Answer:
3.75Step-by-step explanation:
Using Secant-Secant theorem we can find the value of x.
The product of one segment and its external segment is equal to the product of the other segment and its external segment.
5 × 3 = x × 4
15 = 4x
15/4 = x
3.75 = x
The average weight of a package of rolled oats is supposed to be at least 18 ounces. A sample of 18 packages shows a mean of 17.78 ounces with a standard deviation of 0.41 ounces. At the 5% level of significance, is the true mean smaller than the specification?
Answer:
Step-by-step explanation:
The average weight of a package of rolled oats is supposed to be at least 18 ounces
Null hypothesis: u >= 18
Alternative: u < 18
Using the t-test formula, we have
t = x-u/ (sd/√n)
Where x is 17.78, u = 18, sd = 0.41 and n = 18
t = 17.78-18 / (0.41/√18)
t = -0.22 / (0.41/4.2426)
t = -0.22/ 0.0966
t = -2.277
Since, this is a left tailed test, at a significance level of 0.05, the p value is 0.01139. Since the p value is less than 0.05, we will reject the null hypothesis and conclusion that the true mean smaller than the actual specification.
Which values are in the solution set of the compound inequality? Select two options. 4(x + 3) ≤ 0 or x+1>3 answer choices: –6 –3 0 3 8
Answer:
-6, -3
3, 8
Step-by-step explanation:
In order to find the number that are solutions to the compound inequalities, you first solve fr x on each inequality.
First inequality:
[tex]4(x+3)\leq 0\\\\4x+12\leq0\\\\4x\leq-12\\\\x\leq-3[/tex] interval = (-∞ , -3]
Second inequality:
[tex]x+1>3\\\\x>2[/tex] interval = (2 , ∞)
The interval solution is (-∞ , -3] U (2 , ∞)
The number that are included in the previous interval are:
-6, -3
or
3, 8
Answer: any except 0
Step-by-step explanation:
The height of a certain plant is determined by a dominant allele T corresponding to tall plants, and a recessive allele t corresponding to short (or
dwarf) plants. If both parent plants have genotype Tt, compute the probability that the offspring plants will be tall. Hint: Draw a Punnett square.
(Enter your probability as a fraction.)
Answer:
The probability of the plants being tall is equal to P(TT) + P(Tt)= 1/4+1/2=3/4
Step-by-step explanation:
Hello!
The characteristic "height" of a plant is determined by the alleles "tall" T (dominant) and "short" a (recessive). If both parents are Tt, you have to calculate the probability of the offspring being tall (TT or Tt)
To construct the Punnet square you have to make a table, where the parental alleles will be in the margins, for example: the father's alleles in the columns and the mother's alleles in the rows.
Each parent will produce a haploid gamete that will carry one of the alleles, so the probability for the offspring receiving one of the alleles is 1/2
Father (Tt): gametes will carry either the dominant allele T or the recessive allele t with equal probability 1/2
Mother (Tt): gametes will also carry either the dominant allele T or the recessive allele t with equal probability 1/2
Then you have to cross each allele to determine all possible outcomes for the offsprings. For each cell, the probability of obtaining both alleles will be the product of the probability of each allele (See attachment)
First combination, the offspring will receive one dominant allele from his father and one dominant allele from his mother: TT, the probability of obtaining an offspring with this genotype will be P(T) * P(T) = 1/2*1/2=1/4
Second combination, the offspring will receive the recessive allele from the father and the dominant allele from the mother, then its genotype till be tT with probability: P(t)*P(T)= 1/2*1/2=1/4
Third combination, the offspring will receive one dominant allele from his father and one recessive allele from his mother, the resulting genotype will be Tt with probability: P(T)*P(t)= 1/2*1/2=1/4
Combination, the offspring will receive both recessive alleles from his parents, the resulting genotype will be tt with probability: P(t)*P(t)= 1/2*1/2=1/4
So there are three possible genotypes for the next generation:
TT with probability P(TT)= 1/4
Tt with probability: P(Tt)+P(tT)=1/4+1/4=1/2⇒ This genotype is observed twice so you have to add them.
tt with probability P(tt)= 1/4
Assuming this genotype shows complete dominance, you'll observe the characteristic "Tall" in individuals that carry the dominant allele "T", i.e. individuals with genotype "TT" and "Tt"
So the probability of the plants being tall is equal to P(TT) + P(Tt)= 1/4+1/2=3/4
I hope this helps!
PLS HELP ME WITH MY GEOMETRY ITS MY LAST QUESTION
Answer:
12, 1
Step-by-step explanation:
12- 6(1)=
12-6= 6
Anita works at a local news station and needs to decide which news story to report first. Of the news stories, 3 are local, 4 are international, and 5 national. The stories are equally important so anita randomly orders the stories. What is the probability that the first story is a national story. Give your answer as a fraction
20. Evaluate:
(55.5 x 2) = 5 + 13-7
Answer: 111=11
Step-by-step explanation: PEMDAS
(55.5 times 2)=5+13-7
(111)=5+13-7
(111)=18-7
111=11
PLEASE HELP!!! Bob earns $1,825 per month as a clerk at Elm City Sporting Goods. How much does he earn in a year? Explain how you got your answer. (50 points)
Answer:
21900
Step-by-step explanation:
There are 12 months in a year, so multiply the yearly amount by 12
1825 * 12
21900
Answer:
Bob makes $21,000 in a year.
Step-by-step explanation:
There are 12 months in a year, so if he earns $1,825 every month to get his yearly pay you need to add 1,825 twelve times. Thus, 1,825×12=21,000. Hope this helps!
(2.8(2 4/5 ·(8.75−2 1/2 )))·7.25−3 3/4
Answer:
351.5
Step-by-step explanation:
Step 1: Convert fractions to improper
(2.8(14/5(8.75 - 5/2)))7.25 - 15/4
Step 2: Parenthesis
(2.8(14/5(6.25)))7.25 - 15/4
Step 3: Parenthesis
(2.8(17.5))7.25 - 15/4
Step 4: Parenthesis
49(7.25) - 15/4
Step 5: Multiply
355.25 - 15/4
Step 6: Subtract
351.5
WWW
3.
The expression "5 FACTORIAL" equals
3-A
125
3-B
120
3-C
25
3-D
10
* Select Answer Below
Answer:
5! = 120
Step-by-step explanation:
5! is basically 5(4)(3)(2)(1).
Identify all the central angles
Answer:
Option 4
Step-by-step explanation:
The central angles are "Angles in the center"
So,
Central Angles are <AOB, <BOC and <AOC
Answer:
<AOB, <BOC and < AOC
Step-by-step explanation:
There are 3 angles at center O . The largest is <AOC ( = 180 degrees). Thn you have 2 more each equal to 90 degrees.
the required condition for using an anova procedure on data from several populations for mean comparison is that the
Answer:
The sampled populations have equal variances
Step-by-step explanation:
ANOVA which is fully known as Analysis of variances can be defined as the collection of statistical models as well as their associated estimation procedures which enables easily and effectively analyzis of the differences among various group means in a sample reason been that ANOVA is a total variance in which the observed variance in a specific variable is been separated into components which are attributable to various sources of variation which is why ANOVA help to provides a statistical test to check whether two or more population means are equal.
Therefore the required condition for using an ANOVA procedure on data from several populations for mean comparison is that THE SAMPLED POPULATION HAVE EQUAL VARIANCE.
A child is 2 -1/2 feet tall. The child’s mother is twice as tall as the child. How tall is the child’s mother
Answer:
5 feet
Step-by-step explanation:
"Twice as tall" means "2 times as tall".
2 × (2 1/2 ft) = (2 × 2 ft) +(2 × (1/2 ft)) = 4 ft + 1 ft = 5 ft
The child's mother is 5 feet tall.
Answer:
The mother is 5ft tall
Step-by-step explanation:
2 1/2 + 2 1/2 = 5ft
2ft+2ft = 4ft
1/2+1/2= 1ft
4ft+1ft = 5ft
One of the solutions to x2 − 2x − 15 = 0 is x = −3. What is the other solution?
20 points if you can answer in under 30 minuets
Answer:
x=5 x=-3
Step-by-step explanation:
x^2 − 2x − 15 =0
Factor
What two numbers multiply to -15 and add to -2
-5*3 = -15
-5+3 =-2
(x-5) (x+3)=0
Using the zero product property
x-5 =0 x+3 =0
x=5 x=-3
Answer:
x^2 - 2x - 15 = 0
(x - 5) (x + 3) = 0
x - 5 = 0
x = 5
x + 3 = 0
x = -3
Question 15 A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 3 tables is $38 . The total cost to rent 2 chairs and 5 tables is $35 . What is the cost to rent each chair and each table?
Answer:
Each table is $6 and each chair is $2.50
Step-by-step explanation:
Solve the triangles with the given parts: a=103, c=159, m∠C=104º
Answer:
Sides:
[tex]a= 103[/tex].[tex]b \approx 99[/tex].[tex]c - 159[/tex].Angles:
[tex]\angle A \approx 39^\circ[/tex].[tex]\angle B \approx 37^\circ[/tex].[tex]\angle C = 104^\circ[/tex].Step-by-step explanation:
Angle AApply the law of sines to find the sine of [tex]\angle A[/tex]:
[tex]\displaystyle \frac{\sin{A}}{\sin{C}} = \frac{a}{c}[/tex].
[tex]\displaystyle\sin A = \frac{a}{c} \cdot \sin{C} = \frac{103}{159} \times \left(\sin{104^{\circ}}\right) \approx 0.628556[/tex].
Therefore:
[tex]\angle A = \displaystyle\arcsin (\sin A) \approx \arcsin(0.628556) \approx 38.9^\circ[/tex].
Angle BThe three internal angles of a triangle should add up to [tex]180^\circ[/tex]. In other words:
[tex]\angle A + \angle B + \angle C = 180^\circ[/tex].
The measures of both [tex]\angle A[/tex] and [tex]\angle C[/tex] are now available. Therefore:
[tex]\angle B = 180^\circ - \angle A - \angle C \approx 37.1^\circ[/tex].
Side bApply the law of sines (again) to find the length of side [tex]b[/tex]:
[tex]\displaystyle\frac{b}{c} = \frac{\sin \angle B}{\sin \angle C}[/tex].
[tex]\displaystyle b = c \cdot \left(\frac{\sin \angle B}{\sin \angle C}\right) \approx 159\times \frac{\sin \left(37.1^\circ\right)}{\sin\left(104^\circ\right)} \approx 98.8[/tex].
The length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. Find the domain in this situation.
Answer:2/3
Step-by-step explanation:
Given that the length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. The domain of the function is (0, ∞).
What is domain of a function?The domain of a function is the set of all possible inputs for the function. In other words, domain is the set of all possible values of x. In this question, x is the width of the rectangle. Width of a rectangle existing in two dimensional space, cannot be negative or zero. Thus it is the set of all positive real numbers, or we say, (0, ∞).
Learn more about domain of a function here
https://brainly.com/question/13113489
#SPJ2
which of the following has a value less than 0?
A.4
B. |4|
C. |-4|
D. -4
Answer:
D
Step-by-step explanation:
The numbers that are less than 0 are negative. Negative numbers have the "-" sign in front of them so the answer is D.
Answer:
d
Step-by-step explanation:
The other ones will always be positive four
Use the information given to write an equation in standard form (If possible please show work)
Answer:
-2x + y = -1.
Step-by-step explanation:
The slope of the line = rise / run
= (11-9) / (6-5) = 2.
The point-slope form of the line is
y - y1 = 2(x - x1) where (x1, y1) is a point on the line so we have:
y - 11 = 2(x - 6) ( using the point (6, 11)
y = 2x - 12 + 11
y = 2x - 1
Convert to standard form:
-2x + y = -1.
Use the graphing calculator to graph the line y = 2x – 7.
Use the graph to find the missing coordinates below.
(4.75, )
(, –7.7)
(0.4, )
Answer:
(4.75, 2.5), (-0.35, -7.7), (0.4, -6.2)
Step-by-step explanation:
Given the line
[tex]y = 2x- 7[/tex]
Given the missing coordinates:
(4.75, )
(, –7.7)
(0.4, )
We know that every coordinate is of the form [tex](x,y)[/tex].
So, we can easily solve the for other variable if one variable is given from the given line using the graph or the given equation.
For the first coordinate:
(4.75, )
From graph it can be found that y = 2.5
Verifying using the equation.
Putting the value of x = 4.75 in the equation we get:
y = 2[tex]\times[/tex] 4.75 - 7
y = 9.5 - 7 = 2.5
So, the coordinate is (4.75, 2.5)
For the second coordinate:
(, -7.7 )
From graph it can be found that x = -0.35
Verifying using the equation:
Putting the value of y = -7.7 in the equation we get:
-7.7 = 2x - 7
2x = -7.7 + 7 = -0.7
x = -0.35
So, the coordinate is (-0.35, -7.7).
For the third coordinate:
(0.4, )
From graph it can be found that y = -6.2
Verifying using the equation.
Putting the value of x = 0.4 in the equation we get:
y = 2[tex]\times[/tex] 0.4 - 7
y = 0.8 - 7 = -6.2
So, the coordinate is (0.4, -6.2)
Also, please refer to the attached graph.
So, the answer is:
(4.75, 2.5), (-0.35, -7.7), (0.4, -6.2)
Answer: its 2.5, -0.35, -6.2
Step-by-step explanation: in easier words
In the figure, AB =
Inchesand AC=
inches.
Answer:
[tex]\displaystyle AB \approx 8.39 \text{ inches} \text{ and } AC \approx 13.05 \text{ inches}[/tex]
Step-by-step explanation:
Note that we are given the measure of ∠C and the length of side BC.
To find AB, we can use the tangent ratio. Recall that:
[tex]\displaystyle \tan\theta = \frac{\text{opposite}}{\text{adjacent}}[/tex]
Substitute in appropriate values:
[tex]\displaystyle \tan 40^\circ = \frac{AB}{BC} = \frac{AB}{10}[/tex]
Solve for AB:
[tex]\displaystyle AB = 10\tan 40^\circ \approx 8.39\text{ inches}[/tex]
For AC, we can use cosine ratio since we have an adjacent and need to find the hypotenuse. Recall that:
[tex]\displaystyle \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}[/tex]
Substitute in appropriate values:
[tex]\displaystyle \cos 40^\circ = \frac{BC}{AC} = \frac{10}{AC}[/tex]
Solve for AC:
[tex]\displaystyle \begin{aligned} \frac{1}{\cos 40^\circ} & = \frac{AC}{10} \\ \\ AC & = 10\cos 40^\circ \approx 13.05\text{ inches} \end{aligned}[/tex]
In conclusion, AB is about 8.39 inches and AC is about 13.03 inches.
Abigail and Liza Work as carpenters for different companies Abigail earns $20 Per hour at her company and Liza Word for a total of 30 hours in together earned a total of 690 how many hours did Liza work last week?
This question was not properly written, hence it is incomplete. The complete question is written below:
Complete Question:
Abigail and Liza work as carpenters for different companies. Abigail earns $20 per hour at her company and Liza earns $25 per hour at her company. Last week, Abigail and Liza worked for a total of 30 hours and together earned a total of $690. How many hours did Liza work last week?
Answer:
Lisa worked for 18 hours last week
Step-by-step explanation:
Let the number of hours Abigail worked last week = A
Let the number of hours Liza worked last week = B
Abigail earns = $20 per hour at her company
Liza earns = $25 per hour at her company
A + B = 30 ........... Equation 1
B = 30 - A
20 × A + 25 × B = 690
20A + 25B = 690 ............... Equation 2
Substitute 30 - A for B in Equation 2
Hence, we have:
20A + 25(30 - A) = 690
20A + 750 - 25A = 690
Collect like terms
20A - 25A = 690 - 750
-5A = -60
A = -60/-5
A = 12
Since A represents the number of hours Abigail worked, Abigail worked for 12 hours last week.
Substitute 12 for A in Equation 1
A + B = 30
12 + B = 30
B = 30 - 12
B = 18
Since B represents the number of hours Liza worked, therefore, Liza worked for 18 hours last week.
Plz help ASAP I’ll give lots of points
Answer:
8
Step-by-step explanation:
Because it is equal to the 4 side
The weight of a chocolate bar is 4.4 ounces, but can vary. Let W be a random variable that represents the weight of a chocolate bar. The probability density function of Wis given below. If the shaded portion of the graph of the continuous probability density function below is 0.42739, what is the probability that a chocolate bar is at least 4 ounces, but no more than 7 ounces?
Answer:
Ans) 42.7%
Step-by-step explanation:
For a continuous probability distribution, a curve known as probability density function contains information about these probabilities.
in the given range -
The probability that a continuous random variable = equal to the area under the probability density function curve
The probability that the value of a random variable is equal to 'something' is 1.
As per the diagram,
Weight of chocolate bar between 4 ounces and 7 ounces is highlighted in the blue part. That area is said to be 0.42739 and the total area under the curve is 1.
Hence required probability
=0.42739/1=0.42739
Ans) 42.7%
Round to nearest tenth of a percent
When a frequency distribution is exhaustive, each individual, object, or measurement from a sample or population must appear in at least one category.
a. True
b. False
Answer:
a. True
Step-by-step explanation:
The frequency distribution is a summary of the gathered data set, in which the interval of values is divided into classes.
A requirement for a frequency distribution is for the classes to be mutually exclusive and exhaustive. That is, each individual, object, or measurement in the data set must belong to one and only one class.
Then, we can conclude that each individual, object, or measurement must appear in at least one (in fact, only in one) category or class.
I NEED HELP PLEASE, THANKS! :)
Consider the standard form of each of the following options given, and note the hyperbola properties through that derivation -
[tex]Standard Form - \frac{\left(x-5\right)^2}{\left(\sqrt{7}\right)^2}-\frac{\left(y-\left(-5\right)\right)^2}{3^2}=1,\\Properties - \left(h,\:k\right)=\left(5,\:-5\right),\:a=\sqrt{7},\:b=3\\[/tex]
Similarly we can note the properties of each of the other hyperbolas. They are all similar to one another, but only option C is correct. Almost all options are present with a conjugate axis of length 6, but only option c is broad enough to include the point ( 1, - 5 ) and ( 9, - 5 ) in a given radius.
Solution = Option C!
A courier service company wishes to estimate the proportion of people in various states that will use its services. Suppose the true proportion is 0.050.05. If 212212 are sampled, what is the probability that the sample proportion will differ from the population proportion by less than 0.030.03
Answer:
95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this question:
[tex]p = 0.05, n = 212, \mu = 0.05, s = \sqrt{\frac{0.05*0.95}{212}} = 0.015[/tex]
What is the probability that the sample proportion will differ from the population proportion by less than 0.03?
This is the pvalue of Z when X = 0.03 + 0.05 = 0.08 subtracted by the pvalue of Z when X = 0.05 - 0.03 = 0.02. So
X = 0.08
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.08 - 0.05}{0.015}[/tex]
[tex]Z = 2[/tex]
[tex]Z = 2[/tex] has a pvalue of 0.9772
X = 0.02
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.02 - 0.05}{0.015}[/tex]
[tex]Z = -2[/tex]
[tex]Z = -2[/tex] has a pvalue of 0.0228
0.9772 - 0.0228 = 0.9544
95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.
For the functions f(x)=3x−1 and g(x)=4x−3, find (f∘g)(x) and (g∘f)(x)
Will give brainliest answer
Answer:
[tex]153.86 \: {units}^{2} [/tex]
Step-by-step explanation:
[tex]area = \pi {r}^{2} \\ = 3.14 \times 7 \times 7 \\ = 3.14 \times 49 \\ = 153.86 \: {units}^{2} [/tex]
Answer:
153.86 [tex]units^{2}[/tex]
Step-by-step explanation:
Areaof a circle = πr^2
[tex]\pi = 3.14[/tex](in this case)
[tex]r^{2} =7[/tex]
A = πr^2
= 49(3.14)
= 153.86
Given the equation 4x - 3y = 12
1. Write the equation in slope-intercept form.
2. Identify the slope and y-intercept.
3. Graph the line.
4. Identify if it is a positive or negative slope.
Answer:
see below
Step-by-step explanation:
Slope intercept form is y = mx+b where m is the slope and b is the y intercept
4x - 3y = 12
Solve for y
Subtract 4x from each side
4x-4x - 3y =-4x+ 12
-3y = -4x+12
Divide by -3
-3y/-3 = -4x/-3 + 12/-3
y = 4/3x -4
The slope is 4/3 and the y intercept is -4
The slope is Positive
Find the 61st term of the following arithmetic sequence.
15, 24, 33, 42,
Answer:
The answer is
555Step-by-step explanation:
For an nth term in an arithmetic sequence
[tex]U(n) = a + (n - 1)d[/tex]
where n is the number of terms
a is the first term
d is the common difference
From the question
a = 15
d = 24 - 15 = 9
n = 61
So the 61st term of the arithmetic sequence is
U(61) = 15 + (61-1)9
= 15 + 9(60)
= 15 + 540
= 555
Hope this helps you.