Write and solve an inequality to represent the situation. Seven times the difference of 10 and a number is between -126 and 14

Answers

Answer 1

Let x be the number that we are interested in. We are told that seven times the difference between ten and the number x is between -126 and 14.

In other words, we can write an inequality like this: [tex]$$-126 \le 7(10-x) \[/tex] To solve this inequality, we first divide each term by [tex]7:$$-18 \le 10-x \le[/tex] Next, we add -10 to each term.

[tex]$$-28 \le -x \le -8$$[/tex]Finally, we multiply each term by  (which changes the direction of the inequality because we are multiplying by a negative number)[tex] $$8 \le x \le 28$$[/tex], the solution to the inequality is that x is between 8 and 28 inclusive.

To know more about direction visit:

https://brainly.com/question/32262214

#SPJ11


Related Questions

Find the area of the triangle T with vertices O(0,0,0),P(1,2,3), and Q(6,6,3). (The area of a triangle is half the area of the corresponding parallelogram.) The area is (Type an exact answer, using radicals as needed.)

Answers

1. The area of the triangle T is 7√5 square units.

2. To find the area of triangle T, we can use the cross product of two vectors formed by the given points. Let vector OP = <1, 2, 3> and vector OQ = <6, 6, 3>. Taking the cross product of these vectors gives us:

OP x OQ = <2(3) - 6(2), -(1(3) - 6(1)), 1(6) - 2(6)> = <-6, -3, -6>

The magnitude of this cross product is ||OP x OQ|| = √((-6)^2 + (-3)^2 + (-6)^2) = √(36 + 9 + 36) = √(81) = 9.

The area of the parallelogram formed by OP and OQ is given by ||OP x OQ||, and the area of triangle T is half of that, so the area of triangle T is 9/2 = 4.5 square units.

However, the question asks for the area in exact form, so the final answer is 4.5 * √5 = 7√5 square units.

3. Therefore, the area of triangle T is 7√5 square units.

To know more about area  , visit:- brainly.com/question/27683633

#SPJ11

8. Let f:Z→Z and g:Z→Z be defined by the rules f(x)=(1−x)%5 and g(x)=x+5. What is the value of g∘f(13)+f∘g(4) ? (a) 5 (c) 8 (b) 10 (d) Cannot be determined.

Answers

We are given that f: Z → Z and g: Z → Z are defined by the rules f(x) = (1 - x) % 5 and g(x) = x + 5.We need to determine the value of g ◦ f(13) + f ◦ g(4).

We know that g ◦ f(13) means plugging in f(13) in the function g(x). Hence, we need to first determine the value of f(13).f(x) = (1 - x) % 5Plugging x = 13 in the above function, we get:

f(13) = (1 - 13) % 5f(13)

= (-12) % 5f(13)

= -2We know that g(x)

= x + 5. Plugging

x = 4 in the above function, we get:

g(4) = 4 + 5

g(4) = 9We can now determine

f ◦ g(4) as follows:

f ◦ g(4) means plugging in g(4) in the function f(x).

Hence, we need to determine the value of f(9).f(x) = (1 - x) % 5Plugging

x = 9 in the above function, we get:

f(9) = (1 - 9) % 5f(9

) = (-8) % 5f(9)

= -3We know that

g ◦ f(13) + f ◦ g(4)

= g(f(13)) + f(g(4)).

Plugging in the values of f(13), g(4), f(9) and g(9), we get:g(f(13)) + f(g(4))=

g(-2) + f(9)

= -2 + (1 - 9) % 5

= -2 + (-8) % 5

= -2 + 2

= 0Therefore, the value of g ◦ f(13) + f ◦ g(4) is 0.

To know more about value visit:
https://brainly.com/question/30145972

#SPJ11

Use the long division method to find the result when 12x^(3)+8x^(2)-7x-9 is difrided by 3x-1. If there is a remainder, express the result in the form q(x)+(r(x))/(b(x))

Answers

The result of the division is (4x² + 4x + 5) - 10 / (3x - 1).

To perform long division, let's divide 12x³ + 8x² - 7x - 9 by 3x - 1.

         4x² + 4x + 5

3x - 1 | 12x³ + 8x² - 7x - 9

         - (12x³ - 4x²)

__________________

                     12x² - 7x

                   - (12x² - 4x)

______________

                                -3x - 9

                                -(-3x + 1)

___________

                                       -10

The result of the division is:

12x³ + 8x² - 7x - 9 = (4x² + 4x + 5) × (3x - 1) - 10

So, the result is expressed as:

q(x) = 4x² + 4x + 5

r(x) = -10

b(x) = 3x - 1

Therefore, the result of the division is (4x² + 4x + 5) - 10 / (3x - 1).

To know more about division click here :

https://brainly.com/question/28824872

#SPJ4

Lara just turned 8 years old and is making 8-cookies. Each 8-cookie needs 11 candies like in the picture. How many candies does Lara need if she wants to make 10 cookies? Explain your reasoning.

Answers

The number of candles Lara needs if she wants to make 10 cookies is 13.75

To solve the given problem, we must first calculate how many candies are needed to make eight cookies and then multiply that value by 10/8.

Lara is 8 years old and is making 8 cookies.

Each 8-cookie needs 11 candies.

Lara needs to know how many candies she needs if she wants to make ten cookies

.

Lara needs to make 10/8 times the number of candies required for 8 cookies.

In this case, the calculation is carried out as follows:

11 candies/8 cookies = 1.375 candies/cookie

So, Lara needs 1.375 x 10 = 13.75 candies.

She needs 13.75 candies if she wants to make 10 cookies.

To know more about  number of candles refer here:

https://brainly.com/question/30149077

#SPJ11

First use the iteration method to solve the recurrence, draw the recursion tree to analyze. T(n)=T(2n​)+2T(8n​)+n2 Then use the substitution method to verify your solution.

Answers

T(n) = 3n log_2 n T(1) + 3n log_2 n - 4n<= 3n log_2 n T(1) + 3n log_2 n (because - 4n <= 0 for n >= 1)<= O(n log n)

Thus, the solution is verified.

The given recurrence relation is `T(n)=T(2n)+2T(8n)+n^2`.

Here, we have to use the iteration method and draw the recursion tree to analyze the recurrence relation.

Iteration method:

Let's suppose `n = 2^k`. Then the given recurrence relation becomes

`T(2^k) = T(2^(k-1)) + 2T(2^(k-3)) + (2^k)^2`

Putting `k = 3`, we get:T(8) = T(4) + 2T(1) + 64

Putting `k = 2`, we get:T(4) = T(2) + 2T(1) + 16

Putting `k = 1`, we get:T(2) = T(1) + 2T(1) + 4

Putting `k = 0`, we get:T(1) = 0

Now, substituting the values of T(1) and T(2) in the above equation, we get:

T(2) = T(1) + 2T(1) + 4 => T(2) = 3T(1) + 4

Similarly, T(4) = T(2) + 2T(1) + 16 = 3T(1) + 16T(8) = T(4) + 2T(1) + 64 = 3T(1) + 64

Now, using these values in the recurrence relation T(n), we get:

T(2^k) = 3T(1)×k + 4 + 2×(3T(1)×(k-1)+4) + 2^2×(3T(1)×(k-3)+16)T(2^k) = 3×2^k T(1) + 3×2^k - 4

Substituting `k = log_2 n`, we get:

T(n) = 3n log_2 n T(1) + 3n log_2 n - 4n

Now, using the substitution method, we get:

T(n) = 3n log_2 n T(1) + 3n log_2 n - 4n<= 3n log_2 n T(1) + 3n log_2 n (because - 4n <= 0 for n >= 1)<= O(n log n)

Thus, the solution is verified.

To know more about recurrence relation, visit:

https://brainly.com/question/32732518

#SPJ11

Use the information and figure to answer the following question.

The figure shows two perpendicular lines s and r, intersecting at point P in the interior of a trapezoid. Liner is parallel to the bases and

bisects both legs of the trapezoid. Line s bisects both bases of the trapezoid.

Which transformation will ALWAYS carry the figure onto itself?

O A a reflection across liner

OB. A reflection across lines

OC a rotation of 90° clockwise about point p

OD. A rotation of 180° clockwise about point P

Answers

The transformation that ALWAYS carries the figure onto itself is a rotation of 90° clockwise about point P .The correct option is  (Option C).

In the given figure, we have two perpendicular lines s and r intersecting at point P in the interior of a trapezoid. We also have a line "liner" that is parallel to the bases and bisects both legs of the trapezoid. Line s bisects both bases of the trapezoid.

Let's examine the given options:

A. A reflection across liner: This transformation does not always carry the figure onto itself. It would result in a reflection of the trapezoid across liner, which would change the orientation of the trapezoid.

B. A reflection across lines: This transformation does not always carry the figure onto itself. It would result in a reflection of the trapezoid across lines, which would also change the orientation of the trapezoid.

C. A rotation of 90° clockwise about point P: This transformation ALWAYS carries the figure onto itself. A 90° clockwise rotation about point P will preserve the perpendicularity of lines s and r, the parallelism of "liner" to the bases, and the bisection properties. The resulting figure will be congruent to the original trapezoid.

D. A rotation of 180° clockwise about point P: This transformation does not always carry the figure onto itself. A 180° rotation about point P would change the orientation of the trapezoid, resulting in a different figure.

Therefore, the transformation that ALWAYS carries the figure onto itself is a rotation of 90° clockwise about point P The correct option is  (Option C).

Learn more about  clockwise  from

https://brainly.com/question/26249005

#SPJ11

2) Select the argument that is invalid. a. p↔q ∴p
p∨q

b. p
q
∴p↔q

c. p→q
∴p
p∨q


d. p∨q
∴p∧¬q
¬q

Answers

Option c is the invalid argument because it commits the fallacy of affirming the consequent. The other argument options, a, b, and d, are valid.

a. p↔q ∴ p ∨ q

This argument is valid because it uses the logical biconditional (↔) which means that p and q are equivalent. Therefore, if p and q are equivalent, either p or q (or both) must be true. So, the conclusion p ∨ q follows logically from the premise p ↔ q.

b. p ∴ q ↔ p

This argument is valid because it follows the principle of the law of identity. If we know that p is true, we can conclude that q and p are logically equivalent. Therefore, the conclusion q ↔ p is valid.

c. p → q ∴ p

This argument is invalid. It commits the fallacy of affirming the consequent, which is a formal fallacy. The argument assumes that if p implies q, and we have q, then we can conclude p. However, this is not a valid logical inference. Just because p implies q does not mean that if we have q, we can conclude p. There may be other conditions or factors that influence the truth of p. Therefore, this argument is invalid.

d. p ∨ q ∴ p ∧ ¬q

This argument is valid. If we know that either p or q (or both) is true, and we also know that q is false (represented by ¬q), then we can conclude that p must be true. Therefore, the conclusion p ∧ ¬q follows logically from the premise p ∨ q and ¬q.

In summary, option c is the invalid argument because it commits the fallacy of affirming the consequent. The other argument options provided are valid.

To learn more about biconditional statements visit : https://brainly.com/question/27738859

#SPJ11

Find the walue of Io. α=0.14

Answers

The value of Io is 0.315.

Given: α = 0.14

The formula for Io is given by:

Io = I1 + I2

where,

I1 = α

I2 = 1.25α

Substituting the value of α, we have:

I1 = 0.14

I2 = 1.25 * 0.14 = 0.175

Now, we can calculate the value of Io:

Io = I1 + I2

  = 0.14 + 0.175

  = 0.315

Therefore, the value of Io is 0.315.

According to the question, we need to find the value of Io. By using the given formula and substituting the value of α, we calculated Io to be 0.315.

Learn more about value

https://brainly.com/question/30145972

#SPJ11

Consider the following model of wage determination: wage =β0​+β1​ educ +β2​ exper +β3​ married +ε where: wage = hourly earnings in dollars educ= years of education exper = years of experience married = dummy equal to 1 if married, 0 otherwise e. To account for possible differences between different regions of the United States, we now incorporate the region variable into the analysis, defined as follows: 1= Midwest, 2= West, 3= South, 4= Northeast i. Explain why it would not be appropriate to simply include the region variable as an additional regressor

Answers

Including the region variable as an additional regressor in the wage determination model may not be appropriate because it could lead to multicollinearity issues.

1. Multicollinearity occurs when two or more independent variables in a regression model are highly correlated with each other. In this case, including the region variable as an additional regressor may create a high correlation between the region and other variables such as education, experience, and marital status.

2. Including highly correlated variables in a regression model can make it difficult to determine the individual impact of each variable on the dependent variable. It can also lead to unreliable coefficient estimates and make it challenging to interpret the results accurately.

3. In this model, we already have the variables "educ", "exper", and "married" that contribute to the wage determination. The region variable may not provide any additional explanatory power beyond what is already captured by these variables.

4. If we want to account for possible differences between different regions of the United States, a more appropriate approach would be to include region-specific dummy variables. This would allow us to estimate separate intercepts for each region while keeping the other variables constant.

For example, we could include dummy variables such as "Midwest", "West", "South", and "Northeast" in the model. Each dummy variable would take the value of 1 for observations in the respective region and 0 for observations in other regions. This approach would allow us to capture the differences in wages between regions while avoiding multicollinearity issues.

To know more about the word variables constant, visit:

https://brainly.com/question/20693695

#SPJ11

Write an equation representing the fact that the sum of the squares of two consecutive integers is 145 . Use x to represent the smaller integer. (b) Solve the equation from part (a) to find the two integers, If there is more than one pair, use the "or" button. Part: 0/2 Part 1 of 2 : (a) Write an equation representing the fact that the sum of the squares of two consecutive integers is 145. Use x to represent the smaller integer. The equation is

Answers

An equation representing the fact that the sum of the squares of two consecutive integers is 145 is:

2x² + 2x - 144 = 0 (where x is used to represent the smaller integer)

To write an equation for the given fact, let's assume the two consecutive integers are x and x+1 (since x represents the smaller integer, x+1 represents the larger one).

According to the problem, the sum of the squares of these two consecutive integers is 145. We can express that as:  

x² + (x+1)² = 145.

Now let's simplify the equation by expanding and combining like terms: x² + x² + 2x + 1 = 145

2x² + 2x - 144 = 0
x² + x - 72 = 0

This quadratic equation can be solved using factoring or the quadratic formula:

⇒x² + 9x - 8x - 72 = 0

⇒x(x + 9) -8(x + 9) = 0

⇒(x - 8)(x + 9) = 0

⇒ x = 8, -9

We get: x = -9 or x = 8

The two consecutive integers are either (-9 and -8) or (8 and 9) (if x is the smaller integer, x+1 is the larger integer).

Learn more about quadratic equations here: https://brainly.com/question/17482667

#SPJ11

Verify if the provided y is a solution to the corresponding ODE y=5e^αx
y=e ^2x y′ +y=0
y ′′ −y′ =0

Answers

The result is equal to zero, the provided y = e^(2x) is a solution to the ODE y'' - y' = 0.

To verify if the provided y is a solution to the given ODE, we need to substitute it into the ODE and check if the equation holds true.

y = 5e^(αx)

For the first ODE, y' + y = 0, we have:

y' = d/dx(5e^(αx)) = 5αe^(αx)

Substituting y and y' into the ODE:

y' + y = 5αe^(αx) + 5e^(αx) = 5(α + 1)e^(αx)

Since the result is not equal to zero, the provided y = 5e^(αx) is not a solution to the ODE y' + y = 0.

y = e^(2x)

For the second ODE, y'' - y' = 0, we have:

y' = d/dx(e^(2x)) = 2e^(2x)

y'' = d^2/dx^2(e^(2x)) = 4e^(2x)

Substituting y and y' into the ODE:

y'' - y' = 4e^(2x) - 2e^(2x) = 2e^(2x)

Since the result is equal to zero, the provided y = e^(2x) is a solution to the ODE y'' - y' = 0.

Learn more about  solution from

https://brainly.com/question/27894163

#SPJ11

For a logical function, which representation as follows is one and only. ( ) A) logic expression B) logic diagram C) truth table D) timing diagram

Answers

The representation that is one and only for a logical function is the truth table (C).

A truth table is a table that lists all possible combinations of inputs for a logical function and the corresponding outputs. It provides a systematic way to represent the behavior of a logical function by explicitly showing the output values for each input combination. Each row in the truth table represents a specific input combination, and the corresponding output value indicates the result of the logical function for that particular combination.

By examining the truth table, one can determine the logical behavior and properties of the function, such as its logical operations (AND, OR, NOT) and its truth conditions.

Learn more about function here: brainly.com/question/30660139

#SPJ11

2. Maximize p=x+2y subject to x+3y≤24
2x+y≤18
x≥0,y≥0

Answers

The maximum value of the objective function P = x + 2y is 18

How to find the maximum value of the objective function

From the question, we have the following parameters that can be used in our computation:

P = x + 2y

Subject to:

x + 3y ≤ 24

2x + y ≤ 18

Express the constraints as equation

So, we have

x + 3y = 24

2x + y = 18

When solved for x and y, we have

2x + 6y = 48

2x + y = 18

So, we have

5y = 30

y = 6

Next, we have

x + 3(6) = 24

This means that

x = 6

Recall  that

P = x + 2y

So, we have

P = 6 + 2 * 6

Evaluate

P = 18

Hence, the maximum value of the objective function is 18

Read more about objective function at

brainly.com/question/14309521

#SPJ4

A water tank contains 60 liters of water. Ten liters of the water in the tank is used and not replaced each day. How much water remains in the tank at the end of the third day? A. 10 B. 20 C. 30 D. 40

Answers

After three days, 30 liters of water remain in the tank. (Answer: C)

Each day, 10 liters of water are used and not replaced from the tank.

After the first day, the remaining water in the tank is 60 - 10 = 50 liters.

After the second day, another 10 liters are used and not replaced, resulting in 50 - 10 = 40 liters remaining in the tank.

Similarly, after the third day, 10 liters are used and not replaced, leaving 40 - 10 = 30 liters of water in the tank.

Therefore, the amount of water remaining in the tank at the end of the third day is 30 liters (option C).

learn more about "liters ":- https://brainly.com/question/467718

#SPJ11

Use the function to evaluate the indicated expressions and simplify. f(x)=−8x^2−10

Answers

The function to evaluate the indicated expressions: a) f(0) = -10  b) f(-3) = -82 c) [tex]f(2x) = -32x^2 - 10[/tex] d) [tex]-f(x) = 8x^2 + 10.[/tex]

To evaluate the indicated expressions using the function [tex]f(x) = -8x^2 - 10:[/tex]

a) f(0):

Substitute x = 0 into the function:

[tex]f(0) = -8(0)^2 - 10[/tex]

= -10

Therefore, f(0) = -10.

b) f(-3):

Substitute x = -3 into the function:

[tex]f(-3) = -8(-3)^2 - 10[/tex]

= -8(9) - 10

= -72 - 10

= -82

Therefore, f(-3) = -82.

c) f(2x):

Substitute x = 2x into the function:

[tex]f(2x) = -8(2x)^2 - 10\\= -8(4x^2) - 10\\= -32x^2 - 10\\[/tex]

Therefore, [tex]f(2x) = -32x^2 - 10.[/tex]

d) -f(x):

Multiply the function f(x) by -1:

[tex]-f(x) = -(-8x^2 - 10)\\= 8x^2 + 10[/tex]

Therefore, [tex]-f(x) = 8x^2 + 10.[/tex]

To know more about function,

https://brainly.com/question/28350832

#SPJ11

. Please describe the RELATIVE meaning of your fit parameter values i.e., relative to each other, giving your study team (Pfizer/Merck/GSK/Lilly, etc.) a mechanistic interpretation

Answers

Without the specific fit parameter values, it is difficult to provide a mechanistic interpretation. However, in general, the relative meaning of fit parameter values refers to how the values compare to each other in terms of magnitude and direction.

For example, if the fit parameters represent the activity levels of different enzymes, their relative values could indicate the relative contributions of each enzyme to the overall biological process. If one fit parameter has a much higher value than the others, it could suggest that this enzyme is the most important contributor to the process.

On the other hand, if two fit parameters have opposite signs, it could suggest that they have opposite effects on the process.

For example, if one fit parameter represents an activator and another represents an inhibitor, their relative values could suggest whether the process is more likely to be activated or inhibited by a given stimulus.

Overall, the relative meaning of fit parameter values can provide insight into the underlying mechanisms of a biological process and inform further studies and interventions.

Know more about mechanistic interpretation here:

https://brainly.com/question/32330063

#SPJ11

If f is a one-to-one function such that f(2)=-6 , what is f^{-1}(-6) ?

Answers

f is a one-to-one function such that f(2) = -6, then the value of f⁻¹(-6) is 2.

Let’s assume that f(x) is a one-to-one function such that f(2) = -6. We have to find out the value of f⁻¹(-6).

Since f(2) = -6 and f(x) is a one-to-one function, we can state that

f(f⁻¹(-6)) = -6  ... (1)

Now, we need to find f⁻¹(-6).

To find f⁻¹(-6), we need to find the value of x such that

f(x) = -6  ... (2)

Let's find x from equation (2)

Let x = 2

Since f(2) = -6, this implies that f⁻¹(-6) = 2

Therefore, f⁻¹(-6) = 2.

So, we can conclude that if f is a one-to-one function such that f(2) = -6, the value of f⁻¹(-6) is 2.

To know more about the one-to-one function, visit:

brainly.com/question/29256659

#SPJ11

Given an arbitrary triangle with vertices A,B,C, specified in cartesian coordinates, (a) use vectors to construct an algorithm to find the center I and radius R of the circle tangent to each of its sides. (b) Construct and sketch one explicit non trivial example (pick A,B,C, calculate I and R using your algorithm, sketch your A,B,C and the circle we're looking for). (c) Obtain a vector cquation for a parametrization of that circle r(t)=⋯.

Answers

(a) To find the center I and radius R of the circle tangent to each side of a triangle using vectors, we can use the following algorithm:

1. Calculate the midpoints of each side of the triangle.

2. Find the direction vectors of the triangle's sides.

3. Calculate the perpendicular vectors to each side.

4. Find the intersection points of the perpendicular bisectors.

5. Determine the circumcenter by finding the intersection point of the lines passing through the intersection points.

6. Calculate the distance from the circumcenter to any vertex to obtain the radius.

(b) Example: Let A(0, 0), B(4, 0), and C(2, 3) be the vertices of the triangle.

Using the algorithm:

1. Midpoints: M_AB = (2, 0), M_BC = (3, 1.5), M_CA = (1, 1.5).

2. Direction vectors: v_AB = (4, 0), v_BC = (-2, 3), v_CA = (-2, -3).

3. Perpendicular vectors: p_AB = (0, 4), p_BC = (-3, -2), p_CA = (3, -2).

4. Intersection points: I_AB = (2, 4), I_BC = (0, -1), I_CA = (4, -1).

5. Circumcenter I: The intersection point of I_AB, I_BC, and I_CA is I(2, 1).

6. Radius R: The distance from I to any vertex, e.g., IA, is the radius.

(c) Vector equation for parametrization: r(t) = I + R * cos(t) * u + R * sin(t) * v, where t is the parameter, u and v are unit vectors perpendicular to each other and to the plane of the triangle.

(a) Algorithm to find the center and radius of the circle tangent to each side of a triangle using vectors:

1. Calculate the vectors for the sides of the triangle: AB, BC, and CA.

2. Calculate the unit normal vectors for each side. Let's call them nAB, nBC, and nCA. To obtain the unit normal vector for a side, normalize the vector obtained by taking the cross product of the corresponding side vector and the vector perpendicular to it (in 2D, this can be obtained by swapping the x and y coordinates and negating one of them).

3. Calculate the bisectors for each angle of the triangle. To obtain the bisector vector for an angle, add the corresponding normalized side unit vectors.

4. Calculate the intersection point of the bisectors. This can be done by solving the system of linear equations formed by setting the x and y components of the bisector vectors equal to each other.

5. The intersection point obtained is the center of the circle tangent to each side of the triangle.

6. To calculate the radius of the circle, find the distance between the center and any of the triangle vertices.

(b) Example:

Let A = (0, 0), B = (4, 0), C = (2, 3√3) be the vertices of the triangle.

1. Calculate the vectors for the sides: AB = B - A, BC = C - B, CA = A - C.

  AB = (4, 0), BC = (-2, 3√3), CA = (-2, -3√3).

2. Calculate the unit normal vectors for each side:

  nAB = (-0.5, 0.866), nBC = (-0.5, 0.866), nCA = (0.5, -0.866).

3. Calculate the bisector vectors:

  bisector_AB = nAB + nCA = (-0.5, 0.866) + (0.5, -0.866) = (0, 0).

  bisector_BC = nBC + nAB = (-0.5, 0.866) + (-0.5, 0.866) = (-1, 1.732).

  bisector_CA = nCA + nBC = (0.5, -0.866) + (-0.5, 0.866) = (0, 0).

4. Solve the system of linear equations formed by the bisector vectors:

  Since the bisector vectors for AB and CA are zero vectors, any point can be the center of the circle. Let's choose I = (2, 1.155) as the center.

5. Calculate the radius of the circle:

  Calculate the distance between I and any of the vertices, for example, IA:

  IA = √((x_A - x_I)^2 + (y_A - y_I)^2) = √((0 - 2)^2 + (0 - 1.155)^2) ≈ 1.155.

Therefore, the center of the circle I is (2, 1.155), and the radius of the circle R is approximately 1.155.

(c) Vector equation for the parametrization of the circle:

  Let r(t) = I + R * cos(t) * u + R * sin(t) * v, where t is the parameter, and u and v are unit vectors perpendicular to each other and tangent to the circle at I.

Learn more about triangle here

https://brainly.com/question/17335144

#SPJ11


The sampling distribution of the mean is the hypothetical
distribution of means from all possible samples of size n.

A. True B. False C. None of the above

Answers

A. True

The statement is true. The sampling distribution of the mean refers to the distribution of sample means that would be obtained if we repeatedly sampled from a population and calculated the mean for each sample. It is a theoretical distribution that represents all possible sample means of a given sample size (n) from the population.

The central limit theorem supports this concept by stating that for a sufficiently large sample size, the sampling distribution of the mean will be approximately normally distributed, regardless of the shape of the population distribution. This allows us to make inferences about the population mean based on the sample mean.

The sampling distribution of the mean is important in statistical inference, as it enables us to estimate population parameters, construct confidence intervals, and perform hypothesis testing.

Learn more about central limit theorem here:

https://brainly.com/question/898534

#SPJ11

The demand for a certain portable USB battery charger is given by D(p) = -p²+5p+1 where p represents the price in dollars.
a. Find the rate of change of demand with respect to price. Hint: Find the derivative! b. Find and interpret the rate of change of demand when the price is $12.

Answers

The percentage change in quantity demanded, rate of change of -19 means that for every one dollar increase in price, the demand for the portable USB battery charger decreases by 19 units.

a. The demand of a product with respect to price is known as price elasticity of demand.

The rate of change of demand with respect to price can be found by differentiating the demand function with respect to price.

So, we differentiate D(p) with respect to p,

we get;

D'(p) = -2p+5

Therefore, the rate of change of demand with respect to price is -2p + 5.

b. When the price of the portable USB battery charger is $12, the demand is given by D(12) = -12²+5(12)+1

= -143 units.

The rate of change of demand when the price is $12 can be found by substituting p = 12 into D'(p) = -2p + 5,

we get;

D(p) = -p² + 5p + 1

Taking the derivative with respect to p:

D'(p) = -2p + 5

D'(12) = -2(12) + 5= -19.

Interpretation:The demand for a portable USB battery charger is inelastic at the price of $12, since the absolute value of the rate of change of demand is less than 1.

This means that the percentage change in quantity demanded is less than the percentage change in price.

For more related questions on percentage change:

https://brainly.com/question/8011401

#SPJ8

If people prefer a choice with risk to one with uncertainty they are said to be averse to

Answers

If people prefer a choice with risk to one with uncertainty, they are said to be averse to uncertainty.

Uncertainty and risk are related concepts in decision-making under conditions of incomplete information. However, they represent different types of situations.

- Risk refers to situations where the probabilities of different outcomes are known or can be estimated. In other words, the decision-maker has some level of knowledge about the possible outcomes and their associated probabilities. When people are averse to risk, it means they prefer choices with known probabilities and are willing to take on risks as long as the probabilities are quantifiable.

- Uncertainty, on the other hand, refers to situations where the probabilities of different outcomes are unknown or cannot be estimated. The decision-maker lacks sufficient information to assign probabilities to different outcomes. When people are averse to uncertainty, it means they prefer choices with known risks (where probabilities are quantifiable) rather than choices with unknown or ambiguous probabilities.

In summary, if individuals show a preference for choices with known risks over choices with uncertain or ambiguous probabilities, they are considered averse to uncertainty.

If people prefer a choice with risk to one with uncertainty, they are said to be averse to uncertainty.

To know more about uncertainty, visit

https://brainly.com/question/16941142

#SPJ11

Refer to the seatpos data in Question 1 to answer the following questions. 3.1 Produce a scatterplot matrix and correlation matrix of the predictor variables to examine the existence of correlation between the predictors. Based on your analysis, which covariates seem to be strongly correlated to each other? Give a brief discussion.

Answers

The scatterplot matrix and correlation matrix, you can identify covariates that appear to be strongly correlated to each other. Strong correlations are typically indicated by scatterplots showing a clear linear or nonlinear relationship and correlation coefficients close to -1 or 1.

To produce a scatterplot matrix and correlation matrix of the predictor variables, I would need access to the seatpos data mentioned in Question 1. Since I don't have access to specific data or the ability to produce visualizations directly, I can provide you with general guidance on how to analyze the existence of correlations between predictors.

To create a scatterplot matrix, you can plot each pair of predictor variables against each other on a grid of scatterplots. Each scatterplot represents the relationship between two variables, allowing you to visually assess any patterns or correlations.

Additionally, you can calculate a correlation matrix to quantify the strength and direction of the relationships between the predictor variables. The correlation coefficient ranges from -1 to 1, where values close to -1 indicate a strong negative correlation, values close to 1 indicate a strong positive correlation, and values close to 0 indicate little to no correlation.

By examining the scatterplot matrix and correlation matrix, you can identify covariates that appear to be strongly correlated to each other. Strong correlations are typically indicated by scatterplots showing a clear linear or nonlinear relationship and correlation coefficients close to -1 or 1.

Learn more about correlation matrix here:

https://brainly.com/question/32750089


#SPJ11

Show That, For Every A∈Cn×N ∥A∥2=Maxλ∈Σ(AH A)Λ.

Answers

We have shown that for every A ∈ C^(n×N), we have ∥A∥^2 = max(λ∈Σ(A^H A)) λ. To show that for every A ∈ C^(n×N), we have ∥A∥^2 = max(λ∈Σ(A^H A)) λ, where Σ(A^H A) denotes the set of eigenvalues of the Hermitian matrix A^H A, we can use the following steps:

First, note that ∥A∥^2 = tr(A^H A), where tr denotes the trace of a matrix.

Next, observe that A^H A is a Hermitian positive semidefinite matrix, which means that it has only non-negative real eigenvalues. Let λ_1, λ_2, ..., λ_k be the distinct eigenvalues of A^H A, with algebraic multiplicities m_1, m_2, ..., m_k, respectively.

Then we have:

tr(A^H A) = λ_1 + λ_2 + ... + λ_k

= (m_1 λ_1) + (m_2 λ_2) + ... + (m_k λ_k)

≤ (m_1 λ_1) + 2(m_2 λ_2) + ... + k(m_k λ_k)

= tr(k Σ(A^H A))

where the inequality follows from the fact that λ_i ≥ 0 for all i and the rearrangement inequality.

Note that k Σ(A^H A) is a positive definite matrix, since it is the sum of k positive definite matrices.

Therefore, by the Courant-Fischer-Weyl min-max principle, we have:

max(λ∈Σ(A^H A)) λ ≤ max(λ∈Σ(k Σ(A^H A))) λ

= max(λ∈Σ(A^H A)) k λ

= k max(λ∈Σ(A^H A)) λ

Combining steps 3 and 5, we get:

∥A∥^2 = tr(A^H A) ≤ k max(λ∈Σ(A^H A)) λ

Finally, note that the inequality in step 6 is sharp when A has full column rank (i.e., k = N), since in this case, A^H A is positive definite and has exactly N non-zero eigenvalues.

Therefore, we have shown that for every A ∈ C^(n×N), we have ∥A∥^2 = max(λ∈Σ(A^H A)) λ.

learn more about eigenvalues here

https://brainly.com/question/29861415

#SPJ11

the quotient of 3 and a number m foula r=(d)/(t), where d is the distance in miles, r is the rate, and t is the time in hours, at whic tyou travel to cover 337.5 miles in 4.5 hours? (0pts )55mph (0 pts ) 65mph (1 pt) 75mph X (0 pts ) 85mph

Answers

If the formula r= d/t where d is the distance in miles, r is the rate, and t is the time in hours, you can travel at a rate of 75mph to cover 337.5 miles in 4.5 hours.

To calculate at which rate you travel to cover 337.5 miles in 4.5 hours, follow these steps:

The formula r= d/t, where d is the distance in miles, r is the rate, and t is the time in hours.Substituting the values in the formula, we get r= 337.5/ 4.5= = 75mph.

Therefore, at a rate of 75 miles per hour, you can travel to cover 337.5 miles in 4.5 hours.

Learn more about rate:

brainly.com/question/119866

#SPJ11

A standard deck of playing cards has 52 cards and a single card is drawn from the deck. Each card has a face value, color, and a suit.
a. IF we know that the first drawn card is King (K), what is the probability of it being red?
b. IF we know that the first drawn card is black, what is the probability of it being King (K)?

Answers

The probability of the first drawn card being a King (K) and red colour is 1/52, i.e., 2%.

The standard deck of playing cards contains four kings, namely the king of clubs (black), king of spades (black), king of diamonds (red), and king of hearts (red). Out of these four kings, there are two red kings, i.e., the king of diamonds and the king of hearts. And the total number of cards in the deck is 52. Hence, the probability of drawing a king of red colour is 2/52 or 1/26 or approximately 3.8%.

Therefore, the probability of the first drawn card being a King (K) and red colour is 1/52 or approximately 1.92%.b. The probability of the first drawn card being a King (K) and black colour is 1/26, i.e., 3.8%.

We have to determine the probability of drawing a King (K) when we know that the first drawn card is black. Out of the 52 cards in the deck, half of them are red and the other half are black. Hence, the probability of drawing a black card is 26/52 or 1/2 or 50%.

Since there are four kings in a deck, and two of them are black, the probability of drawing a King (K) when we know that the first drawn card is black is 2/26 or 1/13 or approximately 7.7%.Therefore, the probability of the first drawn card being a King (K) and black color is 1/26 or approximately 3.8%.

When a standard deck of playing cards is given, it has 52 cards, and each card has a face value, color, and suit. By knowing the first drawn card is a King (K), we can calculate the probability of it being red.The probability of the first drawn card being a King (K) and red color is 1/52, i.e., 2%. There are four kings in a deck, which are the king of clubs (black), king of spades (black), king of diamonds (red), and the king of hearts (red). And out of these four kings, two of them are red in color. Hence, the probability of drawing a king of red colour is 2/52 or 1/26 or approximately 3.8%.On the other hand, if we know that the first drawn card is black, we can calculate the probability of it being a King (K). Since there are four kings in a deck, and two of them are black, the probability of drawing a King (K) when we know that the first drawn card is black is 2/26 or 1/13 or approximately 7.7%. Therefore, the probability of the first drawn card being a King (K) and black color is 1/26 or approximately 3.8%.

The probability of the first drawn card being a King (K) and red color is 1/52, i.e., 2%. And the probability of the first drawn card being a King (K) and black color is 1/26 or approximately 3.8%.

To know more about probability visit

brainly.com/question/31828911

#SPJ11


Consider the joint pdf (x,y)=cxy , for 0 0
a) Determine the value of c.
b) Find the covariance and correlation.

Answers

To determine the value of c, we need to find the constant that makes the joint PDF integrate to 1 over its defined region.

The given joint PDF is (x,y) = cxy for 0 < x < 2 and 0 < y < 3.

a) To find the value of c, we integrate the joint PDF over the given region and set it equal to 1:

∫∫(x,y) dxdy = 1

∫∫cxy dxdy = 1

∫[0 to 2] ∫[0 to 3] cxy dxdy = 1

c ∫[0 to 2] [∫[0 to 3] xy dy] dx = 1

c ∫[0 to 2] [x * (y^2/2)] | [0 to 3] dx = 1

c ∫[0 to 2] (3x^3/2) dx = 1

c [(3/8) * x^4] | [0 to 2] = 1

c [(3/8) * 2^4] - [(3/8) * 0^4] = 1

c (3/8) * 16 = 1

c * (3/2) = 1

c = 2/3

Therefore, the value of c is 2/3.

b) To find the covariance and correlation, we need to find the marginal distributions of x and y first.

Marginal distribution of x:

fX(x) = ∫f(x,y) dy

fX(x) = ∫(2/3)xy dy

    = (2/3) * [(xy^2/2)] | [0 to 3]

    = (2/3) * (3x/2)

    = 2x/2

    = x

Therefore, the marginal distribution of x is fX(x) = x for 0 < x < 2.

Marginal distribution of y:

fY(y) = ∫f(x,y) dx

fY(y) = ∫(2/3)xy dx

    = (2/3) * [(x^2y/2)] | [0 to 2]

    = (2/3) * (2^2y/2)

    = (2/3) * 2^2y

    = (4/3) * y

Therefore, the marginal distribution of y is fY(y) = (4/3) * y for 0 < y < 3.

Now, we can calculate the covariance and correlation using the marginal distributions:

Covariance:

Cov(X, Y) = E[(X - E(X))(Y - E(Y))]

E(X) = ∫xfX(x) dx

     = ∫x * x dx

     = ∫x^2 dx

     = (x^3/3) | [0 to 2]

     = (2^3/3) - (0^3/3)

     = 8/3

E(Y) = ∫yfY(y) dy

     = ∫y * (4/3)y dy

     = (4/3) * (y^3/3) | [0 to 3]

     = (4/3) * (3^3/3) - (4/3) * (0^3/3)

     = 4 * 3^2

     = 36

Cov(X, Y) =

E[(X - E(X))(Y - E(Y))]

         = E[(X - 8/3)(Y - 36)]

Covariance is calculated as the double integral of (X - 8/3)(Y - 36) times the joint PDF over the defined region.

Correlation:

Correlation coefficient (ρ) = Cov(X, Y) / (σX * σY)

σX = sqrt(Var(X))

Var(X) = E[(X - E(X))^2]

Var(X) = E[(X - 8/3)^2]

      = ∫[(x - 8/3)^2] * fX(x) dx

      = ∫[(x - 8/3)^2] * x dx

      = ∫[(x^3 - (16/3)x^2 + (64/9)x - (64/9))] dx

      = (x^4/4 - (16/3)x^3/3 + (64/9)x^2/2 - (64/9)x) | [0 to 2]

      = (2^4/4 - (16/3)2^3/3 + (64/9)2^2/2 - (64/9)2) - (0^4/4 - (16/3)0^3/3 + (64/9)0^2/2 - (64/9)0)

      = (16/4 - (16/3)8/3 + (64/9)4/2 - (64/9)2) - 0

      = 4 - (128/9) + (128/9) - (128/9)

      = 4 - (128/9) + (128/9) - (128/9)

      = 4 - (128/9) + (128/9) - (128/9)

      = 4

σX = sqrt(Var(X)) = sqrt(4) = 2

Similarly, we can calculate Var(Y) and σY to find the standard deviation of Y.

Finally, the correlation coefficient is:

ρ = Cov(X, Y) / (σX * σY)

Learn more about Marginal distribution here:

https://brainly.com/question/14310262

#SPJ11

What are the disadvantages of the Attribute Control Chart and what will happen if there is a significant difference in sample size from the previous one (eg sample size difference of >25% between observed samples)?

Answers

The Attribute Control Chart is a statistical tool used to monitor the quality of a process or product based on qualitative or categorical data. While it has its advantages, such as simplicity and ease of interpretation, it also has some disadvantages. These disadvantages include:

1. Limited Information: Attribute control charts only provide information about whether a particular characteristic is present or absent. They do not provide detailed information about the magnitude or severity of the characteristic.

2. Loss of Information: When converting continuous data into categorical data for attribute control charts, some information is lost. Categorizing data can lead to a loss of precision and make it more challenging to detect subtle changes or variations in the process.

3. Subjectivity: The classification of qualitative data into categories often involves subjectivity. Different individuals may interpret and categorize data differently, leading to inconsistencies and potential biases in the control chart analysis.

4. Lack of Sensitivity: Attribute control charts are generally less sensitive than variable control charts. They may not detect small shifts or changes in the process, especially when the sample size is small or the variability within categories is high.

Regarding the significant difference in sample size from the previous one (e.g., sample size difference of >25% between observed samples), it can affect the interpretation and performance of the attribute control chart. Some potential consequences include:

1. Unbalanced Control Chart: A significant difference in sample size can lead to an unbalanced control chart, where the proportions or frequencies in the different categories are not representative of the process. This can distort the control limits and compromise the accuracy of the chart.

2. Reduced Sensitivity: A large difference in sample size may result in unequal weighting of the data. Categories with larger sample sizes will have more influence on the control chart, potentially overshadowing changes or variations in categories with smaller sample sizes. This can decrease the sensitivity of the control chart in detecting important process changes.

3. Misleading Interpretation: When there is a significant difference in sample size between observed samples, it becomes challenging to compare the control chart results accurately. It may lead to misleading interpretations and conclusions about the process stability or capability.

To maintain the effectiveness and integrity of an attribute control chart, it is generally recommended to have a consistent and balanced sample size for the observed samples. This ensures that each category is adequately represented, minimizing bias and allowing for reliable monitoring and decision-making.

learn more about Attribute Control Chart

https://brainly.com/question/31633605

#SPJ11

Martin has just heard about the following exciting gambling strategy: bet $1 that a fair coin will land Heads. If it does, stop. If it lands Tails, double the bet for the next toss, now betting $2 on Heads. If it does, stop. Otherwise, double the bet for the next toss to $4. Continue in this way, doubling the bet each time and then stopping right after winning a bet. Assume that each individual bet is fair, i.e., has an expected net winnings of 0. The idea is that 1+2+2^2+2^3+...+2^n=2^(n+1)-1 so the gambler will be $1 ahead after winning a bet, and then can walk away with a profit. Martin decides to try out this strategy. However, he only has $31, so he may end up walking away bankrupt rather than continuing to double his bet. On average, how much money will Martin win?

Answers

Therefore, on average, Martin will not win or lose any money using this gambling strategy. The expected net winnings are $0.

To determine the average amount of money Martin will win using the given gambling strategy, we can consider the possible outcomes and their probabilities.

Let's analyze the strategy step by step:

On the first toss, Martin bets $1 on Heads.

If he wins, he earns $1 and stops.

If he loses, he moves to the next step.

On the second toss, Martin bets $2 on Heads.

If he wins, he earns $2 and stops.

If he loses, he moves to the next step.

On the third toss, Martin bets $4 on Heads.

If he wins, he earns $4 and stops.

If he loses, he moves to the next step.

And so on, continuing to double the bet until Martin wins or reaches the limit of his available money ($31 in this case).

It's important to note that the probability of winning a single toss is 0.5 since the coin is fair.

Let's calculate the expected value at each step:

Expected value after the first toss: (0.5 * $1) + (0.5 * -$1) = $0.

Expected value after the second toss: (0.5 * $2) + (0.5 * -$2) = $0.

Expected value after the third toss: (0.5 * $4) + (0.5 * -$4) = $0.

From the pattern, we can see that the expected value at each step is $0.

To know more about expected net winnings,

https://brainly.com/question/14939581

#SPJ11

Find an example of languages L_{1} and L_{2} for which neither of L_{1}, L_{2} is a subset of the other, but L_{1}^{*} \cup L_{2}^{*}=\left(L_{1} \cup L_{2}\right)^{*}

Answers

The languages L1 and L2 can be examples where neither is a subset of the other, but their Kleene closures are equal.

Let's consider two languages, L1 = {a} and L2 = {b}. Neither L1 is a subset of L2 nor L2 is a subset of L1 because they contain different symbols. However, their Kleene closures satisfy the equality:

L1* ∪ L2* = (a*) ∪ (b*) = {ε, a, aa, aaa, ...} ∪ {ε, b, bb, bbb, ...} = {ε, a, aa, aaa, ..., b, bb, bbb, ...}

On the other hand, the union of L1 and L2 is {a, b}, and its Kleene closure is:

(L1 ∪ L2)* = (a ∪ b)* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, ...}

By comparing the Kleene closures, we can see that:

L1* ∪ L2* = (L1 ∪ L2)*

Thus, we have found an example where neither L1 nor L2 is a subset of the other, but their Kleene closures satisfy the equality mentioned.

To learn more about “subset” refer to the https://brainly.com/question/28705656

#SPJ11

Find value(s) of m so that the function y=e mx
(for part (a)) or y=x m
(part (b)) is a solution to the differential equation. Then give the solutions to the differential equation. a) y ′′
+5y ′
−6y=0 b) x 2
y ′′
−5xy ′
+8y=0

Answers

A)r=-6 or r=1.Hence, the general solution to the differential equation is y=c1e-x+ c2e6x where c1 and c2 are constants. B)r=2 or r=4. Hence, the general solution to the differential equation is y=c1x²+c2x⁴ where c1 and c2 are constants.


(a) For the function y=emx to be a solution of the differential equation y′′+5y′−6y=0, we need to replace y in the differential equation with emx, then find the value(s) of m that makes the equation true.

The characteristic equation is r²+5r-6=0, which factors as (r+6)(r-1)=0.

Thus, r=-6 or r=1.Hence, the general solution to the differential equation is y=c1e-x+ c2e6x where c1 and c2 are constants.

(b) For the function y=xm to be a solution of the differential equation x²y′′−5xy′+8y=0, we need to replace y in the differential equation with xm, then find the value(s) of m that makes the equation true. The characteristic equation is r(r-1)-5r+8=0, which factors as (r-2)(r-4)=0.

Thus, r=2 or r=4. Hence, the general solution to the differential equation is y=c1x²+c2x⁴ where c1 and c2 are constants.

Know more about differential equation  here,

https://brainly.com/question/33433874

#SPJ11

Other Questions
which description of the great basin of the north american continental interior is accurate? schilder's disease is a progressive degeneration of the central nervous system that leads to death at age 2 years. the disease is caused by a simple autosomal recessive mutation. a couple loses its first two children to schilder's disease. if they decide to have a third child, what is the probability that the child will have the disease? Give a regular expression for the language of all strings over alphabet {0, 1}that have exactly three non-contiguous 1s. (I.e., two can be contiguous, as in 01101, but not all three, 01110.) a bullet fired from gun close range. passes through the liver. stomach and pancreas also injured. as knowlegeable emt which would Smoothies Unlimited is considering opening a smoothie bar in Mandeville. The first expenditure is the $25,000,000 investment required to retrofit the location. Based on the analysis, the probabilities are 0.25 that it will be extremely popular, 0.60 that it will be moderately successful and 0.15 that it will not perform well. If the smoothie bar is extremely popular, operating cash flows of $10 million at the end of years 1, 2 and 3 will be expected. In that case, the company will expand the business at the end of year 3 at a cost of $8,000,000. After the expansion, the probabilities are 0.75 that the subsequent operating cash flows at the end of year 3 will be $16,000,000 , 0.25 that they will be $10,000,000. Each of these cash flow streams would continue in years 4 to 8. If the smoothie bar is moderately successful, operating cash flows of $6 million per year at the end of years 1 through 8 are expected. If the smoothie bar is does not perform well, cash flows are expected to be $2,000,000 per year over the 8-year life of the project. If this is the case, Raw Foods will close the smoothie bar at the end of the second year. $8 million of the original investment would be recovered. You run two titrations with slightly different titrands: one with 50.00 mL HCl in the Erlenmeyer flask and another with 50.00 mL HCl plus 10.00 mL distilled water (60.00 mL total). Would the titration volume of the titrant NaOH required to reach equivalence be expected to change between these two titrations? In other words, would the presence of additional water change the equivalence volume? If so, explain why. If not, explain why not. Your friend is scheduled to have an arteriogram and is concerned about the safety of this procedure. She asks for your opinion. You should:a. encourage her to discuss her questions with her physician.b. tell her about the hazards of radiation exposure.c. tell her not to worry because the procedure is perfectly safe.d. look up information in her chart and call her later. Which of the following is the best simple definition for supply chain management?A.The synchronization of processes across firms.B.Management of the firms that provide supplies.C.Making sure that internal and external customers are satisified.D.An interrelated series of processes within and across firms. g the integral \int 0^1 \int 0^{y^2}\int 0^{1-y} f(x,y,z) \; dz \; dx \; dy equals: (hint: carefully draw a 3d sketch of the domain Identify a product or service you personally have used that blew your mind and your experience as a customer. Use product & company information, published media, user and critique reviews etc and work backwards to trace its origin, history and development. Use course concepts and apply practices from innovation, creative design and system thinking to support your experience as a customer. what structural type of joint is illustrated here joining the shaft of the radius to the ulna? Mr Cooper claroom had 5 table. There were 4 tudent at each table. Mr Garcia claroom had 3 more tudent than Mr Cooper claroom Use the following problem to answer questions 7 and8.MaxC=2x+10y5x+2y40x+2y20y3,x07. Give the corners of the feasible set. a.(0,3),(0,10),(6.8,3),(5,7.5)b.(0,20),(5,7.5),(14,3)c.(5,7.5),(6.8,3),(14,3)d.(0,20),(5,7.5),(14,3),(20,0)e.(0,20),(5,7.5),(20,0)8. Give the optimal solution. a. 200 b. 100 c. 85 d. 58 e. 40 which of the following are barriers to solving the free rider problem in the provision of public goods? a. Non-altruistic behaviorb. Crowding-out of private provisionc. Measuring the preferences for public goodsd. All of the abovee. Both b and c ascribed statuses are based on an individual's talents, abilities, and actions. this is a case of folliculitis. which of the following tests could be used to help differentiate staphylococcus epidermidis from staphylococcus aureus? Which of the following gives the equation of a circle of radius 22 and center at the point (-1,2)(-1,2)? Please answer the (b)(ii)b) The height h(t) of a ferris wheel car above the ground after t minutes (in metres) can be modelled by: h(t)=15.55+15.24 sin (8 \pi t) . This ferris wheel has a diameter of 30.4 Metrolinx increased the fares for the average commuter by as much as $1.20 per ride. Many disgruntled commuters calculated whether it was worth driving to work. yet they still took the Go train to work everyday. This is an example of what type of demand? Customer demand Inelastic demand Free market demand Elastic demand Question 14 (1 point) Jill is looking into the possibility of opening up a for-profit seniors centre in her community. However, she is concerned about the long-term prospects for such a business. Jill believes the future of her centre will depend on the growth of the senior population. This concem illustrates how businesses can be affected by: psychometric trend. econometric trends. demographic trends holographic trends. develop a multiple regression model with categorical variables that incorporate seasonality for forecasting the temperature in washington, dc, using the data for the years 1999 and 2000 in the excel file washington dc weather (d2l content > datasets by chapter > chapter 9 > washingtondcweather.xlsx). use the model to generate forecasts for the next nine months and compare the forecasts to the actual observations in the data for the year 2001.