x² = 1² = 1
2 . 8 = 16 → x² = 2² = 4
3 . 4 = 12 → x² = 3² = 9
4 . 1 = 4 → x² = 4² = 16
5 . 0 = 0 → x² = 5² = 25
Total x = 1 + 2 + 3 + 4 + 5 = 15
Total y = 11 + 8 + 4+ 1 + 0 = 24
Sum of xy = 11 + 16 + 12 + 4 + 0 = 43
Sum of x² = 1 + 4 + 9 + 16 + 25 = 55
n = 5
So b = 5 (43) - (15) . (24) / 5 (55) - 15² = -2.9
a = y media - b . x media → a = 24/5 - (-2.9) . 15/5 = 13.5
The height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning. When graphed, the function gives a line with a slope of −0.4. See the figure below. Suppose that the height of the candle after 11 hours is 16.6 centimeters. What was the height of the candle after 6 hours?
Answer:
height of the candle after 6 hours= 18.6 centimeters
Step-by-step explanation:
the function gives a line with a slope of −0.4.
the height of the candle after 11 hours is 16.6 centimeters.
after 6 hours, the height will be
But slope= y2-y1/x2-x1
Y2 is the unknown
Y1 = 16.6
X1= 11 hours
X2= 6 hours
y2-y1/x2-x1= -0.4
(Y2-16.6)/(6-11)= -0.4
(Y2-16.6)/(-5)= -0.4
(Y2-16.6)= -5( -0.4)
(Y2-16.6)= 2
Y2 = 2+16.6
Y2 = 18.6 centimeters
height of the candle after 6 hours= 18.6 centimeters
Can someone please help solve this equation thank you
Answer:
A and B
Step-by-step explanation:
Both points are in the shaded/blue zone
I hope this helps!
pls ❤ and give brainliest pls
Answer:
Yea both A and B are correct.
Step-by-step explanation:
if you can see you can put (-12,0) inside the shaded triangle also for (-10,1)
you can give brainlist to the person above :D
A school newspaper reporter decides to randomly survey 15 students to see if they will attend Tet festivities this year. Based on past years, she knows that 24% of students attend Tet festivities. We are interested in the number of students who will attend the festivities.
Find the probability that at most 4 students will attend. (Round your answer to four decimal places.)
Answer:
0.70319018
Step-by-step explanation:
Given the following:
Number of students surveyed (n) = 15
Probability of attending tet festival (p) = 24% =0.24
Therefore,
Probability of not attending (1 - p) = (1 - 0.24) = 0.76.
The probability that at most 4 students will attend can be obtained using the binomial probability relation:
p(x) = nCx * p^x * (1 - p)^(n-x)
At most 4 students means:
p(x=0) + p(x=1) + p(x=2) + p(x=3) + p(x=4)
p(x=0) = 15C0 * 0.24^0 * 0.76^(15 - 0)
p(x=0) = 1 * 1 * 0.0004701 = 0.00047018
p(x=1) = 15C1 * 0.24^1 * 0.76^(14)
p(x=1) = 15 * 0.24 * 0.021448 = 0.07721
p(x=2) = 15C2 * 0.24^2 * 0.76^(13) =
p(x=2) = 105 * 0.0576 * 0.02822 = 0.17068
p(x=3) = 15C3 * 0.24^3 * 0.76^(12)
p(x=3) = 455 * 0.013824 * 0.037133 = 0.23356
p(x=4) = 15C4 * 0.24^4 * 0.76^(11) =
p(x=4) = 1365 * 0.0033177 * 0.048859 = 0.22127
0.00047018 + 0.07721 + 0.17068 + 0.23356 + 0.22127 = 0.70319018