Answer:
a) L = 440 cm
Explanation:
In the open tube on one side and cowbell on the other, we have a maximum in the open part and a node in the closed part, therefore the resonance frequencies are
λ₁ = 4L fundamental
λ₃ = 4L / 3 third harmonic
λ₅ = 4L / 5 five harmonic
The violin string is a fixed cure in its two extracts, so both are nodes, their length from resonance wave are
λ₁ = 2L fundamental
λ₂ = 2L / 2 second harmonic
λ₃ = 2L / 3 third harmonic
λ₄= 2L / 4 fourth harmonic
They indicate that resonance occurs in the fourth harmonic, let's look for the frequency
v =λ f
for the fundamental
v = λ₀ f₀
V = 2L f₀
for the fourth harmonica
v = λ₄ f ’
v = L / 2 f'
2L f₀ = L / 2 f ’
f ’= 4 f₀
f ’= 4 440
f ’= 1760 Hz
for this frequency it has the resonance with the tube
f ’= 4L
L = f ’/ 4
L = 1760/4
L = 440 cm
b) let's find the frequency of the next harmonic in the tube
λ₃ = 4L / 3
λ₃ = 4 400/3
λ₃ = 586.6 cm
v = λf
f = v / λlam₃
f₃3 = 340 / 586.6
f3 = 0.579
as the minimum frequency on the violin is 440 Beam there is no way to reach this value, therefore there are no higher resonances
Find the net force of the box and the acceleration. 10 points. Will give brainliest.
Answer:
38.6 N
2.57 m/s²
Explanation:
Draw a free body diagram of the box. There are four forces:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force P pulling at an angle 40°.
Sum of forces in the y direction:
∑F = ma
N + P sin 40° − mg = 0
N = mg − P sin 40°
The net force in the x direction is:
∑F = P cos 40° − Nμ
∑F = P cos 40° − (mg − P sin 40°) μ
∑F = P cos 40° − mgμ + Pμ sin 40°
∑F = P (cos 40° + μ sin 40°) − mgμ
Plugging in values:
∑F = (80 N) (cos 40° + 0.23 sin 40°) − (15 kg) (10 m/s²) (0.23)
∑F = 38.6 N
Net force equals mass times acceleration:
∑F = ma
38.6 N = (15 kg) a
a = 2.57 m/s²
2. A solid sphere and a solid cylinder, both uniform and of the same mass and radius, roll without slipping at the same forward speed. It is correct to say that the total kinetic energy of the solid sphere is A) more than the total kinetic energy of the cylinder. B) less than the total kinetic energy of the cylinder. C) equal to the total kinetic energy of the cylinder.
Q. A train accelerates from 36 km/h to 54 km/h in 10 sec. (i) Acceleration (ii) The distance travelled by car.
u=10m/s
v=15m/s
acceleration=
v_u/ t
5/10
0.5
A polonium isotope with an atomic mass of 211.988868 u undergoes alpha decay, resulting in a daughter isotope with an atomic mass of 207.976652 u. Ignoring any recoil of the daughter, find the kinetic energy of the emitted alpha particle in megaelectronvolts (MeV).
Answer:
K = 9.53 MeV
Explanation:
The kinetic energy that the alpha particle has emitted, is the energy in excess after removing the resting energy of the atoms and the helium nucleus that forms the alpha particle
Since energy and masses are related and cannot be
m₀ c² = [tex]m_{f}[/tex] c² + m_He c²+ K
K = c² (m₀ - m_{f} - m_He)
the mass of the Helium atom is 4 u
K = (3 10⁸)² (211,988868 -207.976652 - 4,002) 1,661 10⁻²⁷
K = 14,949 10⁻¹¹ (0.0102)
K = 1,527 10⁻¹² J
let's reduce 1 J = 6,242 10¹² MeV
K = 9.53 MeV
A rocket is launched vertically from the ground with an initial velocity of 64. Write a quadratic function that shows the height, in feet, of the rocket t seconds after it was launched.
Answer:
y = 64t − 16t²
Explanation:
y = y₀ + v₀ t + ½ at²
y = 0 + 64 t + ½ (-32) t²
y = 64t − 16t²
Which of the following is a TRUE
statement about states of matter?
A. Most matter on Earth exists as a solid, liquid, or gas.
B. Plasma, the fourth state of matter, is abundant on Earth.
C. Matter never changes from a solid to a liquid or a gas.
D. Most matter in the universe is liquid.
The statement that is the most true regarding the states of matter is the first statement.
A. Most matter on Earth exists as a solid, liquid, or gas.
This is correct since most of the matter on Earth exists in those 3 states, meanwhile plasma is not a state that most of matter on earth is found in since it is mostly associated to stars and the external galactic regions.
Therefore, B is incorrect.
C is false, since almost of all of the matter on earth can transform and change through each of the 3 states of matter, solid, liquid, and gas.
D is false since most of the matter in universe is actually made out of plasma instead of a liquid. In fact, over 99% of the known universe's matter is said to consist of plasma.
Matter can be defined as the material substance which constitutes the observable nature. Most matter on Earth exists as a solid, liquid, or gas. Plasma is also the state of matter found in daily life. The correct option is A.
What are states of matter?All the materials which we see in our daily lives are made up of matter. Matter can be classified into different states such as solid, liquid and gas based on the intermolecular forces and the arrangement of particles. All the three states of matter can be converted from one form to another.
The molecules of solid are tightly packed and they have strong intermolecular forces which also has a definite shape and volume. The liquids have weak intermolecular forces than the solids and it acquire the shape of the vessel.
The intermolecular forces in gases are negligible and they do not have any fixed shape or volume.
Thus the correct option is A.
To know more about states of matter, visit;
https://brainly.com/question/1134312
#SPJ2
A wave travels at 295 m/s and has a wavelength of 2.50 m. What is the frequency of the wave?
O 118 Hz
O 292 Hz
O297 Hz
O 738 Hz
Answer:
[tex]118\; \rm Hz[/tex].
Explanation:
The frequency [tex]f[/tex] of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of [tex]v= 295\; \rm m\cdot s^{-1}[/tex]. In other words, the wave would have traveled [tex]295\; \rm m[/tex] in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that [tex]295\; \rm m[/tex]? The wavelength of this wave[tex]\lambda = 2.50\; \rm m[/tex] gives the length of one wave cycle. Therefore:
[tex]\displaystyle \frac{295\;\rm m}{2.50\; \rm m} = 118[/tex].
That is: there are [tex]118[/tex] wave cycles in [tex]295\; \rm m[/tex] of this wave.
On the other hand, Because that [tex]295\; \rm m[/tex] of this wave goes through that point in each second, that [tex]118[/tex] wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
[tex]f = 118\; \rm s^{-1} = 118\; \rm Hz[/tex].
The calculations above can be expressed with the formula:
[tex]\displaystyle f = \frac{v}{\lambda}[/tex],
where
[tex]v[/tex] represents the speed of this wave, and [tex]\lambda[/tex] represents the wavelength of this wave.Answer:
118
Explanation:
PLEASE HELP!!!! i will give brainliest to the first person...
Answer: Fossil fuels power the machine that shakes the tree so the apples fall to the ground
Explanation: most machines are powered by fossil fuels
the velocity is always _____ to the line of a circle
Answer:
tangent
Explanation:
hope it helps
Answer:
the answer is tangent
Explanation:
tangent means a straight line or plane that touches a curve or curved surface at a point, but if extended does not cross it at that point.
hope this helps please like and heart this answer and give 5 stars and brainliest pls i beg u thx!!! : )
Which of the following statements are true? (mark all that apply)
A) Adaptive optics corrects for atmospheric distortion by following the distortion of a bright star, possibly an artificial star created by a laser, and rapidly changing the shape of a mirror using computer-controlled actuators to compensate for the distortion.
B) Improvements in technology will eventually allow the entire electromagnetic spectrum to be observed from high mountaintop observatories.
C) X rays from astronomical objects can only be detected from telescopes in space or in high altitude rockets.
D) The best observing sites for optical telescopes are atop remote mountains.
E) Radio telescopes must be carried to high altitudes by balloons in order to detect this type of radiation.
Answer:
The answer(s) for this question are as followed: A, C, & D
Explanation:
I hope this helped, let me know if i missed any.
Earthquakes at fault lines in Earth's crust create seismic waves, which are longitudinal (P-waves) or transverse (S-waves). The P-waves have a speed of about 9 km/s. Estimate the average bulk modulus of Earth's crust given that the density of rock is about 2500 kg/m3
Answer:
[tex]B=2.025\times 10^{11}\ Pa[/tex]
Explanation:
It is given that,
Speed of P- waves, v = 9 km/s = 9000 m/s
The density of rock is about [tex]2500\ kg/m^3[/tex]
We need to find the average bulk modulus of Earth's crust. Let it is given by B. So,
[tex]v=\sqrt{\dfrac{B}{d}} \\\\B=v^2d\\\\B=(9000)^2\times 2500\\\\B=2.025\times 10^{11}\ Pa[/tex]
So, the bulk modulus of the Earth's crust is [tex]2.025\times 10^{11}\ Pa[/tex].
Proved that
V = u+at
Answer:
[tex]\sf Proof \ below[/tex]
Explanation:
We know that acceleration is change in velocity over time.
[tex]\sf a=\frac{\triangle v}{t}[/tex]
[tex]\sf a=\frac{v-u}{t}[/tex]
v is the final velocity and u is the initial velocity.
Solve for v.
Multiply both sides by t.
[tex]\sf at=v-u[/tex]
Add u to both sides.
[tex]\sf at + u=v[/tex]
Answer:
Acceleration = v-u/t when we flip -u and t to right hand side
then -u changes to plus and denominator t changes to numerator
then then this equations becomes v=u+at
Explanation:
Signal propagation in the nervous system can be modeled as
a) A resistor network.
b) A wave of electricity that travels down conducting tissue.
c) A series of RC circuits.
Answer:
c) A series of RC circuits.
A vertical bar consists of three prismatic segments A1, A2, and A3 with cross-sectional areas of 6000 mm2 , 5000 mm2 , and 4000 mm2 , respectively. The bar is made of steel with E 5 200 GPa. Calculate the displacements at points B, D
Answer and Explanation:
For computing the displacement at point B and D we need to determine the following calculations
[tex]P_Net = P_C + P_E + P_B[/tex]
= 250 + 350 - 50
= 550 N
Now the deflection for bar AB is
[tex]\delta_{AB} = \frac{PL_{AB}}{AE} \\\\ = \frac{550 \times 500}{6,000 \times 200 \times 10^{3}}[/tex]
[tex]= 2.292 \times 10^{-4} mm[/tex]Now for bar BC it is
[tex]\delta_{BC} = \frac{PL_{BC}}{AE} \\\\ = \frac{(550 + 50) \times 250}{5,000 \times 200 \times 10^{3}} \\\\ = 1.5 \times 10^{-04} mm[/tex]
And for bar CD it is
[tex]\delta_{CD} = \frac{PL_{CD}}{AE} \\\\ = \frac{(550 -250 + 50) \times 250}{5,000 \times 200 \times 10^{3}} \\\\ = 0.875 \times 10^{-4} mm[/tex]
Now the displacement is as follows
For B
2.292 × 10^{-4} mm
For D, it is
[tex]= 2.292 \times 10^{-4} + 1.5 \times 10^{-4} + 0.875 \times 10^{-4} mm \\\\ = 4.667 \times 10^{-4} mm[/tex]
We simply applied the above formulas for determining the displacements at points B, D and the same is to be considered
A rocket moves through empty space in a straight line with constant speed. It is very far from any star or planet. Under these conditions, the force that must be applied to the rocket in order to sustain its motion is
Answer:
analysis the force is zero
Explanation:
Let's apply Newton's second law
F = m a
In this equation we see that the force is directly related to the acceleration, as they indicate that the rocket is far from any planet or star has no force applied to it, therefore they also relate it to zero.
Change we can analyze the exercise with Newton's first law, which indicates that an object maintains its constant speed in a straight line has no forces applied to it.
In either analysis the force is zero
The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.5 W. HooRU's surface area is 1.51 m^2 and the emissivity of its surface is 0.209. Ignore the radiation HooRU absorbs from the cold universe. What is HooRU's temperature?
Answer:
165.73 K
Explanation:
The computation of HooRU's temperature is shown below:-
As per the stefan's law, the power radiated by black body radiations which is
[tex]P = eA\sigma T^4[/tex]
where
A indicates surface area
e indicates emissitivity
T indicates temperature
now, we will put the values in the above equation
[tex]13.5 = 0.209 \times 1.51 \times \sigma \times T^4[/tex]
After solving the above equation we will get temperature which results
= 165.73 K
Therefore for computing the HooRU's temperature we simply applied the above formula.
If you could travel from one planet to another
in our solar system, which of the following
would change the most?
A. your weight
B. your mass
C. your height
D. your width
hey help me plzzzzz i will mark brainliest
Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
This mathematical model describes the changes that occur in a sample of
water as its temperature increases. Use this model to predict what will
happen to the motion of the molecules in a sample of water that is being
heated from 50° to 100°C.
200°C
vaporization
150°C
melting
100°C
Temperature (°C)
water vapor
50°C
liquid water
0°C-
--50°C
10
20
ice
30
Time (min)
40
50
60
70
O A. The motion will change very little.
O B. The molecules will stop moving.
O C. The movement of the molecules will gradually decrease.
O D. The movement of the molecules will gradually increase.
The correct answer is D. The movement of the molecules will gradually increase.
Explanation:
At the beginning of the model the state of matter of the water is solid, in this, particles have a defined arrangement and are together, which stops particles from moving freely and only allows them to vibrate. However, as the substance is heated the thermal energy (heat) increases in the sample, this causes particles to move more and the arrangement of it changes. Due to this, when the ice melts and there is liquid water particles move more than in solid states, which makes ice lacks a defined shape. Moreover, as the heat continues to increase the thermal and kinetic energy (movement) increases, indeed in gas state (water vapor) particles will move freely. This means the movement or kinetic energy in particles gradually increases in the model.
Answer: D
Explanation:
Which of these are scientific questions? Check all that apply. How will climate change affect forests? Which planet is the prettiest? How did life on Earth begin? Why did dinosaurs go extinct? Which volcano is the most amazing?
Answer:
The scientific questions here are:
a) How will climate change affect forests
b) How did life on Earth begin
c) Why did dinosaurs go extinct
Explanation:
Scientific question are logical quantifiable questions, whose answers can be measured. A good scientific question must have answers that can be tested by a carefully designed experiment or measurement. Some qualities like "prettiest" and "amazing" cannot be tested for nor are they measurable, and hence, they do not make a testable component of good scientific question.
On his fishing trip Justin rides in a boat 12 km south. The fish aren’t biting so they go 4 km west. They then follow a school of fish 1 km north. What distance did they cover? What was their displacement?
Answer:
I think the answer is 8km2
Answer:
Distance = 17km
Displacement = 12.6 km
Explanation:
south 12km
west 4km
north 1km
Total distance = 12 + 4 + 1 = 17km
Total displacement = in picture above.
Two runners start at a distance of 10 miles from each other. They run towards each other at a constant velocity of 5 mph. A fly takes off from runner one’s nose at time zero. The fly has a constant velocity of 20 mph and flies between the runners. Find the total distance that the fly has traveled when the runners collide.
Answer:
The fly will travel 20 miles before the runners collide with each other.
Explanation:
Since the runners are both traveling at the same speed, they will meet and collide in the exact middle of each other which is 5 miles away from their starting point. Since they are traveling at 5 mph, it will take exactly one hour before they collide. The fly is going 20 mph so it will travel 20 miles before the runners collide in one hour.
Neglecting air resistance, the distance s(t) in feet traveled by a freely falling object is given by the function s(t)=16t2, where t is time in seconds. The height of a certain tower is 840 feet. How long would it take an object to fall to the ground from the top of the building?
Answer:
t=7.25 sec
Explanation:
840=16t'2,
Four identical point charges (+6.0 nC) are placed at the corners of a rectangle which measures 6.0 m×8.0 m. If the electric potential is taken to be zero at infinity, what is the potential at the geometric center of this rectangle
The electric potential at the geometric center of this rectangle is determined as 43.2 V.
Potential at the center of the rectanglePotential at the center of the rectangle is calculated as follows;
Let the distance from each corner to the center = xLet the length = aLet the breadth = bDistance from each corner to the center is calculated as follows;
[tex]x = \sqrt{(a/2)^2 + (b/2)^2}[/tex]
Potential due to four point charges is calculated
[tex]V = \frac{kq}{x} \\\\V =4 (\frac{kq}{x} )\\\\V = 4(\frac{kq}{\sqrt{(a/2)^2 + (b/2)^2} } )\\\\V = \frac{4 \times 9\times 10^{9}\times 6\times 10^{-9}}{\sqrt{(6/2)^2 + (8/2)^2} } \\\\V = \frac{4 \times 9\times 10^{9}\times 6\times 10^{-9}}{5} \\\\V = 43.2 \ Volts[/tex]
Learn more about electric potential here: https://brainly.com/question/14306881
#SPJ2
Suppose a current-carrying wire has a cross-sectional area that gradually becomes smaller along the wire, so that the wire has the shape of a very long,truncated cone. How does the drift speed vary along the wire?
Answer:
It slows down as the cross-section becomes smaller is the correct answer to this question.
Explanation:
That current is the same in all parts of the wire under steady-state conditions.Thus the velocity of drift is approximately equal to the cross‐sectional region.vd = I /nAq . As the cross-section gets smaller it accelerates.Thurst exerted by an object of area20m² experiencing pressure 150 Nm‐² is ________
Answer:
3000 N
Explanation:
as we know that
pressure=force/area
so force=thurst
pressure=thurst/area
thyrst=pressure*area
pressure=150 Nm^-2
area=20m^2
so thurst=150*20=3000 N or 3*10^3 N
You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the:____________
Answer:
Period of the signal.
Explanation:
So, this question is all about a concept in physics or astronomy which is called or known as Radiation Astronomy and Galactic Nuclei that are active. This concept talks most about Quasars; a powerful radiating object which derives its power from black holes.
When You take a look at Quasars, we get the to know that the more you think you can see, the more they move away from us.
Thus, when "You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the "PERIOD OF THE SIGNAL.
NB: not the amplitude but the period.
Suppose the maximum safe intensity of microwaves for human exposure is taken to be 1.00 W/m2. (a) If a radar unit leaks 50.0 W of microwaves (other than those sent by its antenna) uniformly in all directions, how far away (in cm) must you be to be exposed to an intensity considered to be safe
Answer:
The safe distance is 199 cm approximately 200 cm
Explanation:
Safe intensity = 1.00 W/m^2
wattage of radar leaked radar = 50.0 W
safe distance from the microwave will be = ?
We know that the intensity of a wave radiated uniformly in all direction is given as
[tex]I[/tex] = [tex]\frac{W}{A}[/tex]
where
W is the wattage of the leaked radar
A is the radial area, which is the area of a sphere that encapsulates the region through which this wave spreads uniformly.
From the equation above,
[tex]A[/tex] = [tex]\frac{W}{I}[/tex] = 50/1 = 50 m^2
But the area of this sphere [tex]A[/tex] = [tex]4\pi r^{2}[/tex]
where
r is the safe distance from the radar source
substituting for the area, we have
50 = 4 x 3.142 x [tex]r^{2}[/tex]
50 = 12.568 [tex]r^{2}[/tex]
[tex]r^{2}[/tex] = 50/12.568 = 3.978
r = [tex]\sqrt{3.978}[/tex] = 1.99 m = 199 cm ≅ 200 cm
What is the magnetic force on a particle that has 0.000500 C of charge and is moving at
2.50 10m/s to the right through a magnetic field that is 4.20 T and pointing away from
you? Specify both magnitude and direction in your answer.
Answer:
1.) F = 5.3×10^-3 N
2.) Positive y - direction
Explanation:
The parameters given are:
Charge q = 0.0005C
Velocity V = 2.5010 m/s
Magnetic field B = 4.2 T
Magnetic force F = BVqsinØ
F = BVq
since Ø = 90 degree
Substitute all the parameters into the formula
F = 4.2 × 2.5010 × 0.0005
Therefore, the magnetic force on a particle is F = 5.3 × 10^-3 N
2.) According to Fleming's left hand rule, the direction of the magnetic force will be perpendicular to the magnetic field which moving upward of the screen.
Answer:
it’s f=0.0005 x 2.5 x 10^5 x 4.20
F= 525 N
+ y direction (up)
Explanation:
got it right
(a) Two microwave frequencies are authorized for use in microwave ovens: 900 and 2560 MHz. Calculate the wavelength of each. (b) Which frequency would produce smaller hot spots in foods due to interference effects
Answer:
a) wavelength for the two frequencies are 0.33 m and 0.12 m
(b) 2560 MHz
Explanation:
Given:
microwave frequencies are
900 and 2560 MHz
f1= 900MHz we need to convert it to Go so the unit will be able to be consistent
f1= 900MHz= 900× 10^6Hz
f2= 2560 MHz= 2560×10^6Hz
a)Calculate the wavelength of each
But we can calculate our wavelength λ using the below formula
λ=c/f
c which is the speed of light has a constant value of =3*10^8m/s
Then for the first frequency
λ=c/f =(3×10^8)/900×10^6
=0.33 m
=33 cm.
For the second frequency
λ=c/f = (3×10^8)/2560×10^6
=0.12 m
=12 cm
(b) Which frequency would produce smaller hot spots in foods due to interference effects
(b) 2560 MHz( has the smallest wavelength)
This is because a small wavelength microwave gives a pattern with which is interference with waves and have a closer hotspot