You are pushing your old dishwasher of mass 35.0 kg up the ramp into the truck bed. You are applying a force of 225 N along the ramp which is inclined at 22.0 degrees. There is a frictional force of 45.0 N between the ramp and the dishwasher. can you please help with b?​

You Are Pushing Your Old Dishwasher Of Mass 35.0 Kg Up The Ramp Into The Truck Bed. You Are Applying

Answers

Answer 1

The acceleration of the dish washer is obtained as 5.1 m/s^2.

What is a free body diagram?

A free body diagram is a type of image that physicists use to illustrate the forces operating on an item in a certain circumstance.

By dissecting the motion of the object into its component forces and displaying the direction and amount of each force acting on the object, the diagram may be used to study the motion of the object.

We know that;

Net force =Applied force - Frictional force

35a = 225 - 45

a = 225 - 45/35

a = 5.1 m/s^2

Learn more about freebody diagram: https://brainly.com/question/10148657

#SPJ1


Related Questions

A man is in a helicopter ascending vertically at constant rate of 24.5m/s accidentally drops a toy out the window when the helicopter is 120.0m above the ground. (g = 9.8m / s)

a. How long will it take the toy to reach the ground

b. What will its speed be when it hits the ground?​

Answers

It will take the toy  5.02 seconds to reach the ground, The speed at which the toy hits the ground is 49.0 m/s.

Free fall is the motion of an object falling solely under the influence of gravity. In free fall, the object experiences an acceleration of 9.8 m/s^2 downwards towards the ground (assuming no air resistance), regardless of its mass or size.

a. To determine the time it takes for the toy to reach the ground, we can use the formula for the height of an object in free fall:

h = (1/2)gt^2

Where h is the initial height, g is the acceleration due to gravity, and t is time.

At the instant the toy is dropped, its initial height above the ground is h = 120.0 m, and the acceleration due to gravity is g = 9.8 m/s^2. Thus, we can rearrange the formula to solve for time:

t = sqrt(2h/g)

t = sqrt(2(120.0 m)/(9.8 m/s^2)) = 5.02 s

So, it will take the toy approximately 5.02 seconds to reach the ground.

b. To find the speed at which the toy hits the ground, we can use the formula for final velocity in free fall:

v = sqrt(2gh)

Where v is the final velocity, g is the acceleration due to gravity, and h is the initial height. At impact, the initial height of the toy is 0 m. Therefore:

v = sqrt(2gh)

v = sqrt(2(9.8 m/s^2)(120.0 m))

v = 49.0 m/s

So, the speed at which the toy hits the ground is approximately 49.0 m/s.

Hence, The toy will fall to the earth in 5.02 seconds, hitting the ground at a speed of 49.0 m/s.

To learn more about  Gravitational potential energy click:

brainly.com/question/31096472

#SPJ1

1) Compute the x and y components of the following vectors, and state them in component form.
a) A 8.0 m South
b) B-15.0 m at 30-East of North
c) C = 12.0 m at 25-South of West -
d) D=10.0 m at 53-West of North-

Answers

a) A = 8.0 m South

Since the vector is directly along the South direction, there is no x component.

x component: 0 m

y component: -8.0 m (negative because it's southward)

Component form: A = (0, -8.0)

b) B = -15.0 m at 30° East of North

To find the components, we can use the following relationships:

x component: B_x = B * sin(θ)

y component: B_y = B * cos(θ)

B_x = -15.0 * sin(30°) = -15.0 * 0.5 = -7.5 m

B_y = -15.0 * cos(30°) = -15.0 * (sqrt(3)/2) ≈ -12.99 m

Component form: B ≈ (-7.5, -12.99)

c) C = 12.0 m at 25° South of West

x component: C_x = -C * cos(θ) (negative because it's westward)

y component: C_y = -C * sin(θ) (negative because it's southward)

C_x = -12.0 * cos(25°) ≈ -10.85 m

C_y = -12.0 * sin(25°) ≈ -5.16 m

Component form: C ≈ (-10.85, -5.16)

d) D = 10.0 m at 53° West of North

x component: D_x = -D * sin(θ) (negative because it's westward)

y component: D_y = D * cos(θ)

D_x = -10.0 * sin(53°) ≈ -8.0 m

D_y = 10.0 * cos(53°) ≈ 6.0 m

Component form: D ≈ (-8.0, 6.0)

a) A 8.0 m South:
The x component of vector A is 0 since it points purely in the y direction (South), while the y component is -8.0 m (negative since it points downwards):
A = (0, -8.0 m)

b) B -15.0 m at 30-East of North:
To find the components, we first visualize the vector as shown below:

N
|
|
| 30°
| /
|/
+------------- E


The x component of B is found by projecting the vector onto the x-axis (which is East). This gives us:
Bx = -15.0 m * sin(30°) = -7.5 m

The y component of B is found by projecting the vector onto the y-axis (which is North). This gives us:
By = -15.0 m * cos(30°) = -13.0 m

Therefore, the component form of vector B is:
B = (-7.5 m, -13.0 m)

c) C = 12.0 m at 25-South of West:
To find the components, we first visualize the vector as shown below:

N
|
|
|
|
| 25°
| /
|/
+------------- W

The x component of C is found by projecting the vector onto the x-axis (which is West). This gives us:
Cx = -12.0 m * cos(25°) = -10.9 m

The y component of C is found by projecting the vector onto the y-axis (which is North). This gives us:
Cy = -12.0 m * sin(25°) = -5.1 m

Therefore, the component form of vector C is:
C = (-10.9 m, -5.1 m)

d) D = 10.0 m at 53-West of North:
To find the components, we first visualize the vector as shown below:

N
|
|
| 53°
| /
|/
+------------- W

The x component of D is found by projecting the vector onto the x-axis (which is West). This gives us:
Dx = -10.0 m * sin(53°) = -8.1 m

The y component of D is found by projecting the vector onto the y-axis (which is North). This gives us:
Dy = 10.0 m * cos(53°) = 6.2 m

Therefore, the component form of vector D is:
D = (-8.1 m, 6.2 m)

What is the velocity of a sound wave that travels 2500 m in 8.2 s.

Answers

Explanation:

V=lander f. where,

v is the velocity of the sound wave

f is the frequency of sound wave(Hz)

L is the wavelength

so we simply just divide 2500 by 8.2 that gives us 304.88ms-¹

hopefully I get this right!

Why do we know so much Earth's Composition?

A.Digging to the inner core
B.Looking at the Earth's Magnetic Field
C.Studying Seismic Waves

Answers

Answer:

C

Explanation:

Since we can't go to the center of Earth, we have to rely on indirect observations of the materials of the interior. The seismic waves are generated by earthquakes and explosions that travel through Earth and across its surface. Thanks to that, it reveals the structure of the interior of the planet. Thousands of earthquakes occur every year, and each one provides a glimpse of the Earth's interior.

C studying seismic waves

There are two resistors connected in parallel: R1-43 Ohms and R2-43 Ohms.
Determine the equivalent resistance. Round your answer to 2 significant digits only. For example, if the answer is 65.4 Ohms write 65.

Answers

The equivalence resistance rounded off to two significant digits is

22 Ohms.

How to find the equivalent resistance

The equation used to work out the equivalent resistance of two resistors in parallel is as follows:

1/Req = 1/R1 + 1/R2

When R1 and R2 are set at 43 Ohms, we can fill in the placed values like so:

1/Req = 1/43 + 1/43

Simplifying to reduce the equation

1/Req = 2/43

cross multiplying the sides of the equation:

2 x Req = 43

Isolating Req

Req = 43/2

Req = 21.5 Ohms

Req = 22 Ohms to 2 significant figures

Learn more about resistors at

https://brainly.com/question/24858512

#SPJ1

Can someone help me with my physics sheet? I don’t understand it.. thank you

Answers

Acceleration of the skydiver during the free fall is 4.13 m/s².

1) Mass of the skydiver, m = 83 kg

Weight, W = mg = 83 x 9.8

W = 813.4 N

Free fall acceleration is the acceleration that a body travelling in free fall experiences due to only the gravitational pull of the earth. This is the acceleration brought on by gravity.

Since there is no air resistance, the acceleration of the skydiver during the free fall is the acceleration due to gravity, g.

Freebody diagram is given in Fig.1.

2) Mass of the skydiver, m = 78 kg

Air resistance acting on him, F' = 470 N

mg - 470 = ma

813.4 - 470 = ma

a = 343.4/83

a = 4.13 m/s²

Freebody diagram is given in fig.2.

To learn more about acceleration, click:

https://brainly.com/question/13410291

#SPJ1

Which of the following would you expect to be a strong electrolyte in solution?

Answers

The following would expect to be a strong electrolyte in solution (b) KCI is correct option.

When dissolved in water, a strong electrolyte produces a large concentration of ions in solution by totally dissociating into ions.  The following compounds are typically strong electrolytes in solution according to this definition:

Al(OH)₃ (aluminum hydroxide) is a weak electrolyte. It does not dissociate significantly into ions in solution, resulting in a low electrical conductivity.KCl (potassium chloride) is a strong electrolyte. It completely dissociates into potassium ions (K⁺) and chloride ions (Cl⁻) in solution, resulting in a high concentration of ions and a high electrical conductivity.PbI₂ (lead(II) iodide) is a weak electrolyte. It does not dissociate significantly into ions in solution, resulting in a low electrical conductivity.

These substances readily dissociate into ions in water and exhibit high electrical conductivity, making them strong electrolytes in solution.

Therefore, the correct option is (b).

The complete question is,

Which of the following would be a strong electrolyte in solution?

a) Al(OH)₃ b) KCI c) Pbl₂

To know more about electrolyte

https://brainly.com/question/30861174

#SPJ1

Which two options are forms of potential energy?
A. Chemical energy
B. Sound energy
c. Electrical energy
D. Thermal energy
E. Nuclear energy

Answers

The two options that are forms of potential energy are:

A. Chemical energy
E. Nuclear energy

Therefore, options A and E are the correct answers.

In the figure, point P2 is at perpendicular distance R= 20.6 cm from one end of straight wire of length L = 12.2 cm carrying current i = 0.780 A. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₂?

Answers

The magnitude of the magnetic field at P₂ is 6.06 x 10⁻⁵ T.

Using the Biot-Savart Law, we can determine the magnetic field at point P2 due to the current-carrying wire. The magnitude of the magnetic field B at P2 is given by:

B = μ₀i/4π (sinθ₁ - sinθ₂)

where μ₀ is the magnetic constant, i is the current, θ₁ is the angle between the wire and the line joining the wire and point P₂, and θ₂ is the angle between the wire and the line perpendicular to the wire and passing through point P₂.

From the given diagram, we can see that sinθ₁ = L/2R and sinθ₂ = (R - L/2)/R. Substituting these values and the given values of i, L, and R into the equation, we get:

B = (4π x 10⁻⁷ Tm/A) x 0.780 A / 4π (L/2R - (R - L/2)/R)

= 6.06 x 10⁻⁵ T

As a result, the magnetic field magnitude at P₂ is 6.06 x 10⁻⁵ T.

To know more about the Magnetic field, here

https://brainly.com/question/13148187

#SPJ1

Construct a parallel-plate capacitor where a second line of charges equal in size and opposite in charge are placed below the line of positive charges. Examine what the "E-field" is like between the plates using a sensor.

Answers

A capacitor with two lines of charge on its parallel plates. The bottom plate has an equal line of negative charges that are the opposite in charge to the positive charges on the top plate, while the top plate has a line of positive charges.

As a result, an electric field (E-field) is produced between the plates that can be measured with a sensor.

In a parallel-plate capacitor, the E-field between the plates is uniform and pointed perpendicularly to the plates. It is represented by the equation E = σ/ε, where ε is the permittivity of the medium between the plates and σ is the charge density (charge per unit area) on the plates.

In this instance, the charge density on the top and bottom plates is the same but with opposing signs since the lines of charges on the plates are equal in size and opposite in charge. Assume that the top plate has positive charges and the bottom plate has negative charges, and that the charge density on both plates equals.

A sensor placed between the capacitor's plates will now allow us to measure the E-field, which will reveal that it is constant and perpendicular to the plates. E = σ/ε, where σ, is the charge density and is the permittivity of the medium between the plates, will be the magnitude of the E-field.

To know more about charges

https://brainly.com/question/28941594

#SPJ4

How would the pollution from 2 coal plants compare if the first plant were twice as energy efficient as the second one?

Answers

The pollution from the first plant would be half that of the second plant for the same amount of energy produced.

The energy efficiency of a coal plant refers to the amount of energy produced per unit of fuel consumed. If the first plant is twice as energy efficient as the second plant, it means that it can produce the same amount of energy using half the amount of fuel.

Since pollution from coal plants is directly proportional to the amount of fuel consumed, the first plant would produce half the pollution of the second plant for the same amount of energy produced. This assumes that the two plants have the same level of emissions per unit of fuel consumed, which may not necessarily be the case.

To know more about pollution, here

brainly.com/question/28519286

#SPJ1

Two balloons with charges of 5 nC and -4 nC attract each other with a radius of 2.5 cm. Determine the force between the two balloons.

Answers

Answer:
The force between the two balloons can be calculated using Coulomb's law:

F = k * (q1 * q2) / r^2

Substituting the given values, we get:

F = 9 × 10^9 * (5 × 10^-9 * (-4 × 10^-9)) / (0.025)^2

F ≈ -1.44 × 10^-4 N

The force between the two balloons is approximately -1.44 × 10^-4 N. The negative sign indicates that the force is attractive.

orange orb has an emissivity of 0.418 and its surroundings are at 273°C. The orange orb is absorbing heat via radiation at a rate of 362
W and it is emitting heat via radiation at a rate of 384 W. Determine the surface area of the orb, the temperature of the orb, & Pnet

A=
Torb=
Phet =

Answers

The orange orb has a surface area, temperature, and a net rate of heat transmission per unit surface area of:

A= 0.1257 m²Torb= 363.7 K (90.5°C)Pnet = 175.1 W/m²

How to solve emissivity?

To solve this problem, using the equation that combines rates of heat transfer via radiation, emissivity, and surface area of object:

P_net = εσA(T_orb⁴ - T_sur⁴)

where P_net = net rate of heat transfer via radiation,

ε = emissivity of the object (which is given as 0.418),

σ = Stefan-Boltzmann constant, 5.67 x 10⁻⁸ W/m²K⁴,

A = surface area of the object,

T_orb = temperature of the object, and

T_sur = temperature of the surroundings.

First, find the net rate of heat transfer via radiation:

P_net = 384 W - 362 W = 22 W

Plug in the given values and solve for the surface area:

22 W = 0.418 x 5.67 x 10⁻⁸ W/m²K⁴ x A x (T_orb⁴ - 273⁴)

Solving for A:

A = 4πr² = 4π (d/2)² = 4π (0.1 m)² = 0.1257 m²

where assuming the orange orb is a sphere with a diameter of 0.1 m.

Solve for the temperature of the orange orb:

22 W = 0.418 x 5.67 x 10⁻⁸ W/m²K⁴ x 0.1257 m² x (T_orb⁴ - 273⁴)

T_orb⁴ - 273⁴ = 22 W / (0.418 x 5.67 x 10⁻⁸ W/m²K⁴ x 0.1257 m²) = 97417 K⁴

Taking the fourth root of both sides:

T_orb = (97417 K⁴ + 273⁴)^(1/4) = 363.7 K

Calculate the net rate of heat transfer per unit surface area:

P_net/A = 22 W / 0.1257 m² = 175.1 W/m²

Therefore, the surface area of the orange orb is 0.1257 m², its temperature is 363.7 K (90.5°C), and the net rate of heat transfer per unit surface area is 175.1 W/m².

Find out more on emissivity here: https://brainly.com/question/30580585

#SPJ1

A 20 kg child is on a swing that hangs from 2.6-m-long chains. What is her maximum speed if she swings out to a 50 degree angle?

Answers

To find the maximum speed of the child on the swing, we can use the conservation of energy principle, which states that the total energy of a system is conserved.

At the highest point of the swing, the child has maximum potential energy and zero kinetic energy. At the lowest point of the swing, the child has maximum kinetic energy and zero potential energy. Therefore, the total energy of the system remains constant, and we can write:

PE = KE

where PE is the potential energy and KE is the kinetic energy.

The potential energy of the child on the swing can be calculated as:

PE = mgh

where m is the mass of the child, g is the acceleration due to gravity, and h is the height of the swing at the highest point. Since the swing hangs from 2.6-m-long chains, the height of the swing at the highest point is:

h = 2.6 m - 2.6 m cos(50°) = 1.32 m

Substituting the values, we get:

PE = (20 kg)(9.81 m/s^2)(1.32 m) = 258.2 J

At the lowest point of the swing, all the potential energy is converted to kinetic energy. The kinetic energy of the child on the swing can be calculated as:

KE = (1/2)mv^2

where v is the speed of the child at the lowest point. Substituting the values, we get:

KE = (1/2)(20 kg)v^2

Equating the potential and kinetic energies, we get:

PE = KE
mgh = (1/2)mv^2
2gh = v^2
v = sqrt(2gh)

Substituting the values, we get:

v = sqrt(2 × 9.81 m/s^2 × 1.32 m) = 4.06 m/s

Therefore, the maximum speed of the child on the swing is 4.06 m/s.

A cube of ice is taken from the freezer at -8.7°C and placed in a 104 g glass cup filled with 330 g of water. Both the water & the cup are at 22.5°C. Eventually the system reaches thermal equilibrium at 15.4°C. Determine Qcup,
Qwater (for the water initially in the cup), Qice, & the mass of the ice.
Quip=
Qwater =
Qice =
Mice =

Answers

The value of the heat changes is as follows:

Qcup = -271 JQwater = -12284 JQice = 3951 JMice = 38.95 g

What is the heat quantity of the cup, Qcup?

The heat quantity of the cup, Qcup is calculated using the formula below:

Q = mcΔT

where;

Q is the heat absorbed or released,m is the mass of the substance,c is its specific heat capacity,ΔT is the change in temperature.

The heat absorbed by the glass cup, Qcup will be:

Qcup = 104 * 0.385 * (15.4- 22.0)

Qcup = -271 J

The heat absorbed by the water, Qwater will be:

Qwater = 330 * 4.184 * *(15.4 - 22.5)

Qwater = -12284 J

The mass of the ice, Mice, that melted will be:

Heat absorbed by ice = Heat released by water + heat released by cup

-MiceΔHf = Qwater + Qcup

where

ΔHf is the heat of fusion of ice = 333.55 J/g

Mice = -(Qwater + Qcup) / ΔHf

Mice = -(-1228 - 271) / 333.55

Mice = 38.95 g

Finally, the heat absorbed by the ice will be:

Qice = mcΔT

Qice = (38.95 g) (2.108 J/g°C) (15.4°C - (-8.7°C))

Qice = 3951 J

Learn more about heat capacity at: https://brainly.com/question/28825214

#SPJ1

Carnot engine A operates between temperatures of 500°C and 300°C. Carnot engine B operates between 900°C and 700°C. Which statement correctly compares the efficiencies of the engines?
A.Both engines have the same efficiency.
B.Engine B is more efficient than engine A.
C.**Engine A is more efficient than engine B.

Answers

Answer: check the pic

Explanation:

A woman lifts a barbell 2.0 m in 5.0 s. If she lifts it the same distance in 10 s, the work done by her is:

Answers

The work done by the woman is independent of the time taken to lift the barbell, as long as the distance lifted remains constant.

The work done by the woman lifting the barbell can be calculated using the formula:

work = force x distance

Assuming the force required to lift the barbell remains constant, the work done is directly proportional to the distance lifted.

Therefore, if the woman lifts the barbell 2.0 m in 5.0 s, the work done is:

work1 = force x distance1 = force x 2.0 m

If she lifts it the same distance in 10 s, the work done is:

work2 = force x distance2 = force x 2.0 m

Since the distance lifted is the same in both cases, the work done by the woman is the same, and can be expressed as:

work1 = work2 = force x 2.0 m

Therefore, the work done by the woman is independent of the time taken to lift the barbell, as long as the distance lifted remains constant.

To know more about the Work, here

https://brainly.com/question/30700757

#SPJ1

ܩܩܘܤ ← Interconv problems ... Interconversion problems between kinetic energy and potential energy 1. An object has a mass of 25 kilograms: to. How much is the potential energy if the height is 30 m. b. How much is the kinetic energy at a height of 30 m. If the object is in repose? c. How much is the kinetic energy if the object low at 15 m.? d. How much are the kinetic energy and potential energy when the height is 5 m? and. How much is the kinetic energy and the potential energy of the object just before touch the floor (that is, when the height is 0)? 2. An object has a mass of 56 kilograms: How much is the energy power if the height is 37 m. b. How much is the kinetic energy at a height of 37 m. If the object is in repose? c. How much is the kinetic energy if the object under 25 m. d. How much are the kinetic energy and potential energy when the height is 10 m.? and. How much is the kinetic energy and the potential energy of the object just before touch the floor (that is, when the height is 0)? 3. An object has a mass of 41 kilograms: to. How much is the potential energy if the height is 42 m. b. How much is the kinetic energy at a height of 42 m. If the object is in repose? c. How much is the kinetic energy if the object dropped to 36 m. d. How much are the ki netic energy and potential energy when the height is 18 m.? and. How much is the kinetic energy and the potential energy of the object just before touch the floor (that is, when the height is 0)? 4. An object has a mass of 52 kilograms: to. How much is the potential energy if the height is 38 m. b. How much is the kinetic energy at a height of 38 m. If the object is in repose? c. How much is the kinetic energy if the object dropped to 23 m. d. How much are the kinetic energy and potential energy when the height is 12 m? and. How much is the kinetic energy and the potential energy of the object just before touch the floor (that is, when the height is 0)?​

Answers

a. The energy will be 7350 Joules.

b. Due Due to the object remaining at rest, its kinetic energy is zero.

c. The value obtained is v is 17.1 m/s.

d. When the object was initially at rest at 30 m, all of its energy was putative energy which totalled 7350 J.

How to calculate the energy

PE = mgh = (25 kg)(9.8 m/s^2)(30 m) = 7350 J

Additionally, PE at 5 m is PE = mgh = (25 kg)(9.8 m/s^2)(5 m) = 1225 J. As enforced by the rule of conservation of energy, PE = KE at any point during the fall. Bearing this in mind, at 5 m KE equals 1225 J.

When the object was initially at rest at 30 m, all of its energy was putative energy which totalled 7350 J.

Learn more about energy on

https://brainly.com/question/13881533

#SPJ1

An electron that has a velocity with x component 2.0 × 106 m/s and y component 3.0 x 106 m/s moves through a uniform magnetic field with x component 0.024 T and y component -0.12 T. (a) Find the magnitude of the magnetic force on the electron. (b) Repeat your calculation for a proton having the same velocity.

Answers

The magnetic force on a charged particle moving through a magnetic field is given by the following formula:

F = q * v * B * sin(theta)

where
- F is the magnetic force
- q is the charge of the particle
- v is the velocity of the particle
- B is the magnetic field
- theta is the angle between the velocity and the magnetic field

(a) For an electron, q = -1.6 x 10^-19 C, v = (2.0 x 10^6) i + (3.0 x 10^6) j m/s, B = (0.024) i - (0.12) j T, and theta = 90 degrees (since the velocity is perpendicular to the magnetic field).

Plugging in the values, we get:

F = (-1.6 x 10^-19) * ((2.0 x 10^6) i + (3.0 x 10^6) j) * ((0.024) i - (0.12) j) * sin(90 degrees)

F = 4.8 x 10^-13 N

Therefore, the magnitude of the magnetic force on the electron is 4.8 x 10^-13 N.

(b) For a proton, q = 1.6 x 10^-19 C (since the proton has a positive charge), and all other values are the same as for the electron.

Plugging in the values, we get:

F = (1.6 x 10^-19) * ((2.0 x 10^6) i + (3.0 x 10^6) j) * ((0.024) i - (0.12) j) * sin(90 degrees)

F = -1.2 x 10^-14 N

Therefore, the magnitude of the magnetic force on the proton is 1.2 x 10^-14 N.

A pool noodle has a density of 145 kg/m3, a length of 1.65 m and a radius of 2.5 cm. How many pool noodles would be needed to make a raft that would support the weight of a person with a mass of 65.0kg?

Answers

The number of pool noodles that  would be needed to support the weight is 20.

What is the volume of single pool noodle?

The volume of a single pool noodle is calculated as follows;

V = πr²h

V = π (0.025)² x 1.65

V = 0.00324 m³

The weight of the water displaced is calculated as follows;

W = ρVg

where;

ρ is the density of waterV is the volumeg is gravity

W = 1000 x 0.00324 x 9.8

W = 31.75 N

The number of pool noodles needed to support a person is calculated as follows;

= (65 x 9.8 ) / (31.75)

= 20

Learn more about weight here: https://brainly.com/question/2337612

#SPJ1

calculate the distance an object moves if 25J of work is done with 3.0N of force

Answers

The distance an object moves if 25J of work is done with 3.0N of force is 8.33 m.

For a given amount of force, F, and a given distance, d, the formula for calculating work done is as follows:

Work done = Force x distance

So, the distance would be,

Work done / force = 25/3 = 8.33 m.

Work is the energy exerted by an object when it applies a force to move another object over some distance.

To learn more about work done,

https://brainly.com/question/31428590

An electron is accelerated from rest across the gap of a capacitor (two parallel plates charged -Q and +Q respectively). A hole in the top plate allows the electron to emerge with a constant velocity of v = 27 m/s. If the gap between the plates is d = 0.94 m, what is the magnitude of the electric field between the plates?

Answers

The magnitude of the electric field between the plates is 5.87 × 10^5 N/C.

The electron gains kinetic energy as it is accelerated across the gap of the capacitor. This energy is equal to the work done on the electron by the electric field between the plates of the capacitor. We can use this relationship to determine the magnitude of the electric field.

The kinetic energy gained by the electron can be expressed as:

K = (1/2)mv^2

where K is the kinetic energy, m is the mass of the electron, and v is its velocity. The work done on the electron by the electric field is given by:

W = qEd

where W is the work done, q is the charge of the electron, E is the electric field, and d is the distance between the plates.

Since the electron is negatively charged, it will be accelerated from the negative plate (-Q) to the positive plate (+Q) of the capacitor. The charge on an electron is -1.602 × 10^-19 C. Therefore, the work done on the electron is:

W = qEd = (-1.602 × 10^-19 C)(E)(0.94 m)

The kinetic energy gained by the electron is equal to the work done on it by the electric field, so:

K = W = (1/2)mv^2

Substituting the known values and solving for the electric field gives:

E = (2qK) / (md^2) = (2(-1.602 × 10^-19 C)(0.5m_e(27 m/s)^2)) / ((9.11 × 10^-31 kg)(0.94 m)^2)

where m_e is the mass of the electron.

E = 5.87 × 10^5 N/C

Therefore, the magnitude of the electric field between the plates is approximately 5.87 × 10^5 N/C.

To learn more about the electric field click:

https://brainly.com/question/8971780

#SPJ1

A 2.0-kg block sliding on a rough horizontal surface is attached to one end of a horizontal spring (k = 250 N/m) which has its other end fixed. The block passes through the equilibrium position with a speed of 2.6 m/s and first comes to rest at a displacement of 0.20 m from equilibrium. What is the coefficient of kinetic friction between the block and the horizontal surface?
Select one:

a.
0.32

b.
0.45

c.
0.58

d.
0.19

e.
0.26
Clear my ch

Answers

The coefficient of kinetic friction between the block and the horizontal surface is approximately 0.32, The correct choice is a.

We can use conservation of energy to solve this problem. Initially, the block has kinetic energy, which is gradually dissipated by friction until it comes to rest at the maximum displacement from equilibrium.

The initial kinetic energy of the block is:

K = (1/2) * mv²

where m is the mass of the block and v is its speed. Plugging in the given values, we get:

K = (1/2) * (2.0 kg) * (2.6 m/s)² = 6.76 J

At the maximum displacement from equilibrium, all of this energy has been dissipated by friction and converted into potential energy stored in the spring:

U = (1/2) * k * x²

where k is the spring constant and x is the maximum displacement from equilibrium. Plugging in the given values, we get:

U = (1/2) * (250 N/m) * (0.20 m)² = 5 J

Since energy is conserved, we can set K equal to U:

K = U

(1/2) * mv² = (1/2) * k * x²

Solving for the coefficient of kinetic friction, we get:

μk = (kx² - mv²) / (mgx)

where g is the acceleration due to gravity. Plugging in the given values, we get:

μk = [(250 N/m) * (0.20 m)² - (2.0 kg) * (2.6 m/s)²] / [(2.0 kg) * (9.81 m/s²) * (0.20 m)]

μk ≈ 0.32

Option a is correct.

To know more about spring, here

brainly.com/question/14670501

#SPJ1

A simple circuit contains a battery connected with wires to a small bulb that has a resistance of 150 ohms. If the power dissipated by the bulb is 0.4 W, what is the voltage of the battery?

Remember to identify all data (givens and unknowns), list equations used, show all your work, and include units and the proper number of significant digits to receive full credit.

Answers

Answer: The answer is 7.75v

Explanation; As we know,

                                    power dissipated= (voltage)^2/resistance

                                             0.4w = v^2/150  

                                                 v^2=0.4w*150ohm

                                                   v^2=60

                                                     v=7.75v

please I need answer​

Answers

The coefficient of friction between the two surfaces is  tan α.

option B.

What is coefficient of friction?

The coefficient of friction between two surfaces that are in contact is the ratio of the  force of friction to normal reaction.

Mathematically, the formula for coefficient of friction is given as;

μ = Ff/Fn

where;

Ff is the force of frictionFn is the normal force

For the given diagram,

Ff = mg sinα

Fn = mg cosα

The coefficient of friction;

μ = mg sinα/mg cosα

μ = sinα/cosα = tan α

Learn more about coefficient of friction here: https://brainly.com/question/20241845

#SPJ1

Share an experience you've had with the bureaucracy. In thinking about that experience, how would you describe the bureaucracy? What characteristics of the bureaucracy did you observe in that experience? Please explain. (Refer to Weber's theory of bureaucracy in the module.)

Answers

Bureaucracy theory explains the basis of the systematic formation of any organization and ensures efficiency and economic effectiveness.

Bureaucracy is the theory proposed by Max Weber. It forms the ideal model for the management and administration of the organization and ensures its efficiency of organization into focus.

It includes six basic principles. They are Authority Hierarchy, Division of labor, impersonality, Career Orientation, Formal rules and regulations, and Selection process.

The characteristics of bureaucracy include: It can control and regulate the behavior of people in an organization. It is the organization that has the power to make decisions. The organizations have certain rules to follow by the people.

Bureaucracy is found in large organizations like governments and corporations. It has standardized methods, and procedures to practice. It doesn't allow any flexibility for the organization.

To learn more about the bureaucracy :

https://brainly.com/question/30696747

#SPJ1

Two point charges each carrying a charge of +3.5 E−6 C are located 3.5 meters away from each other.


How strong is the electrostatic force between the two points (k = 9.0 E9 Nm2/C2)?
Is this force a repulsive force or an attractive force?


Remember to identify all data (givens and unknowns), list equations used, show all your work, and include units and the proper number of significant digits to receive full credit.

Answers

Given:
Charge on each point, q = +3.5E-6 C
Distance between the points, r = 3.5 m
Coulomb's constant, k = 9.0E9 Nm²/C²

The equation for the electrostatic force between two point charges is given by:

F = k * (q1 * q2) / r^2

where F is the force between the charges, q1 and q2 are the magnitudes of the charges, r is the distance between the charges, and k is Coulomb's constant.

Substituting the given values, we get:

F = (9.0E9 Nm²/C²) * [(3.5E-6 C) * (3.5E-6 C)] / (3.5 m)²

F = 2.3E-2 N

Therefore, the electrostatic force between the two point charges is 2.3E-2 N.

Since both charges are positive, the electrostatic force between them is a repulsive force.

Answer: the answer is 0.009N

Explanation:   as we know,    force =KqQ/R^2

                                                   F= 9*10^9*3.5*10^-6*3.5*10^-6/(3.5)^2

                                                   F=9*10^-3N

which substance listed in the chart is made up of the most atoms

Answers

All substance listed in the chart is made up of the atoms.

Atom is smallest entity of a substance. Body is made up of atoms. it is basic building block of a body. An atom consist of electrons, protons and neutrons as sub atomic particle. whole mass of the atom is concentrated at the center of the atom which we call it as nucleus, nucleus consist of proton and neutron. Electron revolve around the nucleus at determined(fixed) orbit. Total number of protons in the atom decides the atomic number and the elements in the periodic table. The electrons which are completely filled orbitals are called as core shell electrons and which are not filled completely are called as valence electron. valence electrons are responsible for physical and chemical properties of the element. Elements which are on same column in periodic table have same number of valence electrons . Hence they have same properties.

To know more about Atom :

https://brainly.com/question/30898688

#SPJ1.

The figure shows wire 1 in cross section; the wire is long and straight, carries a current of 4.20 mA out of the page, and is at distance d₁ = 2.58 cm from a surface. Wire 2. which is parallel to wire 1 and also long, is at horizontal distance d-5.05 cm from wire 1 and carries a current of 6.88 mA into the page. What is the x component of the magnetic force per unit length on wire 2 due to wire 1?

Answers

Wire 1 in cross section; the wire is long and straight, carries a current of 4.20 mA out of the page, and is at distance d₁ = 2.58 cm from a surface. Wire 2. which is parallel to wire 1 and also long, is at horizontal distance d-5.05 cm from wire 1 and carries a current of 6.88 mA.

To find the x component of the magnetic force per unit length on wire 2 due to wire 1, we can use the formula for the magnetic force between two parallel current-carrying wires we get

F = μ₀I₁I₂/(2πd)

Where F is the magnetic force per unit length, μ₀ is the magnetic constant (4π x [tex]10^{-7}[/tex]Tm/A), I₁ and I₂ are the currents in the wires, and d is the distance between the wires.

In this problem, we need to find the x component of the magnetic force per unit length on wire 2 due to wire 1. We can break down the problem into components by considering the direction of the magnetic field due to wire 1 at the position of wire 2. The magnetic field due to wire 1 will be perpendicular to both wire 1 and wire 2, and will be directed into the page.

To find the x component of the magnetic force, we need to consider the component of the magnetic force that is perpendicular to wire 2. This component will be directed along the x axis, and will have a magnitude of

[tex]F_{x}[/tex] = Fsinθ

Where θ is the angle between the direction of the magnetic force and the x axis. Since the magnetic force is directed into the page, θ is 90 degrees, and sinθ = 1.

Substituting the values given in the problem, we get

F = (4π x [tex]10^{-7}[/tex]Tm/A)(4.20 x[tex]10^{-3}[/tex] A)(6.88 x [tex]10^{-3}[/tex]A)/(2π*0.0258 m)

F = 3.99 x [tex]10^{-10}[/tex] N/m

Therefore, the x component of the magnetic force per unit length on wire 2 due to wire 1 is

[tex]F_{x}[/tex] = Fsinθ= (3.99 x [tex]10^{-10}[/tex] N/m)(1) = 3.99 x [tex]10^{-10}[/tex] N/m

Hence, the x component of the magnetic force per unit length on wire 2 due to wire 1 is 3.99 x [tex]10^{-10}[/tex] N/m.

To know more about cross section here

https://brainly.com/question/31476632

#SPJ1

2) Let the angle 8 be the angle that the vector à makes with the I, the x-direction. Find the angle
for the vectors with the following components:
a) Ax=2.00 m and Ay--1.00 m
b) Ax=2.00 m and Ay= 1.00 m
c) Ax= -2.00 m and Ay 1.00
d) Ax= -2.00 m and Ay-1.00 m

Answers

(a) Ax=2.00 m and Ay--1.00 m, the angle of the vector is  153.4⁰.

(b) Ax=2.00 m and Ay= 1.00 m, the angle of the vector is 26.6⁰.

(c) Ax= -2.00 m and Ay 1.00 m, the angle of the vector is 333.43⁰.

(d) Ax= -2.00 m and Ay = -1.00 m, the angle of the vector is 206.6⁰.

What is the angle of the vectors?

The angle of the vectors is known as the direction of the vectors and it is calculated as follows

(a) Ax=2.00 m and Ay--1.00 m, the angle of the vector;

tan θ = Ay/Ax

tan θ = (-1/2)

θ = arc tan (-1/2)

θ = -26.6⁰ = (180 - 26.6⁰)  = 153.4⁰ (2nd quadrant).

(b) Ax=2.00 m and Ay= 1.00 m, the angle of the vector;

tan θ = Ay/Ax

tan θ = (1/2)

θ = arc tan (1/2)

θ = 26.6⁰ (1st quadrant).

(c) Ax= -2.00 m and Ay 1.00 m, the angle of the vector;

tan θ = Ay/Ax

tan θ = (-1/2)

θ = arc tan (-1/2)

θ = -26.6⁰ = (360 - 26.6⁰) =  333.43⁰ (4th quadrant).

(d) Ax= -2.00 m and Ay = -1.00 m, the angle of the vector;

tan θ = Ay/Ax

tan θ = (1/2)

θ = arc tan (1/2)

θ = 26.6⁰ =  (180 + 26.6⁰) = 206.6⁰ (3rd quadrant).

Learn more angles of vectors here: https://brainly.com/question/26700114

#SPJ1

Other Questions
Simon belonged to a political group responsible for blowing up several corporate offices of multinational companies. Acting on a tip, the police surround Simon in front of the offices of a major corporation and ask him where the dynamite is. Simon tells them. His statements are? How do you do this question? i need step by step Sarasota Corporation purchased a trade name, customer list, and manufacturing equipment for a lump sum of $751,000. The fair market values of each asset are $351,360, $362,340, and $384,300, respectively. There were initial operating losses of $15,700 during the first four months after the assets were put into use. Prepare the journal entry to record the treatment of these costs. (Do not round intermediate calculations. Round answers to 0 decimal places, e.g. 5,275. Credit account titles are automatically indented when the amount is entered. Do not indent manually. If no entry is required, select "No entry" for the account titles and enter 0 for the amounts.) Which one of the following examples do NOT illustrate negative reinforcement? Ratios (Total of 5 marks) a. If prior charge capital = $30,000 and total capital = $210,000, Calculate the gearing and comment upon the ratio. (2 marks) b. If accounts receivable is $95,000 and sales are $340,000, what is the accounts receivable/ sales ratio? (1 mark) C. Calculate net profit as a percentage of sales if net profit was $80,000 and sales were $560,000. (1 mark) d. Calculate the inventory turnover ratio if average inventory is $60,000 and cost of sales is $320,000. (1 mark) A 100-turn, 5. 0-cm-diameter coil is at rest with its axis vertical. A uniform magnetic field 60 away from vertical increases from 0. 50 T to 1. 50 T in 0. 40 s. Part AWhat is the induced emf in the coil?Express your answer with the appropriate units Consider a volleyball net that consists of a mesh with m squares on the horizontal dimensionand n squares on the vertical. What is the maximum number of strings that can be cut beforethe net falls apart into two pieces? Solve the problem as a network problem. 2. Consider er the verbal definition of linear charge density, which is : "charge per unit length" a.Suppose there were a segment of length L0, that were uniformly charged with net charge Q0 Determine an expression for b.suppose the segment were non-uniformly charged, but still had a length L0, and net charge Q0i. Why does your expression in part a. not describe at the center of the segment? Explain. ii. Describe an alternate method that would determine at the center of the segment. What length would you measure? What charge would you use? c. Based on your answers above, write a general expression for the linear charge density that would always work. c. c. Interpret the statement "charge per unit length" word by word. What sort of measurement or mathematical operation does each word refer to? Charge: Per: Unit: Length: according to ghemawat, which of the following offers room for cross-border strategy to have content distinct from single-country strategy? group of answer choices semi-globalization regional integration privatization Jeff's work to find the missing length of the triangle is shown. Explain Jeff's error. What is a key meeting to inspect the Integrated Increment? What is two ten thousandths in decimal form If ______ is done at a network or IP level a key is needed for each pair of hosts on the network that wish to communicate. WHAT VALUE OF X WOULD MAKE THE INEQUALITY 55 In a class of 100 students, 55 students have passed in physics and 67 students have passed in Mathematics. Find the number of students passed in Physics only. Which term refers to laws implemented after the U.S. Civil War to legally enforce segregation, particularly in the South after the end of slavery?a.civil rightsb.racializationc.discriminationd.Jim Crow In the customer loyalty life cycle, the customer has a want or need, then considers different purchasing options. What step comes next? Which best describes the role of communication in scientific investigations?Communication can help identify good scientific questions to further investigate.Communication is not necessary once the data are collected because the scientists can do the data analysis themselves.Communication should not be used in planning the experimental design because the scientists want to have original ideas.Communication is important because the scientists need to convince other researchers not to challenge their results sketch and label an example of the different types of survivorship curves. briefly describe an example of each one But the offer of a few such paltry articles as a brass kettle, a few pounds of tobacco [etc.] is too insignificant to be thought of, as an inducement for us to abandon our cultivated possessions, and join our wilder brethren in the west. It is too late to think we can be so much allured by soft words and smooth promises as to sell our birth- right for a few dried leaves of a noxious weed. Those who may entertain an opinion of our speedy removal, and that too to be effected by such trifling inducements as above, will be lost in the labyrinth of their speculations; and ere long the splendid mansions which their imaginations have builded [built] upon the plains of Look Out and Coosa will vanish before reality, like darkness before the rising sun. 1961 -"Indian Emigration, Cherokee Phoenix, 1828 Steam Workshop Downloader