Write the full electron configuration for S2- full electron configuration: What is the atomic symbol for the noble gas that also has this electron configuration? atomic symbol:

Answers

Answer 1

The full electron configuration for S2- is 1s2 2s2 2p6 3s2 3p6. The atomic symbol for the noble gas that also has this electron configuration is Ar, which stands for Argon.

Neutral sulfur (S) atom and then add 2 electrons to account for the 2- charge.

The atomic number of sulfur is 16, so a neutral sulfur atom has 16 electrons. The electron configuration for a neutral sulfur atom is:

1s² 2s² 2p⁶ 3s² 3p⁴

Now, to account for the 2- charge, we need to add 2 electrons to the configuration. This will give us:

1s² 2s² 2p⁶ 3s² 3p⁶

Therefore, This electron configuration corresponds to a noble gas, which is argon (Ar). The atomic symbol for the noble gas that has the same electron configuration as S2- is Ar.

To know more about electronic configuration refer here :

https://brainly.com/question/26084288

#SPJ11


Related Questions

quantity of caco3 required to make 100 ml of a 100 ppm ca2 solution

Answers

To determine the quantity of CaCO3 required to make 100 mL of a 100 ppm Ca2+ solution, 2.777 mg of CaCO3 is required.


First, calculate the amount of Ca2+ ions required in 100 mL of solution:
(100 mL / 1000 mL) x 100 mg = 10 mg of Ca2+ ions

Next, determine the mass ratio of Ca2+ ions to CaCO3. The molecular weight of Ca2+ is 40.08 g/mol and that of CaCO3 is 100.09 g/mol. Therefore, the mass ratio is 40.08/100.09.

Finally, calculate the amount of CaCO3 required to obtain 10 mg of Ca2+ ions:
(10 mg Ca2+ ions) x (100.09 g CaCO3 / 40.08 g Ca2+) ≈ 2.777 mg of CaCO3

So, 2.777 mg of CaCO3 is required to make 100 mL of a 100 ppm Ca2+ solution.

To learn more about mass ratio visit:

brainly.com/question/14577772

#SPJ11

calculate the solubility of fe oh 2 in water at 25°c

Answers

To calculate the solubility of Fe(OH)2 in water at 25°C, we need to know its solubility product constant (Ksp). The solubility product constant is a measure of the equilibrium between the dissolved and solid states of a sparingly soluble substance.

For Fe(OH)2, the Ksp value at 25°C is approximately 4.87 × 10^-17. We can use this value to find the solubility of Fe(OH)2. First, let's write the balanced chemical equation and the corresponding solubility product expression:
Fe(OH)2 (s) ⇌ Fe²⁺ (aq) + 2 OH⁻ (aq)
Ksp = [Fe²⁺] [OH⁻]²
Let x represent the solubility of Fe(OH)2 in moles per liter. Then, [Fe²⁺] = x and [OH⁻] = 2x. Substitute these values into the solubility product expression:
4.87 × 10⁻¹⁷ = x (2x)²
Solve for x:
4.87 × 10⁻¹⁷ = 4x³
x³ = 1.2175 × 10⁻¹⁷
x = (1.2175 × 10⁻¹⁷)^(1/3)
x ≈ 2.30 × 10⁻⁶6 M
The solubility of Fe(OH)₂ in water at 25°C is approximately 2.30 × 10⁻⁶ moles per liter.

Learn more about chemical here:

https://brainly.com/question/29240183

#SPJ11

What change in volume results if 170. 0 mL of gas is cooled from 30. 0 °C to 20. 0 °C? (Charles Law)

Answers

To calculate the change in volume when 170.0 mL of gas is cooled from 30.0 °C to 20.0 °C using Charles' Law, we need to use the relationship between volume and temperature for an ideal gas. Charles' Law states that at constant pressure, the volume of a gas is directly proportional to its temperature.

By using the formula V₁ / T₁ = V₂ / T₂, where V₁ and T₁ are the initial volume and temperature, and V₂ and T₂ are the final volume and temperature, we can determine the change in volume.

According to Charles' Law, the ratio of the initial volume to the initial temperature is equal to the ratio of the final volume to the final temperature:

V₁ / T₁ = V₂ / T₂

Plugging in the given values:

V₁ = 170.0 mL

T₁ = 30.0 °C + 273.15 = 303.15 K

T₂ = 20.0 °C + 273.15 = 293.15 K

Substituting these values into the equation:

170.0 mL / 303.15 K = V₂ / 293.15 K

To solve for V₂, we rearrange the equation:

V₂ = (170.0 mL / 303.15 K) * 293.15 K

Simplifying the equation:

V₂ ≈ 163.3 mL

Therefore, the change in volume is approximately 163.3 mL when 170.0 mL of gas is cooled from 30.0 °C to 20.0 °C.

To learn more about Charles' Law - brainly.com/question/14842720

#SPJ11

bicycle tire that has a volume of 0.85l is inflated to 140 pounds per square inch. what will be the pressure in the tire if the tire expands to 0.95l at a constant temperature

Answers

The new pressure in the bicycle tire when it expands to 0.95 L at constant temperature is approximately 124.21 psi. The relationship between the volume and pressure of a gas. According to Boyle's Law, the volume of a gas is inversely proportional to its pressure at a constant temperature.


In this case, the initial volume of the bicycle tire is 0.85l and it is inflated to 140 pounds per square inch. To find the initial pressure in the tire, we can use the formula:
Pressure = Force / Area
The formula for Boyle's Law is:
P1V1 = P2V2
44.59 pounds per square inch x 0.85l = P2 x 0.95l
P2 = (44.59 pounds per square inch x 0.85l) / 0.95l
P2 = 39.79 pounds per square inch (rounded to two decimal places)
P1V1 = P2V2.
Given:
P1 (initial pressure) = 140 psi
V1 (initial volume) = 0.85 L
V2 (final volume) = 0.95 L
We need to find P2 (final pressure).
Using the equation, P1V1 = P2V2:
(140 psi)(0.85 L) = P2(0.95 L)
Now, solve for P2:
P2 = (140 psi)(0.85 L) / 0.95 L
P2 ≈ 124.21 psi.

To know more about temperature visit :-

https://brainly.com/question/29072206

#SPJ11

cyclohexene reacts with bromine to yield 1,2-dibromocyclohexane. the product would be ______ and, in the most stable conformation ______ .

Answers

The product of the reaction between cyclohexene and bromine would be 1,2-dibromocyclohexane. In the most stable conformation, the two bromine atoms would be in the axial positions of the cyclohexane ring, while the two hydrogen atoms would be in the equatorial positions.

In the most stable conformation, the two bromine atoms will be in a trans configuration with respect to each other. This means that they will be on opposite sides of the cyclohexane ring. The trans conformation is more stable than the cis conformation, where the two bromine atoms would be on the same side of the ring. This is due to the fact that the trans conformation allows for greater separation between the bulky bromine atoms, resulting in lower steric hindrance and greater stability.

To know more about cyclohexene :

https://brainly.com/question/6854548

#SPJ11

determine the cell potential (in v) if the concentration of z2 = 0.25 m and the concentration of q3 = 0.36 m.

Answers

The cell potential (in V) is -1.56 V if the concentration of z₂ = 0.25 M and the concentration of q₃ = 0.36 M.

To determine the cell potential (in V) of a reaction involving two half-reactions, we need to use the Nernst equation:

Ecell = E°cell - (RT/nF) * ln(Q)

where Ecell is the cell potential, E°cell is the standard cell potential, R is the gas constant (8.314 J/mol*K), T is the temperature in Kelvin, n is the number of electrons transferred in the reaction, F is Faraday's constant (96,485 C/mol), and Q is the reaction quotient.

For this problem, we need to write the two half-reactions and their corresponding standard reduction potentials:

z₂ + 2e- → z (E°red = -0.76 V)
q₃ + e- → q₂ (E°red = 0.80 V)

Note that the reduction potential for z₂ is negative, which means it is a stronger oxidizing agent than q₃, which has a positive reduction potential and is a stronger reducing agent. This information will be useful when interpreting the cell potential.

Next, we need to write the overall balanced equation for the reaction, which is obtained by adding the two half-reactions:

z₂ + q₃ → z + q₂

The reaction quotient Q is given by the concentrations of the products and reactants raised to their stoichiometric coefficients:

Q = [z][q₂] / [z₂][q₃]

Substituting the given concentrations, we get:

Q = (0.36)(1) / (0.25)(1) = 1.44

Now we can use the Nernst equation to calculate the cell potential:

Ecell = E°cell - (RT/nF) * ln(Q)
Ecell = (-0.76 V - 0.80 V) - (8.314 J/mol*K)(298 K)/(2*96,485 C/mol) * ln(1.44)
Ecell = -1.56 V

The negative value of Ecell indicates that the reaction is not spontaneous under these conditions (standard conditions would be 1 M concentrations for all species and 25°C temperature). In other words, a voltage source would need to be applied to the system in order to drive the reaction in the direction shown. The larger the magnitude of Ecell, the greater the driving force for the reaction.

In summary, the cell potential (in V) is -1.56 V if the concentration of z₂ = 0.25 M and the concentration of q₃ = 0.36 M.

To know more about cell potential, refer

https://brainly.com/question/19036092

#SPJ11

when this equation is balanced with the smallest set of whole numbers, what is the coefficient for n2? ___n2h4(g) ___n2o4(g)___n2(g) ___h2o(g)

Answers

The balanced equation for the reaction:

n2h4(g) + n2o4(g) → n2(g) + h2o(g)

is:

2N2H4(g) + N2O4(g) → 3N2(g) + 4H2O(g)

The coefficient for n2 in the balanced equation is 3.

The given chemical equation is:

n2h4(g) + n2o4(g) → n2(g) + 2h2o(g)

To balance this equation with the smallest set of whole numbers, we need to adjust the coefficients in front of the chemical formulas until we have the same number of each type of atom on both sides of the equation.

First, we can balance the nitrogen atoms by placing a coefficient of 1 in front of N2 on the right-hand side:

n2h4(g) + n2o4(g) → 2n2(g) + 2h2o(g)

Next, we balance the hydrogen and oxygen atoms by placing a coefficient of 4 in front of H2O on the right-hand side:

n2h4(g) + n2o4(g) → 2n2(g) + 4h2o(g)

Now we have the same number of each type of atom on both sides of the equation. Therefore, the coefficient for N2 is 2.

Therefore, the balanced chemical equation is:

N2H4(g) + N2O4(g) → 2N2(g) + 4H2O(g)

Click the below link, to learn more about Balancing equation:

https://brainly.com/question/12405075

#SPJ11

Rank the bonds in each set in order of increasing bond length and increasing bond strength: (a) C≡N, C≡O, C≡C; (b) P-I, P-F, P-Br. And Rank the bonds in each set in order of decreasing bond length and decreasing bond strength: (a) Si-F, Si-C, Si-O; (b) N=N, N-N, N≡N.

Answers

Explanation:

There is a well-known relationship between the bond length of a diatomic molecule and the atomic radius of its constituent atoms, known as the covalent radius. Specifically, the covalent radius of an atom is half the bond length between two identical atoms in a diatomic molecule.

Therefore, to determine the atomic radius of chlorine (Cl), we can use the bond length of fluorine (F2) and the fact that the two atoms in F2 are identical.

Since the bond length of F2 is given as 1.28 A, the covalent radius of fluorine is 1.28/2 = 0.64 A.

Since both fluorine and chlorine are halogens, they have similar electronic configurations and form similar covalent bonds. Therefore, we can use the covalent radius of fluorine as an estimate for the covalent radius of chlorine.

Thus, the atomic radius of chlorine is approximately 0.64 A.



Rank the bonds in each set in order of increasing bond length and increasing bond strength: (a) C≡N, C≡O, C≡C; (b) P-I, P-F, P-Br. And Rank the bonds in each set in order of decreasing bond length and decreasing bond strength: (a) Si-F, Si-C, Si-O; (b) N=N, N-N, N≡N

ChatGPT

(a) C≡C < C≡N < C≡O (increasing bond length); C≡O < C≡N < C≡C (increasing bond strength)

Explanation: In a series of molecules with the same central atom, the bond length decreases as the number of bonds between the central atom and the surrounding atoms increases. Therefore, in set (a), the C≡C bond is the shortest, followed by the C≡N bond, and then the C≡O bond. Similarly, the bond strength increases with the number of bonds between the central atom and the surrounding atoms. Therefore, the C≡C bond is the strongest, followed by the C≡N bond, and then the C≡O bond.

(b) P-F < P-Br < P-I (increasing bond length); P-I < P-Br < P-F (increasing bond strength)

Explanation: In a series of molecules with the same surrounding atom, the bond length increases as the central atom gets larger. Therefore, in set (b), the P-I bond is the longest, followed by the P-Br bond, and then the P-F bond. Similarly, the bond strength decreases as the central atom gets larger. Therefore, the P-I bond is the weakest, followed by the P-Br bond, and then the P-F bond.

(c) Si-O < Si-C < Si-F (decreasing bond length); Si-F < Si-C < Si-O (decreasing bond strength)

Explanation: In a series of molecules with the same central atom, the bond length increases as the electronegativity of the surrounding atom increases. Therefore, in set (c), the Si-F bond is the longest, followed by the Si-C bond, and then the Si-O bond. Similarly, the bond strength decreases as the electronegativity of the surrounding atom increases. Therefore, the Si-F bond is the weakest, followed by the Si-C bond, and then the Si-O bond.

(d) N≡N < N-N < N=N (decreasing bond length); N≡N > N-N > N=N (decreasing bond strength)

Explanation: In a series of molecules with the same central atom, the bond length decreases as the number of bonds between the central atom and the surrounding atoms increases. Therefore, in set (d), the N≡N bond is the shortest, followed by the N-N bond, and then the N=N bond. Similarly, the bond strength increases with the number of bonds between the central atom and the surrounding atoms. Therefore, the N≡N bond is the strongest, followed by the N-N bond, and then the N=N bond.

1.(a) In order of increasing bond length: C≡N, C≡C, C≡O and In order of increasing bond strength: C≡O, C≡C, C≡N and (b) In order of increasing bond length: P-F, P-Br, P-I and In order of increasing bond strength: P-I, P-Br, P-F. 2. (a) In order of decreasing bond length: Si-F, Si-O, Si-C and In order of decreasing bond strength: Si-O, Si-C, Si-F and (b) In order of decreasing bond length: N≡N, N=N, N-N and In order of decreasing bond strength: N≡N, N=N, N-N.

1. (a) This is because nitrogen is smaller than carbon, so the triple bond is shorter and stronger. Carbon-oxygen bonds are typically shorter and stronger than carbon-carbon bonds, so C≡O is shorter and stronger than C≡C. In order of increasing bond strength the order is  P-I, P-Br, P-F because oxygen is more electronegative than carbon, so the carbon-oxygen bond is more polar and stronger.

(b) The bond length order is so because fluorine is smaller than bromine or iodine, so the bond is shorter and stronger. and the bond strength order is so because iodine is larger than fluorine or bromine, so the bond is weaker and longer.


2. (a) This is because fluorine is smaller than oxygen, so the bond is shorter and stronger. Oxygen is smaller than carbon, so the bond is shorter and stronger. In order of decreasing bond strength the order is Si-O, Si-C, Si-F because oxygen is more electronegative than carbon, so the carbon-oxygen bond is more polar and stronger. Fluorine is more electronegative than carbon, so the carbon-fluorine bond is more polar and stronger.

(b) The bond length order is so because the triple bond is shorter and stronger than the double bond, which is shorter and stronger than the single bond and the bond strength order is so because the triple bond is stronger than the double bond, which is stronger than the single bond.

To know more about bond strength, refer here:

https://brainly.com/question/30226871#

#SPJ11

Choose starting materials and reagents from the following tables for synthesis of valine by either the acetamidomalonate or reductive amination method. Specify starting material (by number) first. Specify reagents in order of use (by letter) second by nun Examplesents in Starting Materials diethyl acetamidomalonate 4 3-methyl-2-oxo-hexanoic acid diethyl malonate 5 3-methyl-2-oxo-pentanoic acid 3 CH SCH2CH2-CO-CO,H 3-methyl-2-oxo-butanoic acid Reagents a Hyo, heat methyl iodide 9 benzyl bromide b sodium ethoxide 2-bromobutane h Hy over Pac C NH3 /NaBHA 1-bromo-2-methylpropane

Answers

The specific starting materials and reagents chosen will depend on various factors such as availability, cost, efficiency, and desired product purity.

To synthesize valine using the acetamidomalonate method, we can use starting material number 4, diethyl acetamidomalonate, and reagents in the following order:
a) Hydrazine, followed by heat, to remove the acetamide group and form the enamine intermediate.
b) Methyl iodide to alkylate the enamine and form the α-alkylated product.
c) Sodium ethoxide to remove the ethyl ester group and form the carboxylic acid intermediate.
d) Hydride reduction over Pd/C catalyst to reduce the carboxylic acid to the alcohol and form valine.

To synthesize valine using the reductive amination method, we can use starting material number 3, 3-methyl-2-oxo-butanoic acid, and reagents in the following order:
a) NH3/NaBH3, to form the imine intermediate.
b) Benzyl bromide to alkylate the imine and form the N-alkylated intermediate.
c) 1-bromo-2-methylpropane to reduce the imine and form the valine product.

It is important to note that these are just two possible routes to synthesize valine, and there are likely many other ways to achieve the same end result. The specific starting materials and reagents chosen will depend on various factors such as availability, cost, efficiency, and desired product purity.

To know more about reagents click here:

https://brainly.com/question/28463799

#SPJ11

(true or false) the mobile phase used during the tlc analysis of dipeptide experiment was silica gel.

Answers

The statement  "The mobile phase used during the tlc analysis of dipeptide experiment was silica gel" is false because the mobile phase used during the TLC analysis of the dipeptide experiment could have been silica gel, but this would be unlikely as silica gel is a stationary phase in TLC.

In TLC, the stationary phase is a thin layer of silica gel or other adsorbent material on a flat, inert support, such as a glass plate, and the mobile phase is a solvent that moves through the stationary phase by capillary action. The dipeptide mixture would be applied as a small spot to the stationary phase, and the plate would be developed by allowing the mobile phase to move up the plate, carrying the components of the mixture with it.

Depending on the polarity of the dipeptide and the solvent used as the mobile phase, different adsorbent materials could be used as the stationary phase, including silica gel, alumina, or cellulose.

To know more about the dipeptide experiment refer here :

https://brainly.com/question/31359102#

#SPJ11

use standard reduction potentials to calculate the standard free energy change in kj for the reaction: 2cu2 (aq) co(s)2cu (aq) co2 (aq) answer: kj k for this reaction would be than one.

Answers

The balanced chemical equation for the given reaction is:

2 Cu2+(aq) + C(s) → 2 Cu+(aq) + CO2(g)

The half-reactions involved are:

Cu2+(aq) + 2 e- → Cu+(aq) E° = +0.153 VC(s) → C4-(aq) + 4 e- E° = -2.092 V

To calculate the overall standard free energy change (ΔG°) for the reaction, we need to use the equation:

ΔG° = -nFE°

where n is the number of electrons transferred in the balanced equation and F is the Faraday constant (96,485 C/mol).

In this case, n = 4 (two electrons are transferred in each half-reaction) and:

ΔG° = -4 × 96,485 C/mol × (0.153 V - (-2.092 V)) = +246,724 J/mol = +246.7 kJ/mol

Therefore, the standard free energy change for the reaction is +246.7 kJ/mol. Since ΔG° is positive, the reaction is not spontaneous under standard conditions (1 atm pressure, 25°C, 1 M concentration).

Learn More About electrons at https://brainly.com/question/30092944

#SPJ11

If, for a particular process, ΔH = -214 kJ/mol and ΔS = 450 J/mol.k the process will be: Select the correct answer below: O spontaneous at any temperature O nonspontaneous at any temperature O spontaneous at high temperatures O spontanteous at low temperatures

Answers

The correct answer to the question is: the process will be spontaneous at any temperature.

ΔG is the amount of energy available to do useful work in a system. It is related to ΔH and ΔS through the equation ΔG = ΔH - TΔS, where T is the temperature in Kelvin.

If ΔG is negative, the process is spontaneous (meaning it will happen on its own without any external energy input), and if ΔG is positive, the process is nonspontaneous (meaning it will not happen on its own without external energy input).

Using the given values of ΔH = -214 kJ/mol and ΔS = 450 J/mol.k, we can calculate ΔG at different temperatures. However, we first need to convert ΔH from kJ/mol to J/mol by multiplying by 1000:

ΔH = -214,000 J/mol

Now we can calculate ΔG at different temperatures using the equation above:

At 298 K (room temperature):

ΔG = -214,000 J/mol - (298 K)(450 J/mol.K) = -349,100 J/mol

Since ΔG is negative, the process is spontaneous at room temperature.

At a high temperature (e.g. 1000 K):

ΔG = -214,000 J/mol - (1000 K)(450 J/mol.K) = 36,000 J/mol

Since ΔG is positive, the process is nonspontaneous at high temperatures.

At a low temperature (e.g. 100 K):

ΔG = -214,000 J/mol - (100 K)(450 J/mol.K) = -229,500 J/mol

Since ΔG is negative, the process is spontaneous at low temperatures.

Therefore, the correct answer to the question is: the process will be spontaneous at any temperature.

To know more about spontaneous, refer

https://brainly.com/question/4248860

#SPJ11

Use the information and table to answer the following question A student is planning to determine the specific heat of iron. To do this experiment the student will need to perform the following procedures: StepProcedure 1 Measure the mass of the iron sample 2 Measure the initial temperature of a known volume of water 3 Heat the iron sample . 4 Place the iron sample in the water What is Step 5 in the experiment?

Answers

Based on the given information and procedure steps, Step 5 in the experiment would be to measure the final temperature of the water after adding the heated iron sample.

Why is measuring the final temperature a necessary step?

This step is necessary to determine the change in temperature of the water, which is used to calculate the heat gained by the water and the heat lost by the iron sample.

By measuring the initial and final temperatures of the water, the student can determine the temperature change and use it in the calculation of specific heat.

Find out more on experiment here: https://brainly.com/question/25303029

#SPJ1

Use the following data to estimate ΔH⁰f for potassium bromide.
K(s) + 1/2 Br2(g) → KBr(s)
Lattice energy −691 kJ/mol
Ionization energy for K 419 kJ/mol
Electron affinity of Br −325 kJ/mol
Bond energy of Br2 193 kJ/mol
Enthalpy of sublimation for K 90. kJ/mol

Answers

The estimated ΔH⁰f for potassium bromide is 734 kJ/mol.

To estimate ΔH⁰f for potassium bromide, we need to consider the formation of KBr from its constituent elements in their standard states.
The equation for the formation of KBr from K and Br2 is:
K(s) + 1/2 Br2(g) → KBr(s)
We can use the Hess's Law to calculate the standard enthalpy change of this reaction.
ΔH⁰f = ΔH⁰f (KBr) - [ΔH⁰f (K) + 1/2 ΔH⁰f (Br2)]
We need to find the enthalpies of formation for KBr, K, and Br2.
The enthalpy of formation of KBr is equal to the negative of the lattice energy of KBr.
ΔH⁰f (KBr) = -(-691 kJ/mol) = 691 kJ/mol
The enthalpy of formation of K is equal to the negative of its enthalpy of sublimation and ionization energy.
ΔH⁰f (K) = -[90 kJ/mol + 419 kJ/mol] = -509 kJ/mol
The enthalpy of formation of Br2 is equal to the sum of its bond energy and electron affinity.
ΔH⁰f (Br2) = 193 kJ/mol + (-325 kJ/mol) = -132 kJ/mol
Substituting these values into the equation for ΔH⁰f , we get:
ΔH⁰f = 691 kJ/mol - [-509 kJ/mol + 1/2(-132 kJ/mol)]
ΔH⁰f = 691 kJ/mol + 43 kJ/mol
ΔH⁰f = 734 kJ/mol
Therefore, the estimated ΔH⁰f for potassium bromide is 734 kJ/mol.

To know more about lattice visit:

https://brainly.com/question/29774529

#SPJ11

Complete and balance these equations to show how each element reacts with hydrochloric acid. Include phase symbols. reaction a: Mg(8)+HCl(aq) reaction b: Zn(s)+HCl(aq)

Answers

The balanced reaction A is: Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g) and The balanced reaction B is: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g)

For reaction a:

Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)

This reaction involves magnesium (Mg) reacting with hydrochloric acid (HCl) to produce magnesium chloride (MgCl2) and hydrogen gas (H2).

For reaction b:

Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g)

This reaction involves zinc (Zn) reacting with hydrochloric acid (HCl) to produce zinc chloride (ZnCl2) and hydrogen gas (H2).

Here is a detailed and step-by-step explanation for completing and balancing the reactions of Mg and Zn with hydrochloric acid, including phase symbols.

Reaction A: Mg(s) + HCl(aq)
1. Write the unbalanced equation with products: Mg(s) + HCl(aq) → MgCl2(aq) + H2(g)
2. Balance the equation: Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)

The balanced reaction A is: Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)

Reaction B: Zn(s) + HCl(aq)
1. Write the unbalanced equation with products: Zn(s) + HCl(aq) → ZnCl2(aq) + H2(g)
2. Balance the equation: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g)

The balanced reaction B is: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g)

Learn more about hydrochloric acid

https://brainly.com/question/15231576

#SPJ11

Draw all the structures for the conjugate bases formed on deprotonation of the following compounds.
Possible structures include both resonance structures, stereochemical isomers (i.e. EZ isomers for C=C and C-N bonds), and structural isomers. You should be able to come up with at least the number of structures listed parentheticallya. nitropropane (3)
b. 2-pentanone (3)
c. the N-phenylimine of cyclohexanone (2, 3 actually but I only expect you to see '2")
d. diethyl malonate (3)
e. ethyl acetoacetate (5)

Answers

a. Nitropropane can form three conjugate bases through deprotonation, including two resonance structures and a structural isomer.

b. Deprotonating 2-pentanone can yield three different conjugate bases with distinct resonance structures.

c. The N-phenylimine of cyclohexanone can form at least two distinct conjugate bases through deprotonation, but possibly up to three depending on how the nitrogen is deprotonated.

d. Deprotonation of diethyl malonate can yield three distinct conjugate bases, including two resonance structures and a structural isomer.

e. Ethyl acetoacetate can form up to five different conjugate bases through deprotonation, including two stereoisomers and three resonance structures.

To calculate the number of conjugate bases, you must identify the acid site and determine how many ways it can be deprotonated. For example, nitropropane has one acid site, the proton on the alpha carbon, which can be deprotonated to form two resonance structures.

Alternatively, the proton on the nitro group can be deprotonated to form a structural isomer. Repeat this process for each compound to arrive at the total number of possible conjugate bases.

For more questions like Conjugate click the link below:

https://brainly.com/question/30086613

#SPJ11

Complete and balance the following redox reaction in acidic solution. Be sure to include the proper phases for all species within the reaction.
ReO4^-(aq)+MnO2(s)==>Re(s)+MnO4^-(aq)

Answers

The balanced equation is:

6MnO2(s) + 7ReO4^-(aq) + 24H+ → 7Re(s) + 24H2O(l) + 6MnO4^-(aq)

The unbalanced equation is:

ReO4^-(aq) + MnO2(s) → Re(s) + MnO4^-(aq)

First, we need to determine the oxidation states of each element:

ReO4^-: Re is in the +7 oxidation state, while each O is in the -2 oxidation state, so the total charge on the ion is -1.

MnO2: Mn is in the +4 oxidation state, while each O is in the -2 oxidation state, so the compound has no overall charge.

We can see that Re is being reduced, going from a +7 oxidation state to 0, while Mn is being oxidized, going from a +4 oxidation state to a +7 oxidation state.

To balance the equation, we start by balancing the atoms of each element, starting with the ones that appear in the least number of species:

ReO4^-(aq) + 4MnO2(s) → Re(s) + 4MnO4^-(aq)

Now, we balance the oxygens by adding H2O:

ReO4^-(aq) + 4MnO2(s) → Re(s) + 4MnO4^-(aq) + 2H2O(l)

Now, we balance the hydrogens by adding H+:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l)

Now, we check that the charges are balanced by adding electrons:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l) + 8e^-

Finally, we multiply each half-reaction by the appropriate coefficient to balance the electrons:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l) + 8e^-

7e^- + 8H+ + ReO4^-(aq) → Re(s) + 4H2O(l)

Now we add the two half-reactions together and simplify to get the balanced overall equation:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l) + 8e^-

7e^- + 8H+ + ReO4^-(aq) → Re(s) + 4H2O(l)

6MnO2(s) + 7ReO4^-(aq) + 24H+ → 7Re(s) + 24H2O(l) + 6MnO4^-(aq)

For more question on balanced equation click on

https://brainly.com/question/30196693

#SPJ11

A sample of a gas occupies 1600 milliliters at 20.0°C and 600, torr. What volume will it occupy at the same temperature and 800. torr? 1.45 x 10mL 2.13* 10mL 1.20 x 103 mL 1.00 x 103 mL 2.02 x 103 m

Answers

The volume of the gas at 800 torr and 20.0°C is approximately 1.2 x 10³ mL.

We can use the combined gas law to solve this problem. The combined gas law states that the product of pressure and volume divided by temperature is a constant value. So we can write: (P1V1)/T1 = (P2V2)/T2

where P1, V1, and T1 are the initial pressure, volume, and temperature, and P2 and V2 are the final pressure and volume. We can plug in the given values and solve for V2:

(600 torr x 1600 mL) / 293 K = (800 torr x V2) / 293 K

V2 = (600 torr x 1600 mL x 293 K) / (800 torr x 293 K) = 1.2 x 10³ mL

Therefore, the volume of the gas at 800 torr and 20.0°C is approximately 1.2 x 10³ mL.

To know more about combined gas law, refer here:

https://brainly.com/question/13154969#

#SPJ11

Consider the following mechanism for the decomposition of ozone 03(9)- 02(9)+O(g 03(g)+0(9) 202(9)(2) Write the chemical equation of 20,()0 yes Are there any intermediates in this mechanism? O no If there are intermediates, write down their chemical formulas Put a comma between each chemical formula, if there's more than one.

Answers

The overall chemical equation for the decomposition of ozone is 2O₃(g) → 3O₂(g), and there is one intermediate, O(g).

The given mechanism consists of two steps:
1) O₃(g) → O₂(g) + O(g)
2) O₃(g) + O(g) → 2O₂(g)

To find the overall chemical equation, add the two reactions:
O₃(g) → O₂(g) + O(g) + O₃(g) + O(g) → 2O₂(g)

After canceling the same species on both sides, we get:
2O₃(g) → 3O₂(g)

To identify intermediates, look for species that are produced in one step and consumed in another. In this mechanism, O(g) is an intermediate. It is produced in reaction 1 and consumed in reaction 2. So, the chemical formula of the intermediate is O.

This reaction is important for maintaining the ozone layer in the Earth's atmosphere. However, it can also occur naturally in small amounts and can be accelerated by human activities such as industrial processes and vehicle emissions.

To learn more about ozone visit:

https://brainly.com/question/29795386

#SPJ11

calculate the standard cell potential for a battery based on the following reactions: sn2 2e- → sn(s) e° = -0.14 v au3 3e- → au(s) e° = 1.50 v

Answers

The standard cell potential for this battery is 1.64 V. This means that the battery will produce a voltage of 1.64 V when the reactions occur under standard conditions (1 atm pressure, 25°C temperature, and 1 M concentration of all species)

To calculate the standard cell potential for a battery based on the given reactions, we need to use the equation:

E°cell = E°cathode - E°anode

where E°cathode is the standard reduction potential of the cathode and E°anode is the standard reduction potential of the anode. The negative sign in front of the E°anode value is due to the fact that it is a reduction potential and we need to reverse the sign to get the oxidation potential.

So, in this case, we have:

E°cell = E°cathode - E°anode
E°cell = 1.50 V - (-0.14 V)
E°cell = 1.64 V

Therefore, the standard cell potential for this battery is 1.64 V. This means that the battery will produce a voltage of 1.64 V when the reactions occur under standard conditions (1 atm pressure, 25°C temperature, and 1 M concentration of all species).

To know more about cell potential, refer

https://brainly.com/question/19036092

#SPJ11

for the reaction 2h2o2(aq) → 2h2o(l) o2(g), what mass of oxygen is produced by the decomposition of 100.0 ml of 0.979 m hydrogen peroxide solution?

Answers

The mass of oxygen produced is 1.567 g. The balanced chemical equation for the decomposition of hydrogen peroxide is: [tex]2H_{2}O_{2}[/tex](aq) → [tex]2H_{2}O[/tex](l) + [tex]O_{2}[/tex](g)

We need to first find the number of moles of hydrogen peroxide in 100.0 mL of 0.979 M solution: 0.979 M = 0.979 mol/L, 100.0 mL = 0.1 L

Number of moles of [tex]2H_{2}O[/tex] = 0.979 mol/L x 0.1 L = 0.0979 moles

According to the balanced equation, 2 moles of hydrogen peroxide produces 1 mole of oxygen gas. Therefore, 0.0979 moles of hydrogen peroxide will produce: 0.0979 moles H2O2 x (1 mole [tex]O_{2}[/tex]/2 moles [tex]2H_{2}O[/tex]) = 0.04895 moles [tex]O_{2}[/tex]

The molar mass of [tex]O_{2}[/tex] is 32.00 g/mol. Therefore, the mass of oxygen produced by the decomposition of 100.0 mL of 0.979 M hydrogen peroxide solution is: 0.04895 moles [tex]O_{2}[/tex] x 32.00 g/mol = 1.567 g

Therefore, the mass of oxygen produced is 1.567 g.

To know more about molar mass, refer here:

https://brainly.com/question/30640134#

#SPJ11

Which choice represents a pair of resonance structures? ► View Available Hint(s) 0 :l-ö-H and : -Ö: 0:0-S=Ö: and : Ö=S-Ö: Ö-Ö and:I-: :0– Cl: and :N=0 Cl:​

Answers

The pair of resonance structures is represented by the choice: :0– Cl: and :N=0 Cl:

Resonance structures are different Lewis structures that can be drawn for a molecule or ion by rearranging the placement of electrons while keeping the same overall connectivity of atoms. Resonance structures are used to describe the delocalization of electrons within a molecule.

In the given choices, the only pair that represents resonance structures is: :0– Cl: and :N=0 Cl:. In this pair, the placement of electrons is rearranged while maintaining the connectivity of atoms. The first structure shows a double bond between oxygen and chlorine, while the second structure shows a double bond between nitrogen and chlorine.

The presence of resonance structures indicates the delocalization of electrons, where the electrons are not localized between specific atoms but are spread over multiple atoms. Resonance stabilization contributes to the overall stability of the molecule or ion.

Therefore, the pair of resonance structures is represented by the choice: :0– Cl: and :N=0 Cl:.

Learn more about resonance structures here:

https://brainly.com/question/25022370

#SPJ11

prove that s4 is not isomorphic to d12.

Answers

Here, S4 is not isomorphic to D12.

S4 is the symmetric group on 4 elements, which has 4! = 24 elements.

It represents all possible permutations of 4 distinct elements.

D12 is the dihedral group of order 12, which represents the symmetries of a regular 12-sided polygon.

It has 12 elements, consisting of 6 rotational symmetries and 6 reflection symmetries.

To prove that S4 is not isomorphic to D12, we can simply observe their orders (number of elements).

Since the order of S4 is 24 and the order of D12 is 12, they cannot be isomorphic because isomorphic groups must have the same order.

Thus, S4 is not isomorphic to D12.

To know more about isomorphism, click below.

https://brainly.com/question/31399750

#SPJ11

consider the following reaction at 25 ∘c: cu2 (aq) so2(g)⟶cu(s) so2−4(aq) to answer the following you may need to first balance the equation using the smallest whole number coefficients.

Answers

The given reaction is not balanced. After balancing, the balanced equation is Cu²⁺(aq) + SO₂(g) + 2H₂O(l) → Cu(s) + SO₄²⁻(aq) + 4H⁺(aq).

The given reaction involves the reduction of Cu²⁺ ion by SO₂ gas to form solid copper and SO₄²⁻ ion. However, the equation is not balanced as the number of atoms of each element is not equal on both sides of the reaction. After balancing, the balanced equation is Cu²⁺(aq) + SO₂(g) + 2H₂O(l) → Cu(s) + SO₄²⁻(aq) + 4H⁺(aq).

The balanced equation shows that 1 molecule of Cu²⁺ ion, 1 molecule of SO₂ gas, and 2 molecules of water react to form 1 molecule of solid copper, 1 molecule of SO₄²⁻ ion, and 4 hydrogen ions. The balanced equation is necessary for calculating the stoichiometry of the reaction, such as the number of moles or mass of reactants and products involved.

Learn more about balanced equation here:

https://brainly.com/question/7181548

#SPJ11

Determine the ksp of Cd(OH)2. The (molar) solubility of cd(oh)2 is 1.2 x 10-6.

Answers

The solubility product constant, Ksp, is the product of the equilibrium concentrations of the ions raised to the power of their stoichiometric coefficients, for a given equilibrium reaction. For the dissolution of Cd(OH)₂ in water, the equilibrium reaction is:

Cd(OH)₂ (s) ⇌ Cd²⁺ (aq) + 2OH⁻ (aq)

The expression for the solubility product constant of Cd(OH)₂ is:

Ksp = [Cd²⁺][OH⁻]²

where [Cd²⁺] is the concentration of Cd²⁺ ions in solution, and [OH⁻] is the concentration of OH⁻ ions in solution.

Since Cd(OH)₂ is a sparingly soluble salt, we can assume that the concentration of Cd²⁺ ions in solution is equal to the solubility of Cd(OH)₂, which is given as 1.2 x 10⁻⁶ M.

Using this value and the stoichiometry of the reaction, we can determine the concentration of OH⁻ ions in solution:

[OH⁻] = 2[Cd(OH)₂] = 2(1.2 x 10⁻⁶ M) = 2.4 x 10⁻⁶ M

Substituting these values into the expression for Ksp gives:

Ksp = [Cd²⁺][OH⁻]² = (1.2 x 10⁻⁶ M)(2.4 x 10⁻⁶ M)² = 6.91 x 10⁻²⁰

Therefore, the solubility product constant, Ksp, of Cd(OH)2 is 6.91 x 10⁻²⁰.

To know more about refer solubility product constant here

brainly.com/question/1419865#

#SPJ11

a solution of k3po4 is 38.5y mass in 850 g of water. how many grams of k3po4 are dissolved in this solution?

Answers

Therefore, the mass of k3po4 dissolved in this solution is 38.5y grams.

To find the mass of k3po4 dissolved in this solution, we need to subtract the mass of water from the total mass of the solution.
Total mass of the solution = mass of k3po4 + mass of water
We are given the mass of water as 850 g. We do not have the value of the total mass of the solution or the value of y, so we cannot find the mass of k3po4 directly. However, we can set up an equation using the concentration of the solution to find the mass of k3po4.
The concentration of a solution is defined as the amount of solute (in this case, k3po4) per unit volume or mass of the solution. We can find the concentration of the k3po4 solution using the following formula:
Concentration = Mass of solute / Volume or mass of solution
We know that the concentration of the k3po4 solution is 38.5y / 850 g. We can rearrange the formula to solve for the mass of solute:
Mass of solute = Concentration x Volume or mass of solution
We are looking for the mass of solute, so we can substitute the values we have:
Mass of solute = (38.5y / 850 g) x 850 g
The units of grams cancel out, leaving us with:
Mass of solute = 38.5y
Therefore, the mass of k3po4 dissolved in this solution is 38.5y grams.

To know more about solution visit:-

https://brainly.com/question/30665317

#SPJ11

The solubility of PbI2 (Ksp = 9.8 x 10^-9) varies with the composition of the solvent in which it was dissolved. In which sol­vent mixture would PbI2 have the lowest solubility at identical temperatures?a. pure water b. 1.0 M Pb(NO3)2(aq)c. 1.5 M KI(aq) d. 0.8 M MgI2(aq)e. 1.0 M HCl(aq)

Answers

The 1.5 M KI(aq) solution has the highest concentration of the common ion, I-, which reduces the solubility of PbI2 by shifting the equilibrium towards the solid form.

The solubility of PbI2 would be lowest in a 1.5 M KI(aq) solvent mixture. This is because the common ion effect causes a decrease in solubility when a common ion (in this case, I-) is present in the solution.

The common ion effect states that the solubility of a salt is reduced when a common ion is present in the solution.

In the case of PbI2, the compound dissociates into lead ions (Pb2+) and iodide ions (I-) in an aqueous solution. When KI is added to the solution, it also dissociates into potassium ions (K+) and iodide ions (I-).

In a 1.5 M KI(aq) solvent mixture, the concentration of the iodide ion (I-) is high due to the presence of KI. The high concentration of the common ion I- leads to a decrease in the solubility of PbI2 through a shift in the equilibrium towards the solid form.

According to Le Chatelier's principle, the system will try to counteract the increase in the concentration of the iodide ion by shifting the equilibrium towards the formation of the solid PbI2.

The 1.5 M KI(aq) solution has the highest concentration of the common ion, I-, which reduces the solubility of PbI2 by shifting the equilibrium towards the solid form.

To learn more about concentration, refer below:

https://brainly.com/question/10725862

#SPJ11

Part A What volume of 0.155 M NaOH is required to reach the equivalence point in the titration of 15.0 mL of 0.120 M HNO3 ? ► View Available Hint(s) 2.79 x 10mL 11.6 mL 15.0 mL 19.4 ml Submit

Answers

Answer:

(c) Find moles of NaOH in 5 mL using molarity (0.125 mol/1 L * 0.005 L). Set up reaction and BAA table to find how much acid reacted is left after reaction. Then, calculate total volume at this point, and find [HC₂H₃O₂] and [NaC₂H₃O₂] using remaining moles and total volume.

Explanation:

The volume of 0.155 M NaOH required to reach the equivalence point is 11.6 mL.

The balanced chemical equation for the reaction between NaOH and HNO3 is:

NaOH + HNO₃ -> NaNO₃ + H₂O

From the equation, we can see that 1 mole of NaOH reacts with 1 mole of HNO3. At the equivalence point, the moles of HNO₃ will be equal to the moles of NaOH added. We can use this information to calculate the volume of NaOH required to reach the equivalence point.

First, we need to calculate the moles of HNO₃ in 15.0 mL of 0.120 M solution:

moles of HNO₃ = Molarity * Volume in liters

moles of HNO3 = 0.120 M * (15.0 mL/1000 mL) = 0.00180 moles

Since 1 mole of NaOH reacts with 1 mole of HNO3, we need 0.00180 moles of NaOH to reach the equivalence point.

Now we can use the concentration of NaOH to calculate the volume required:

moles of NaOH = Molarity * Volume in liters

0.00180 moles = 0.155 M * (Volume/1000 mL)

Volume = 11.6 mL

Learn more about the volume: https://brainly.com/question/1578538

#SPJ11

Which types of processes are likely when the neutron-to-proton ratio in a nucleus is too low?
I α decay
II β decay
III positron emission
IV electron capture
Question 10 options:
III and IV only
I and II only
II, III, and IV
II and IV only
II and III only

Answers

β decay and position emission processes are likely when the neutron-to-proton ratio in a nucleus is too low. Therefore, option D is correct.

Beta decay involves the emission of a beta particle (an electron) and the conversion of a neutron to a proton. This increases the proton number and hence increases the neutron-to-proton ratio.

If there are too many protons in the nucleus, electron capture may also occur, which involves the capture of an electron from the inner shell of the atom by a proton in the nucleus, converting the proton to a neutron.

Learn more about beta-decay, here:

https://brainly.com/question/4184205

#SPJ1

5. when a gas expands adiabatically, a) the internal energy of the gas decreases. b) the internal energy of the gas increases. c) there is no work done by the gas.

Answers

When a gas expands adiabatically, the internal energy of the gas decreases. The correct answer is A)

In an adiabatic process, there is no exchange of heat between the system and the surroundings. Therefore, the first law of thermodynamics tells us that any change in the internal energy of the gas is due solely to work done by or on the gas.

When a gas expands adiabatically, it does work on its surroundings by pushing back the external pressure, which results in a decrease in the internal energy of the gas. This is because the work done by the gas causes a decrease in the kinetic energy of the gas molecules, which in turn leads to a decrease in the temperature and internal energy of the gas.

Therefore, option A, "the internal energy of the gas decreases" is the correct answer. Option B is incorrect because the internal energy of the gas actually decreases in an adiabatic expansion. Option C is also incorrect because work is being done by the gas in an adiabatic expansion.

For more question on internal energy click on

https://brainly.com/question/25737117

#SPJ11

Other Questions
calculate the emf of the following concentration cell: mg(s) | mg2 (0.32 m) || mg2 (0.70 m) | mg(s) What is different about the normality requirement for a confidence interval estimate of the population standard deviation and the normality requirement for a confidence interval estimate of the population mean? Which of the following forms of I. D. Is not an acceptable form of I. D. For opening a savings account? a. Library card b. Drivers license c. Passport d. Military I. D. Card Please select the best answer from the choices provided A B C D. 7. Given right triangle ABC below, determine sin(A). Through a diagonalization argument; we can show that |N| [0, 1] | = IRI [0, 1] Then; in order to prove IRI = |Nl, we just need to show that Select one: True False all lymphatic organs/tissues that are scanning for pathogens contain circular areas of lymphocyte reproduction called 5. t/f (with justification) if f(x) is a differentiable function on (a, b) and f 0 (c) = 0 for a number c in (a, b) then f(x) has a local maximum or minimum value at x = c. compute the mass of kcl needed to prepare 1000 ml of a 1.50 m solution. : C. For the above part B d), we are actually using simulation to approximate Ppk 30, n pk X~Bin(n 50, p 0.4) can be approximated by Normal distribution with mean u n p = _ Use this approximation fact, please calculate and variance o2 = n*p*(1-p) = P(Pk a small, square loop carries a 29 a current. the on-axis magnetic field strength 49 cm from the loop is 4.5 nt .What is the edge length of the square? 1. use the ti 84 calculator to find the z score for which the area to its left is 0.13. Round your answer to two decimal places.2. use the ti 84 calculator to find the z score for which the area to the right is 0.09. round your answer to two decimal places.3. use the ti 84 calculator to find the z scores that bound the middle 76% of the area under the standard normal curve. enter the answers in ascending order and roundto two decimal places.the z scores for the given area are ------- and -------.4. the population has a mean of 10 and a standard deviation of 6. round your answer to 4 decimal places.a) what proportion of the population is less than 21?b) what is the probability that a randomly chosen value will be greater then 7? Consider the series [infinity] n/(n+1)!N=1 A. Find the partial sums s1, s2, s3, and s4. Do you recognize the denominators? Use the pattern to guess a formula for sn. B. Use mathematical indication to prove your guess. C. Show that the given infinite series is convergent and find its sum. use substitution to find the taylor series at x=0 of the function 1 1 4 5x3. Draw Conclusions - Explain the figurative and connotative meanings of line 33 (I'm bound for the freedom, freedom-bound'). How do they reflect the central tension of the poem? Indicate whether the following statements are true or false, and then briefly explain your reasoning, a. It is possible for accounting and economic costs to be equal, but it is never possible for economic costs to be less than accounting costs b. It is possible for a firm to show an economic profit without showing an accounting profit. Which of the following is a possible unit for the volume of a cone? The circumference of a circle is 18. 41 feet. What is the approximate length of the diameter? Round off your answer to whole number. two key concepts that underlie management's design and implementation of internal control are MA.7.AR.4.1Johnny and Eleanor went to their local gas station to collect information about the cost offuel for compact cars. They observed both regular and premium gas purchases that day andrecorded their data in the table below.Gallons Purchased 11.5 7.21014.3 6.89.7Cost$25.23 $15.80 $21.94 $40.63 $14.92 $27.56Part A. Is there a proportional relationship between the number of gallons of gas sold andthe cost? Explain your answer.Part B. If the relationship is not proportional, which data value or values should bechanged to make the relationship proportional? What could explain thisdifference? Trade negotiations are repeated each year. In a repeated game scenario it is likely that a. Chinese negotiators will assume that United States negotiators will never retaliate for a noncooperative trade policy. b. both parties will assume that the other will choose a strategy that optimizes the total value of the trade relationship. c. the Nash equilibrium will provide the largest possible gains to each party. d. cach will follow a dominant strategy based entirely on self-interest.