Write the equation in slope-intercept form
x-2y=4

Answers

Answer 1

Answer:

[tex]y=\frac{1}{2}x-2[/tex]

Explanation:

Slope-intercept form means we want the y to be by itself in the equation. Every thing we do will be about getting the y alone on the left side of the equation

To start we should move x to the left hand side. We can do this by subtracting x from both sides. That way, there is an x on the right, but not the left.

x-x-2y=4-x

this gives us

-2y=4-x

Great! So now what? Well, the y isn't by itself yet because it still is being multiplied by negative two (-2). In order to move it from the left side to the right side, we have to do the opposite of multiply; divide. So, we will divide both sides by -2

[tex]\frac{-2y}{-2} =\frac{4}{-2} -\frac{x}{-2}[/tex]

-2 divided by -2 is 1, 4 divided by -2 is -2, and -x divided by -2 is [tex]\frac{1}{2}x[/tex]

This gives us the answer:  [tex]y=\frac{1}{2}x-2[/tex]

Tips:

A negative divided by a negative is a positive ex: -4 divided by -2 is positive 2

If you are subtracting by a negative number, you are actually adding by a positive ex: 2-(-2) is actually 2+2

Don't be afraid to have fractions in your equations

Whatever you do to the one side of the equation, you must do it to the other side as well. Multiply the left side by 2? You HAVE TO multiply the right side by two as well. Add 3 to the right side? You HAVE TO add 3 to the left.

For problems like this (and when you have access to the internet), where you need to rewrite an equation, double check your work on desmos, which is an online graphing calculator. Input both the original equation and the equation you rewrote, and if they don't create the same line, you did something wrong.


Related Questions

Adjust the mass of the refrigerator by stacking different objects on top of it. If the mass of the refrigerator is increased (with the Applied Force held constant), what happens to the acceleration

Answers

Answer:

The acceleration of the refrigerator together with the objects decreases.

Explanation:

If the mass of the refrigerator is increased by stacking more masses (objects) on it,

and the force applied remains constant, then we know from

F = ma

where

F is the applied force

m is the total mass of the refrigerator and the objects

a is the acceleration of the masses.

If F is constant, and m is increased, the acceleration will decrease

Answer:

The acceleration decreases.

Explanation:

its right

A beam of light from a laser illuminates a glass how long will a short pulse of light beam take to travel the length of the glass.

Answers

Answer:

The time of short pulse of light beam is [tex]2.37\times10^{-9}\ sec[/tex]

Explanation:

Given that,

A beam of light from a laser illuminates a glass.

Suppose, the length of piece is [tex]L=25.21\times10^{-2}\ m[/tex]

Index of refraction is 2.83.

We need to calculate the speed of light pulse in glass

Using formula of speed

[tex]v=\dfrac{c}{\mu}[/tex]

Put the value into the formula

[tex]v=\dfrac{3\times10^{8}}{2.83}[/tex]

[tex]v=1.06\times10^{8}\ m/s[/tex]

We need to calculate the time of short pulse of light beam

Using formula of velocity

[tex]v=\dfrac{d}{t}[/tex]

[tex]t=\dfrac{d}{v}[/tex]

Put the value into the formula

[tex]t=\dfrac{25.21\times10^{-2}}{1.06\times10^{8}}[/tex]

[tex]t=2.37\times10^{-9}\ sec[/tex]

Hence, The time of short pulse of light beam is [tex]2.37\times10^{-9}\ sec[/tex]

Suppose a certain laser can provide 82 TW of power in 1.1 ns pulses at a wavelength of 0.24 μm. How much energy is contained in a single pulse?

Answers

Answer:

The energy contained in a single pulse is 90,200 J.

Explanation:

Given;

power of the laser, P = 82 TW = 82 x 10¹² W

time taken by the laser to provide the power, t = 1.1 ns = 1.1 x 10⁻⁹ s

the wavelength of the laser, λ = 0.24 μm = 0.24 x 10⁻⁶ m

The energy contained in a single pulse is calculated as;

E = Pt

where;

P is the power of each laser

t is the time to generate the power

E = (82 x 10¹²)(1.1 x 10⁻⁹)

E = 90,200 J

Therefore, the energy contained in a single pulse is 90,200 J

Rank the ultraviolet, infrared, and visible regions of theelectromagnetic spectrum in terms of lowest to highest energy,frequency, and wavelength.
Energy: < <
Frequency: < <
Wavelength: <

Answers

Answer:

1. Energy: ultraviolet>> visible> infrared

2. Frequency: ultraviolet>> visible > infrared

3. Wavelength: infrared >> visible > ultraviolet

Explanation:

Electromagnetic waves are a class of waves that do not require material medium for their propagation, and travel at the same speed. They are arranged with respect to either their decreasing wavelength or increasing frequency to form a spectrum called an electromagnetic spectrum.

Comparing the energy, frequency and wavelength of ultraviolet, infrared and visible regions, it can be deduced that:

1. Energy: ultraviolet has the highest energy, then followed by visible, and infrared has the lowest energy.

i.e energy: ultraviolet>> visible> infrared

2. Frequency: ultraviolet radiation has the highest frequency, visible region has a greater frequency than that of infrared.

i.e frequency: ultraviolet>> visible > infrared

3. Wavelength: infrared radiation has the highest wavelength, followed by visible region, and ultraviolet radiation has the lowest wavelength.

i.e  wavelength: infrared >> visible > ultraviolet

In terms of lowest to the highest energy,frequency, and wavelength is;

Energy: infrared > visible light > ultraviolet

Frequency: infrared > visible light > ultraviolet

Wavelength: ultraviolet > visible light > infrared

The electromagnetic spectrum:

The electromagnetic spectrum is made up of all the electromagnetic waves (ultraviolet, infrared, and visible) arranged according to their energy,frequency, and wavelength.

The ultraviolet: This wave is seen in the sunlight and is made up of wavelength of 10nm to 400nm. A frequency of [tex]10^{16}[/tex](Hz).Infrared wave: They are invisisble to the human eye but can be felt as heat. It has frequency of [tex]10^{12}[/tex]Hz and a wavelength of 780nm to 1mm.Visible light: This is part of the electromagnetic wave that the eye can view. It has frequency of [tex]10^{15}[/tex]Hz and a wavelength of 380 to 700nm.

Learn more about electromagnetic spectrum here:

https://brainly.com/question/13803241

. Two charges, Q1 and Q2 , are separated by a certain distance R. If the magnitudes of the charges are halved, and their separation is also halved, then what happens to the electrical force between these charges

Answers

Answer: Magnitude of electrical force stays the same.

Explanation:

Equation:

[tex]F_{e} =k\frac{Q_{1}Qx_{2} }{r^{2} }[/tex]

Since the magnitude of each charge is halved.

and

the separation is halved.

[tex]F_{e} =k\frac{(.5Q_{1}*.5Q_{2} }{(.5r)^{2} }[/tex]

[tex]F_{e} =k\frac{.25*Q_{1}Qx_{2} }{.25*r^{2} }[/tex]

Cancel out .25 on the numerator and denominator. Leaving the original equation.

A pool ball moving 1.83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1.15 m/s at a 23.3 degrees angle. What is the y-component of the velocity of the second ball?

Answers

Answer:

 v_{1fy} = - 0.4549 m / s

Explanation:

This is an exercise of conservation of the momentum, for this we must define a system formed by the two balls, so that the forces during the collision have internal and the momentum is conserved

initial. Before the crash

      p₀ = m v₁₀

final. After the crash

      [tex]p_{f}[/tex] = m [tex]v_{1f}[/tex] + m v_{2f}

Recall that velocities are a vector so it has x and y components

       p₀ = p_{f}

we write this equation for each axis

X axis

       m v₁₀ = m v_{1fx} + m v_{2fx}

       

Y Axis  

       0 = -m v_{1fy} + m v_{2fy}

the exercise tells us the initial velocity v₁₀ = 1.83 m / s, the final velocity v_{2f} = 1.15, let's use trigonometry to find its components

      sin 23.3 = v_{2fy} / v_{2f}

      cos 23.3 = v_{2fx} / v_{2f}

      v_{2fy} = v_{2f} sin 23.3

      v_{2fx} = v_{2f} cos 23.3

we substitute in the momentum conservation equation

       m v₁₀ = m v_{1f} cos θ + m v_{2f} cos 23.3

       0 = - m v_{1f} sin θ + m v_{2f} sin 23.3

      1.83 = v_{1f} cos θ + 1.15 cos 23.3

       0 = - v_{1f} sin θ + 1.15 sin 23.3

      1.83 = v_{1f} cos θ + 1.0562

        0 = - v_{1f} sin θ + 0.4549

     v_{1f} sin θ = 0.4549

     v_{1f}  cos θ = -0.7738

we divide these two equations

      tan θ = - 0.5878

      θ = tan-1 (-0.5878)

       θ = -30.45º

we substitute in one of the two and find the final velocity of the incident ball

        v_{1f} cos (-30.45) = - 0.7738

        v_{1f} = -0.7738 / cos 30.45

        v_{1f} = -0.8976 m / s

the component and this speed is

       v_{1fy} = v1f sin θ

       v_{1fy} = 0.8976 sin (30.45)

       v_{1fy} = - 0.4549 m / s

An earthquake emits both S-waves and P-waves which travel at different speeds through the Earth. A P-wave travels at 9 000 m/s and an S-wave travels at 5 000 m/s. If P-waves are received at a seismic station 1.00 minute before an S-wave arrives, how far away is the earthquake center?

Answers

Assuming constant speeds, the P-wave covers a distance d in time t such that

9000 m/s = d/(60 t)

while the S-wave covers the same distance after 1 more minute so that

5000 m/s = d/(60(t + 1))

Now,

d = 540,000 t

d = 300,000(t + 1) = 300,000 t + 300,000

Solve for t in the first equation and substitute it into the second equation, then solve for d :

t = d/540,000

d = 300,000/540,000 d + 300,000

4/9 d = 300,000

d = 675,000

So the earthquake center is 675,000 m away from the seismic station.

A car is travelling west at 22.2 m/s when it accelerated for 0.80 s to the west at 2.68 m/s2. Calculate the car's final velocity. Show all your work.

Answers

Answer:

24.34 m/s

Explanation:

recall that one of the equations of motions takes the form:

v = u + at

where,

v = final velocity

u = initial velocity (given as 22.2 m/s)

a = acceleration (given as 2.68m/s²)

t = time elapsed during acceleration (given as 0.80s)

since we are told that the the acceleration is in the direction of the intial velocity, we can simply substitute the known values into the equation above:

v = u + at

v = 22.2 + (2.68) (0.8)

v = 24.34 m/s

What is the observed wavelength of the 656.3 nm (first Balmer) line of hydrogen emitted by a galaxy at a distance of 2.40 x 108 ly

Answers

Answer:

λ = 667.85 nm

Explanation:

Let f be the frequency detected by the observer

Let v be the speed at which the observer is moving.

Now, when the direction at which the observer is moving is away from the source, we have the frequency as;

f = f_o√((1 - β)/(1 + β))

From wave equations, we know that the wavelength is inversely proportional to the frequency. Thus, wavelength is now;

λ = λ_o√((1 + β)/(1 - β))

Where, β = Hr/c

H is hubbles constant which has a value of 0.0218 m/s • ly

c is speed of light = 3 × 10^(8) m/s

r is given as 2.40 x 10^(8) ly

Thus,

β = (0.0218 × 2.4 x 10^(8))/(3 × 10^(8))

β = 0.01744

Since we are given λ_o = 656.3 nm

Then;

λ = 656.3√((1 + 0.01744)/(1 - 0.01744))

λ = 667.85 nm

A football is kicked with a velocity of 18 m/s at an angle of 20°. What is the
ball's acceleration in the horizontal direction as it flies through the air?​

Answers

Explanation:

It is given that,

The velocity of football is 18 m/s

It is projected at an angle of 20 degrees

We need to find the ball's acceleration in the horizontal direction as it flies through the air.

When it is projected with some velocity, it has two rectangular components i.e. horizontal and vertical.

In vertical direction, it will move under the action of gravity. There is no change in velocity in horizontal direction. So, ball's acceleration in the horizontal direction is equal to 0.

A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference between the plates is 275 V. Assume a plate separation of d 1.53 cm and a plate area of A = 25.0 cm2. when the battery is removed, the capacitor is plunged into a container of distilled water. Assume distilled water is an insulator with a dielectric constant of 80.0
(a) Calculate the charge on the plates in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
before Qi = _____
after Qf = ______
(b) Determine the capacitance (in F) and potential difference (in V) after immersion
(c) Determine the change in energy (in n]) of the capacitor Δυ = nJ
(d) What If? Repeat parts (a) through (c) of the problem in the case that the capacitor is immersed in distilled water while still connected to the 275 V potential difference
Calculate the charge on the plates (in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
Determine the capacitance (in F) and potential difference (in V) after immersion
Determine the change in energy (in nJ) of the capacitor AU nJ

Answers

Answer:

a)  Q = 397.57 pC , Q = 3.18 104 pC , b) C = 1.157 10⁻¹⁰ F ,  V = 3.4375 V ,

c)  U = 54.7 nJ ,  d) ΔU = 54 nJ,

Explanation:

a) The capacity of a capacitor is defined

        C = Q / V

        Q = C V

         

can also be calculated using geometry consideration

        C = e or A / d

         

we reduce to the SI system

       A = 25.0 cm² (1 m / 10² cm) 2 = 25.0 10⁻⁴ m²

       d = 1.53 cm = 1.53 10⁻² m

we substitute

         Q = eo A / d V

         Q = 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻² 275

         Q = 3.9757 10⁻¹⁰ C

         

let's reduce to pC

         Q = 3.9757 10⁻¹⁰ C (10¹² pC / 1 C)

          Q = 397.57 pC

when the capacitor is introduced into the water the dielectric constant is different

           Q = k Q₀

           Q = 80 397.57

           Q = 3.18 104 pC

b) Find capacitance and voltage after submerged in water

           C = k C₀

           C = 80 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²

           C = 1.157 10⁻¹⁰ F

           V = Vo / k

            V = 275/80

            V = 3.4375 V

c) The stored energy is

             U = ½ C V²

              U = ½, 85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²     275²

             U = 5.47 10⁻⁸ J

let's reduce to nJ

              109 nJ = 1 J

               U = 54.7 nJ

d) energy after submerging

             U = ½ (kCo) (Vo / k) 2

             U = ½ Co Vo2 / k

             U = U₀ / k

             U = 54.7 / 80 nJ

              U = 0.68375 nJ

the energy change is

         ΔU = U₀ -U

          ΔU = 54.7 - 0.687375

           

(a) Charge on the plate before immersion, Qi is 5.258 x 10⁻³ pC and the charge after, Qf is 0.421 pC.

(b) The capacitance and potential difference after immersion is 1.157 x 10⁻¹⁰ F and 3.44 V respectively.

(c) The change in energy of the capacitor is 54.02 nJ.

Charge on the plate before immersion

The charge on the plate is calculated as follows;

[tex]Q =\frac{\varepsilon _o A}{Vd} \\\\Q_i = \frac{8.85 \times 10^{-12} \times (25 \times 10^{-4}) }{275\times 0.0153} \\\\Q_i = 5.258 \times 10^{-15} \ C\\\\Q_i = 5.258 \times 10^{-3} pC[/tex]

Charge on the plate after immersion

[tex]Q_f = k Q_i\\\\Q_f = 80 \times 5.258 \times 10^{-3} \ pC= 0.421 \ pC[/tex]

Capacitance and potential difference after immersion

[tex]C = \frac{k\varepsilon _o A}{d} \\\\C = \frac{80 \times 8.85 \times 10^{-12} \times (25\times 10^{-4} )}{0.0153} \\\\C = 1.157 \times 10^{-10} \ F[/tex]

[tex]V = \frac{V_0}{k}\\\\V = \frac{275}{80} \\\\V = 3.44 \ V[/tex]

Change in energy of the capacitor

The initial energy of the capacitor is calculated as follows;

[tex]U_i = \frac{1}{2} CV^2\\\\U_ i = \frac{1}{2} \times (\frac{\varepsilon _o A}{d} )V^2\\\\U_i = \frac{1}{2} \times (\frac{8.85\times 10^{-12} \times 25 \times 10^{-4}}{0.0153} )\times 275^2\\\\U_i = 5.47 \times 10^{-8} \ J\\\\U_i = 54.7 \ nJ[/tex]

The final energy of the capacitor is calculated as follows;

[tex]U_f = \frac{1}{2} (kC) \times (\frac{V}{k} )^2\\\\U_f = \frac{1}{2} C\times \frac{V^2}{k} \\\\U_f = \frac{1}{k} (\frac{1}{2} CV^2)\\\\U_f = \frac{U_i}{k} \\\\U_f = \frac{54.7 \ nJ}{80} \\\\U_f = 0.68 \ nJ[/tex]

Change in energy is calculated as follows;

[tex]\Delta U = U_i - U_f \\\\\Delta U = 54.7 \ nJ \ - \ 0.68 \ nJ\\\\\Delta U = 54.02 \ nJ[/tex]

Learn more about energy stored in a capacitor here: https://brainly.com/question/13578522

Air at 27oC and 1 atm flows over a flat plate 40 cm in length and 1 cm in width at a speed of 2 m/s. The plate is heated over its entire length to a temperature of 600C. Calculate the heat transferred from the plate.

Answers

Answer:

Heat transferred = 22.9 watt

Explanation:

Given that:

[tex]T_1[/tex] = 27°C = (273 + 27) K = 300 K

[tex]T_2[/tex]= 600°C = (600 +273) K = 873 K

speed v = 2 m/s

length x = 40 cm = 0.4 cm

width = 1 cm = 0.001 m

The heat transferred from the plate can be calculate by using the formula:

Heat transferred = h×A ×ΔT

From the tables of properties of air, the following values where obtained.

[tex]k = 0.02476 \ W/m.k \\ \\ \rho = 1.225 \ kg/m^3 \\ \\ \mu = 18.6 \times 10^{-6} \ Pa.s \\ \\ c_p = 1.005 \ kJ/kg[/tex]

To start with the reynolds number; the formula for calculating the reynolds number can be expressed as:

reynolds number = [tex]\dfrac{\rho \times v \times x }{\mu}[/tex]

reynolds number = [tex]\dfrac{1.225 \times 2 \times 0.4}{18.6 \times 10^{-6}}[/tex]

reynolds number = [tex]\dfrac{0.98}{18.6 \times 10^{-6}}[/tex]

reynolds number = 52688.11204

Prandtl number = [tex]\dfrac{c_p \mu}{k}[/tex]

Prandtl number = [tex]\dfrac{1.005 \times 18.6 \times 10^{-6} \times 10^3}{0.02476}[/tex]

Prandtl number = [tex]\dfrac{0.018693}{0.02476}[/tex]

Prandtl number = 0.754963

The nusselt number for this turbulent flow over the flat plate  can be computed as follows:

Nusselt no = [tex]\dfrac{hx}{k} = 0.0296 (Re) ^{0.8} \times (Pr)^{1/3}[/tex]

[tex]\dfrac{h \times 0.4}{0.02476} = 0.0296 (52688.11204) ^{0.8} \times (0.754968)^{1/3}[/tex]

[tex]\dfrac{h \times 0.4}{0.02476} =161.4252008}[/tex]

[tex]h =\dfrac{161.4252008 \times 0.02476}{ 0.4}[/tex]

h = 9.992 W/m.k

Recall that:

The heat transferred from the plate can be calculate by using the formula:

Heat transferred = h×A ×ΔT

Heat transferred = [tex]h\times A \times (T_2-T_1)[/tex]

Heat transferred = 9.992 × (0.4 × 0.01) ×(873-300)

Heat transferred = 22.9 watt

The A block, with negligible dimensions and weight P, is supported by the coordinate point (1.1/2) of the parabolic fixed grounded surface, from equation y = x^2/2 If the block is about to slide, what is the coefficient of friction between it and the surface; determine the force F tangent to the surface, which must be applied to the block to start the upward movement.

Answers

Answer:

μ = 1

F = P√2

Explanation:

The parabola equation is: y = ½ x².

The slope of the tangent is dy/dx = x.

The angle between the tangent and the x-axis is θ = tan⁻¹(x).

At x = 1, θ = 45°.

Draw a free body diagram of the block.  There are three forces:

Weight force P pulling down,

Normal force N pushing perpendicular to the surface,

and friction force Nμ pushing up tangential to the surface.

Sum of forces in the perpendicular direction:

∑F = ma

N − P cos 45° = 0

N = P cos 45°

Sum of forces in the tangential direction:

∑F = ma

Nμ − P sin 45° = 0

Nμ = P sin 45°

μ = P sin 45° / N

μ = tan 45°

μ = 1

Draw a new free body diagram.  This time, friction force points down tangential to the surface, and applied force F pushes up tangential to the surface.

Sum of forces in the tangential direction:

∑F = ma

F − Nμ − P sin 45° = 0

F = Nμ + P sin 45°

F = (P cos 45°) μ + P sin 45°

F = P√2

Complete each of the statements

A. Lines of force are lines used to represent ________ an ________ electric field


B. The intensity of an electric field is the coefficient between the _________ that in the field exerts on a test ___________ located at that point and the value of said charge

C. The electric field is uniform if at any point in the field its _________ and ________ is the same

D. The van der graff generator is a _________ machine which has two __________ that are driven by a _________ that generates a rotation

Answers

Answer:

A:  magnitude and direction

B: Force that the field exerts on a test charge

C: its magnitude and direction is the same.

D: electrostatic machine

two rollers that are driven by a motor that generates a rotation

Explanation:

A string of holiday lights has 15 bulbs with equal resistances. If one of the bulbs
is removed, the other bulbs still glow. But when the entire string of bulbs is
connected to a 120-V outlet, the current through the bulbs is 5.0 A. What is the
resistance of each bulb?

Answers

Answer:

Resistance of each bulb = 360 ohms

Explanation:

Let each bulb have a resistance r .

Since, even after removing one of the bulbs, the circuit is closed and the other bulbs glow. Therfore, the bulbs are connected in Parallel connection.

[tex] \frac{1}{r(equivalent)} = \frac{1}{r1} + \frac{1}{r2} + + + + \frac{1}{r15} [/tex]

[tex] \frac{1}{r(equivalent)} = \frac{15}{r} [/tex]

R(equivalent) = r/15

Now, As per Ohms Law :

V = I * R(equivalent)

120 V = 5 A * r/15

r = 360 ohms

write any two importance of gravitational force​

Answers

Answer:

plz mark me as brainliest plz

Explanation:

The gravitational force of the earth keeps us bound to the earth. Gravitational force between earth and sun makes the earth move around the sun. Gravitational force between moon and earth makes the moon go around the earth.

A fixed 11.2-cm-diameter wire coil is perpendicular to a magnetic field 0.53 T pointing up. In 0.10 s , the field is changed to 0.24 T pointing down. What is the average induced emf in the coil?

Answers

Answer:

The average induced emf in the coil is 0.0286 V

Explanation:

Given;

diameter of the wire, d = 11.2 cm = 0.112 m

initial magnetic field, B₁ = 0.53 T

final magnetic field, B₂ = 0.24 T

time of change in magnetic field, t = 0.1 s

The induced emf in the coil is calculated as;

E = A(dB)/dt

where;

A is area of the coil = πr²

r is the radius of the wire coil = 0.112m / 2 = 0.056 m

A = π(0.056)²

A = 0.00985 m²

E = -0.00985(B₂-B₁)/t

E = 0.00985(B₁-B₂)/t

E = 0.00985(0.53 - 0.24)/0.1

E = 0.00985 (0.29)/ 0.1

E = 0.0286 V

Therefore, the average induced emf in the coil is 0.0286 V

We have that for the Question, it can be said that the average induced emf in the coil is

E=0.028565V

From the question we are told

A fixed 11.2-cm-diameter wire coil is perpendicular to a magnetic field 0.53 T pointing up. In 0.10 s , the field is changed to 0.24 T pointing down. What is the average induced emf in the coil?

Generally the equation for the Average emf induced   is mathematically given as

[tex]Emf_a=-NA\frac{dB}{dt}\\\\Where\\\\Area\\\\a=\pir^2\\\\a=\pi(0.056)^2\\\\a=0.00985\\\\[/tex]

Hence

[tex]dB=0.24-0.53\\\\dB=-0.29T[/tex]

Therefore

[tex]E=-\frac{1*0.00985*-0.29 }{0.10}[/tex]

E=0.028565V

For more information on this visit

https://brainly.com/question/23379286

What's the minimum Out PUT WORK
required to raise 14,0m3 of water 26.0m?

Answers

Answer:

3.57 MJ

Explanation:

ASSUMING it's fresh water with density of 1000 kg/m³

W = ΔPE = mgΔh = 14.0(1000)(9.81)(26.0) = 3,570,840 J

Salt water would require more.

y=k/x, x is halved.
what happens to the value of y

Answers

Answer:

y is doubled

Explanation:

If x is halved, that means the value is doubled. Here is an exmaple:

y=1/2. If the denominater is doubled, y would equal y=1/1. So, the value of y has doubled from 0.5 to 1. Therefore, if the denominator is halved, the solution will be doubled.

A 5.0-µC point charge is placed at the 0.00 cm mark of a meter stick and a -4.0-µC point charge is placed at the 50 cm mark. At what point on a line joining the two charges is the electric field due to these charges equal to zero?

Answers

Answer:

Electric field is zero at point 4.73 m

Explanation:

Given:

Charge place = 50 cm  = 0.50 m

change q1 = 5 µC

change q2 = 4 µC

Computation:

electric field zero calculated by:

[tex]E1 =k\frac{q1}{r^2} \\\\E2 =k\frac{q2}{R^2} \\\\[/tex]

Where electric field is zero,

First distance = x

Second distance = (x-0.50)

So,

E1 = E2

[tex]k\frac{q1}{r^2}=k\frac{q2}{R^2} \\\\[/tex]

[tex]\frac{5}{x^2}=\frac{4}{(x-50)^2} \\\\[/tex]

x = 0.263 or x = 4.73

So,

Electric field is zero at point 4.73 m

NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low- mass sail and the energy and momentum of sunlight for propulsion.
Should the sail be absorbing or reflective? Why?
a. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is smaller than for absorbing sail, therefore the radiation pressure is larger for the reflective sail
b. The sail should be absorbing because in this case the momentum transferred to the sail per unit area per unit time is larger than for reflective sail, therefore the radiation pressure is larger for the absorbing sail
c. The sail should be absorbing because in this case the momentum transferred to the sail per unit area per unit time is smaller than for reflective sail, therefore the radiation pressure is larger for the absorbing sail.
d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail

Answers

Answer:

d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.

Explanation:

Let us take the momentum of a photon unit as u

we know that the rate of change of momentum is proportional to the force exerted.

For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that

F = (u - 0)/t = u/t

for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,

F = u

For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to

F = (u - (-u))/t = 2u/t

just as the we did above, it becomes

F = 2u.

From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.

an electric device is plugged into a 110v wall socket. if the device consumes 500 w of power, what is the resistance of the device

Answers

Answer: R=24.2Ω

Explanation: Power is rate of work being done in an electric circuit. It relates to voltage, current and resistance through the following formulas:

P=V.i

P=R.i²

[tex]P=\frac{V^{2}}{R}[/tex]

The resistance of the system is:

[tex]P=\frac{V^{2}}{R}[/tex]

[tex]R=\frac{V^{2}}{P}[/tex]

[tex]R=\frac{110^{2}}{500}[/tex]

R = 24.2Ω

For the device, resistance is 24.2Ω.

what happens to the weight of the body when it is falling freely under the action of gravity​

Answers

Answer:

A freely falling object has weight W=mg, where W-weight, m-mass of the object and g-acceleration produced due to the earth's gravity. ... This happens because the normal reaction force exerted on the object in the lift is equal to zero, and normal force equals to mg, which in turn equals the weight of the object

Explanation:

plz mark me as brainliest

Answer:

Gradually increases until the maximum weight reaches the surface of the earth

Explanation:

A laser used for many applications of hard surface dental work emits 2780-nm wavelength pulses of variable energy (0-300 mJ) about 20 times per second.part a. Determine the number of photons in one 80-mJ pulse.part b. Determine the average power of photons in one 80-mJ pulse during 1 s.

Answers

Answer:

a

    [tex]n = 1.119 *10^{18} \ photons[/tex]

b

  [tex]P = 1.6 \ W[/tex]

Explanation:

From the question we are told that

    The wavelength is  [tex]\lambda = 2780 nm = 2780 *10^{-9} \ m[/tex]

     The  energy  is  [tex]E = 80 mJ = 80 *10^{-3} \ J[/tex]

This energy is mathematically represented as

     [tex]E = \frac{n * h * c }{\lambda }[/tex]

Where  c is the speed of light with a value  [tex]c = 3.0 *10^{8} \ m/s[/tex]

             h is the Planck's  constant with the value  [tex]h = 6.626 *10^{-34} \ J \cdot s[/tex]

             n is the number of pulses

So

      [tex]n = \frac{E * \lambda }{h * c }[/tex]

substituting values

       [tex]n = \frac{80 *10^{-3} * 2780 *10^{-9}}{6.626 *10^{-34} * 3.0 *10^{8} }[/tex]

       [tex]n = 1.119 *10^{18} \ photons[/tex]

Given that the pulses where emitted 20 times in one second then the period of the pulse is

       [tex]T = \frac{1}{20}[/tex]

      [tex]T = 0.05 \ s[/tex]

Hence the average power of photons in one 80-mJ pulse during 1 s is mathematically represented as

       [tex]P = \frac{E}{T}[/tex]

substituting values

       [tex]P = \frac{ 80 *10^{-3}}{0.05}[/tex]

        [tex]P = 1.6 \ W[/tex]

A pump is to deliver 10, 000 kg/h of toluene at 1140C and 1.1 atm absolute pressure from the Reboiler of a distillation tower to the second distillation unit without cooling the toluene before it enters the pump. If the friction loss in the line between the Reboiler and the pump is 7 kN/m2. The density of toluene is 886 kg/m3. How far above the pump must the liquid be maintained to avoid cavitation

Answers

Answer:

3.4093

Explanation:

NPSHa = hatm + hel + hf +hva

the elevation head is the hel

friction loss head is hf

NPSHa is the head of vapour pressure of fluid

atmospheric pressure head is hatm

log₁₀P* = [tex]A -\frac{B}{C+T}[/tex]

[tex]A, B, C are fixed[/tex]

log₁₀Pv = [tex]4.07827-\frac{1343.943}{387.15-53.773}[/tex]

= 4.07827 - 1343.943/333.377

=4.07827 - 4.0313009

= 0.0469691

we take the log

p* = 1.114218

we convert this value to get 111421.8

hvap = 111421.8 * 1/776.14 * 1/9.81

= 14.63

hatm = 1.1 *101325/1 * 1/9.81 *1/776.14

=14.64

hf = 7000/1 * 1/776.14 * 1/9.81

= 0.9193

NPSHa = 2.5

hel = 0.9193 + 2.5 + 14.63 - 14.64

hel = 3.4093

The NSPH values are used to calculate cavitation. The vapor pressure of the liquid is 1.114 atm.

The vapor pressure can be calculated by,

[tex]\mathrm {NPSH_A}= ( \frac {p_i}{\rho g} + \frac {V_i^2}{2g})- \frac {p_v}{\rho g}[/tex]

Where,

[tex]\mathrm {NPSH_A}[/tex] = available NPSH

[tex]p_i[/tex]     = absolute pressure at the inlet = 1.1 atm

[tex]V_i[/tex]     = average velocity at the inlet = 10, 000 kg/h

[tex]\rho[/tex] = fluid density = 886 kg/m3.  

g = acceleration of gravity = 9.8 m/s²

[tex]p_v[/tex] = vapor pressure of the fluid = ?

Put the values in the equation, we get

[tex]p_v = 1.114\ atm[/tex]

Therefore, the vapor pressure of the liquid is 1.114 atm.

To know more about  vapor pressure:

https://brainly.com/question/25356241

If a sample emits 2000 counts per second when the detector is 1 meter from the sample, how many counts per second would be observed when the detector is 3 meters from the sample?

Answers

Answer:

6000 counts per second

Explanation:

If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;

2000 counts per second = 1 meter ... 1

In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;

x count per second = 3 meter ... 2

Solving the two expressions simultaneously for x we will have;

2000 counts per second = 1 meter

x counts per second = 3 meter

Cross multiply to get x

2000 * 3 = 1* x

6000 = x

This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample

A body of mass 5.0 kg is suspended by a spring which stretches 10 cm when the mass is attached. It is then displaced downward an additional 5.0 cm and released. Its position as a function of time is approximately what? Group of answer choices

Answers

Answer:

0.05cos10t

Explanation:

X(t) = Acos(wt+φ)

The oscillation angular frequency can be calculated using below formula

w = √(k/M)

Where K is the spring constant

But we were given body mass of 5.0 kg

We know acceleration due to gravity as 9.8m)s^2

The lenghth of spring which stretches =10 cm

Then we can calculate the value of K

k = (5.0kg*9.8 m/s^2)/0.10 m

K= 490 N/m

Then if we substitute these values into the formula above we have

w = √(k/M)

w = √(490/5)

= 9.90 rad/s=10rads/s(approximately)

Its position as a function of time can be calculated using the below expresion

X(t) = Acos(wt+φ)

We were given amplitude of 5 cm , if we convert to metre = 0.05m

w=10rads/s

Then if we substitute we have

X(t)=0.05cos(10×t)

X(t)= 0.05cos10t

Therefore,Its position as a function of time=

X(t)= 0.05cos10t

A converging lens 7.50 cm in diameter has a focal length of 330 mm . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of resolving power of the human eye. Part A If the resolution is diffraction limited, how far away can an object be if points on it transversely 4.10 mm apart are to be resolved (according to Rayleigh's criterion) by means of light of wavelength 600 nm

Answers

Answer:

D Is 430m

Explanation:

See attached file

In an experiment to measure the wavelength of light using a double slit, it is found that the fringes are too close together to easily count them. To spread out the fringe pattern, one could

Answers

Answer:

halve the slit separation

Explanation:

As we know that

In YDS experiment, the equation of fringe width is as follows

[tex]\beta = \frac{\lambda D}{d}[/tex]

where,

D denotes the separation in the middle of screen and slits

d denotes the distance in the middle of two slits

And to increase the Δx we have to decrease the d i.e, the distance between the two slits

Hence, the first option is correct

When using science to investigate physical phenomena, which characteristic of the event must exist? predictable repeatable provable readable

Answers

Answer:

Not sure but I believe predictable.

Explanation:

Phenomena usually consists of :

- A history, a date in which the physical phenomenon has occurred.

- A source, a place or reason to why or where the physical phenomena has occured.

According to this, I want to say predictable.

It is not repeatable, there are one-time phenomenons that have occurred that scientists to this day still have not recorded again such as the Big Bang.

It is not provable. Most of the theories earlier scientists and historians have predicted have not yet been proved. Yet rather, somehow, they have been explored and investigated.

It is not readable. This is self explanatory, some things scientists investigate are not written down, nor read. It starts with a mental theory and then immediately goes to the next phase of investigation.

Other Questions
Find the amount of force required to move an object of 1200 kg at a velocity of 54 km/hr? Simon Corporation manufactures hydraulic valves. The product life of a valve is 4 years. Target average profit margin for Simon 20.00% The company does not expect the manufacturing cost to vary over the next 4 years. Estimated sales volume and the unit selling price of the valve for the next 4 years is given below: Year Sales volume (units) Unit selling price Year 1 40,000 $80.00 Year 2 50,000 $75.00 Year 3 35,000 $50.00 Year 4 25,000 $45.00 What is the allowable unit cost of a hydraulic valve using the target costing model A German firm that manufactures precision scientific instruments has built a new factory in Nebraska on property that it has leased. It has hired German scientists and engineers as well as German technicians to work at the plant. The firm received tax benefits and other economic incentives from Nebraska in order to build this new plant. This is an example of a/an franchising venture. turnkey project. greenfield venture. international acquisition. hat change is needed to form a complete sentence below? Every year we plant trees near the school. Question 1 options: a) Add a semicolon after Every year b) Change Every to Once a c) Add in the spring after school d) No changes need to be made. Which territory serves as a US Air Force base?Wake IslandNorthern MarianaAmerican SamoaUS Virgin Islands Schoenberg had four compositional phases during his career.A) true B) false Three resistors, each having a resistance, R, are connected in parallel to a 1.50 V battery. If the resistors dissipate a total power of 3.00 W, what is the value of R Explain how mobile phone production could be more sustainable Assuming that the firm is maximizing profits, the marginal cost of the last unit produced equals:________Price Quantity Total cost10 10 809 20 1008 30 1307 40 1706 50 2305 60 300 4 70 380a. $4 b. $40 c. $5 d. $50 e. $6 El documento es importante. (Make it plural Review the list of 15 communication methods below. Select 3 positive and 3 negative methods of communication and explain how the results of each affect your health:Positive 1. 2. 3. Negative 1. 2. 3. I NEED HELP FAST PLEASE Find the mean, median, and mode Please answer this question now In "Name that Player", Do you publish the story as is? Why or why not? Pure competition is important to economists because it is __________________ . Pure competition is important to economists because it is __________________ . the lowest cost to the buyer the benchmark of efficiency to compare all other models against both a. and b. none of the above 2. Would you expect more cooperationor conflict? Community attitudes, zoning restrictions, and quality of labor force are likely to be considered in which of the following location decision methods? a. simulation b. factor-rating method c. transportation method d. locational cost volume analysis e. center-of-gravity method The length and width of a rectangle are measured as 58 cm and 45 cm, respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle. 7. Explain why the equation 6|x| + 25 = 15 has no solution.When one solves, they arrive at a step where |x| is equal to a fraction that may not be represented as an integer. Since | x| must be an integer, there is no solution.When one solves, they arrive at a step where x is equal to a negative number. Since x can never be negative inside of the absolute value bars, there is no solution.When one solves, they arrive at a step where |x| is equal to a negative number. Since | x| can never be negative, there is no solution.The statement is false. There is a solution.