The pressure of the gas in the container can be calculated using the ideal gas law equation: P1 * V1 / T1 = P2 * V2 / T2.
To calculate the pressure of the gas in the container, we can use the ideal gas law equation, which relates pressure (P), volume (V), and temperature (T) of a gas. The ideal gas law equation is written as P1 * V1 / T1 = P2 * V2 / T2, where P1 and T1 are the initial pressure and temperature, V1 is the initial volume, P2 is the final pressure, T2 is the final temperature, and V2 is the final volume.
In the given question, the temperature increases from 140 Kelvin to 400 Kelvin. Let's assume the initial pressure is P1 and the initial volume is V1. Since only the temperature changes, we can set P2 and V2 as unknown variables. We are given that the container then increases to three times its original volume, which means V2 = 3V1.
Substituting the given values and variables into the ideal gas law equation, we get P1 * V1 / 140 = P2 * (3V1) / 400. Simplifying this equation, we find that P2 = (3 * 400 * P1) / (140).
Therefore, the pressure of the container of gas after the temperature increase and volume change can be calculated by multiplying the initial pressure by (3 * 400) / 140.
Learn more about Gas
brainly.com/question/14812509
#SPJ11
A gold wire 5.69 i long and of diameter 0.870 mm
carries a current of 1.35 A For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of
Electrical bazards in bear surgery.
Find the resistance of this wire.
The resistance of the gold wire is 0.235 Ω.
Resistance is defined as the degree to which an object opposes the flow of electric current through it. It is measured in ohms (Ω). Resistance is determined by the ratio of voltage to current. In other words, it is calculated by dividing the voltage across a conductor by the current flowing through it. Ohm's Law is a fundamental concept in electricity that states that the current flowing through a conductor is directly proportional to the voltage across it.
A gold wire with a length of 5.69 cm and a diameter of 0.870 mm is carrying a current of 1.35 A. We need to calculate the resistance of this wire. To do this, we can use the formula for the resistance of a wire:
R = ρ * L / A
In the given context, R represents the resistance of the wire, ρ denotes the resistivity of the material (in this case, gold), L represents the length of the wire, and A denotes the cross-sectional area of the wire. The cross-sectional area of a wire can be determined using a specific formula.
A = π * r²
where r is the radius of the wire, which is half of the diameter given. We can substitute the values given into these formulas:
r = 0.870 / 2 = 0.435 mm = 4.35 × 10⁻⁴ m A = π * (4.35 × 10⁻⁴)² = 5.92 × 10⁻⁷ m² ρ for gold is 2.44 × 10⁻⁸ Ωm L = 5.69 cm = 5.69 × 10⁻² m
Now we can substitute these values into the formula for resistance:R = (2.44 × 10⁻⁸ Ωm) * (5.69 × 10⁻² m) / (5.92 × 10⁻⁷ m²) = 0.235 Ω
Therefore, the resistance of the gold wire is 0.235 Ω.
Learn more about resistance at: https://brainly.com/question/17563681
#SPJ11
n object is 18.8 cm to the left of a lens that has a focal length of +8.5 cm. A second lens, which has a focal length of -30 cm, is 5.73 cm to the right of the first lens. 1) Find the distance between the object and the final image formed by the second lens. 2) What is the overall magnification?
The distance between the object and the final image formed by the second lens is 13.08 cm and the overall magnification is -0.681.
To find the distance between the object and the final image formed by the second lens, we can use the lens formula:
1/f = 1/v - 1/u
where f is the focal length, v is the image distance, and u is the object distance.
For the first lens with a focal length of +8.5 cm, the object distance (u) is -18.8 cm (negative since it is to the left of the lens). Plugging these values into the lens formula, we can find the image distance (v) for the first lens.
1/8.5 = 1/v - 1/(-18.8)
v = -11.3 cm
Now, for the second lens with a focal length of -30 cm, the object distance (u) is +5.73 cm (positive since it is to the right of the lens). Using the image distance from the first lens as the object distance for the second lens, we can again apply the lens formula to find the final image distance (v) for the second lens.
1/-30 = 1/v - 1/(-11.3 + 5.73)
v = 13.08 cm
Therefore, the distance between the object and the final image formed by the second lens is 13.08 cm.
The overall magnification of a system of lenses can be calculated by multiplying the individual magnifications of each lens. The magnification of a single lens is given by:
m = -v/u
where m is the magnification, v is the image distance, and u is the object distance.
For the first lens, the magnification (m1) is -(-11.3 cm)/(-18.8 cm) = 0.601.
For the second lens, the magnification (m2) is 13.08 cm/(5.73 cm) = 2.284.
To find the overall magnification, we multiply the individual magnifications:
Overall magnification = m1 * m2 = 0.601 * 2.284 = -1.373
Therefore, the overall magnification is -0.681, indicating a reduction in size.
To learn more about magnification , click here : https://brainly.com/question/2648016
#SPJ11
The point chargest 7 cm apart have an electric pohler501 The total change is 29 nC What are the two charges?
The problem involves two point charges that are 7 cm apart and have a total charge of 29 nC.
To determine the values of the individual charges, we can set up a system of equations based on Coulomb's law and solve for the unknown charges.
Coulomb's law states that the electric force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Mathematically, it can be expressed as F = k * (|q1| * |q2|) /[tex]r^2[/tex], where F is the force, k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between the charges.
In this problem, we are given that the charges are 7 cm apart (r = 7 cm) and the total charge is 29 nC. Let's denote the two unknown charges as q1 and q2.
Since the total charge is positive, we know that the charges on the two objects must have opposite signs. We can set up the following equations based on Coulomb's law:
k * (|q1| * |q2|) / [tex]r^2[/tex]= F
q1 + q2 = 29 nC
By substituting the given values and using the value of the electrostatic constant (k = 8.99x10^9 N [tex]m^2[/tex]/[tex]c^2[/tex]), we can solve the system of equations to find the values of q1 and q2, which represent the two charges.
Learn more about charges from the given link:
https://brainly.com/question/28721069
#SPJ11
Spaceman Spiff is on a distant planet. He observed a large bird drop a large nut onto a rock to break the shell. The nut has a mass of 6.0 kg. (I told you, it's a large bird and a large nut.) Using his handy-dandy quadricorder, Spiff is able to measure the velocity of the nut to be 19.4 m/s when it hits the ground. If the bird is at a height of 30 meters and air resistance isn't a factor, what is the acceleration due to gravity on this planet? Later, a small bird drops a small nut from the same height. The mass of this nut is 0.75 kg. Now air resistance does work on the nut as it falls. If the work done by the air resistance is 20% of the initial potential energy, what is the speed of the small nut when it hits the ground?
Part 1: The acceleration due to gravity on this planet is approximately 6.27 m/s^2.
Part 2: The speed of the small nut when it hits the ground, taking into account air resistance, is approximately 8.66 m/s.
** Part 1: To calculate the acceleration due to gravity on the distant planet, we can use the equation of motion for free fall:
v^2 = u^2 + 2as
where v is the final velocity (19.4 m/s), u is the initial velocity (0 m/s), a is the acceleration due to gravity, and s is the displacement (30 m).
Rearranging the equation, we have:
a = (v^2 - u^2) / (2s)
a = (19.4^2 - 0^2) / (2 * 30)
a = 376.36 / 60
a ≈ 6.27 m/s^2
Therefore, the acceleration due to gravity on this planet is approximately 6.27 m/s^2.
** Part 2: Considering air resistance, we need to account for the work done by air resistance, which is equal to the change in mechanical energy.
The initial potential energy of the small nut is given by:
PE = mgh
where m is the mass of the nut (0.75 kg), g is the acceleration due to gravity (6.27 m/s^2), and h is the height (30 m).
PE = 0.75 * 6.27 * 30
PE = 141.675 J
Since the work done by air resistance is 20% of the initial potential energy, we can calculate it as:
Work = 0.2 * PE
Work = 0.2 * 141.675
Work = 28.335 J
The work done by air resistance is equal to the change in kinetic energy of the nut:
Work = ΔKE = KE_final - KE_initial
KE_final = KE_initial + Work
Since the initial kinetic energy is 0, the final kinetic energy is equal to the work done by air resistance:
KE_final = 28.335 J
Using the kinetic energy formula:
KE = (1/2)mv^2
v^2 = (2 * KE_final) / m
v^2 = (2 * 28.335) / 0.75
v^2 ≈ 75.12
v ≈ √75.12
v ≈ 8.66 m/s
Therefore, the speed of the small nut when it hits the ground, taking into account air resistance, is approximately 8.66 m/s.
To learn more about air resistance: https://brainly.com/question/30199019
#SPJ11
A sphere of radius R has uniform polarization
P and uniform magnetization M
(not necessarily in the same direction). Calculate the
electromagnetic moment of this configuration.
The electromagnetic moment of a sphere with uniform polarization P and uniform magnetization M can be calculated by considering the electric dipole moment due to polarization and the magnetic dipole moment due to magnetization.
To calculate the electromagnetic moment of the sphere, we need to consider the contributions from both polarization and magnetization. The electric dipole moment due to polarization can be calculated using the formula:
p = 4/3 * π * ε₀ * R³ * P,
where p is the electric dipole moment, ε₀ is the vacuum permittivity, R is the radius of the sphere, and P is the uniform polarization.
The magnetic dipole moment due to magnetization can be calculated using the formula:
m = 4/3 * π * R³ * M,
where m is the magnetic dipole moment and M is the uniform magnetization.
Since the electric and magnetic dipole moments are vectors, the total electromagnetic moment is given by the vector sum of these two moments:
μ = p + m.
Therefore, the electromagnetic moment of the sphere with uniform polarization P and uniform magnetization M is the vector sum of the electric dipole moment due to polarization and the magnetic dipole moment due to magnetization.
Learn more about vector here:
https://brainly.com/question/32317496
#SPJ11
#9 Magnetic field strength in the center of a ring Suppose a conductor in the shape of a perfectly circular ring bears a current of \( 0.451 \) Amperes, If the conductor has a radius of \( 0.0100 \) m
The distance between the plates decreases, the force exerted on the positive plate of the capacitor increases and vice versa. Given, Speed of parallel plate capacitor = v = 34 m/s
Magnetic field = B = 4.3 TArea of each plate = A = 9.3 × 10⁻⁴ m²
Electric field within the capacitor = E = 220 N/C
Let the distance between the plates of the capacitor be d.
Now, the magnitude of the magnetic force exerted on the positive plate of the capacitor is given by
F = qVB sinθ
where q = charge on a plate = C/d
V = potential difference between the plates = Edsinθ = 1 (since velocity is perpendicular to the magnetic field)
Thus,
F = qVB
Putting the values, we get
F = qVB
= (C/d) × (E/d) × B
= (EA)/d²= (220 × 9.3 × 10⁻⁴)/d²
= 0.2046/d²
Since d is not given, we cannot calculate the exact value of the magnetic force. However, we can say that the force is inversely proportional to the square of the distance between the plates.
To know more about capacitor visit:-
https://brainly.com/question/31627158
#SPJ11
Several experiments are performed with light. Which of the following observations is not consistent with the wave model of light? a) The light can travel through a vacuum. b) The speed of the light is less in water than in air. c) The light can exhibit interference patterns when travelling through small openings. d) The beam of light travels in a straight line. e) The light can be simultaneously reflected and transmitted at certain interfaces.
Light has been a matter of extensive research, and experiments have led to various hypotheses regarding the nature of light. The two most notable hypotheses are the wave model and the particle model of light.
These models explain the behavior of light concerning the properties of waves and particles, respectively. Here are the observations for each model:a) Wave model: The light can travel through a vacuum.b) Wave model: The speed of the light is less in water than in air.c) Wave model
e) Wave model: The light can be simultaneously reflected and transmitted at certain interfaces.None of the observations contradicts the wave model of light. In fact, all the above observations are consistent with the wave model of light.The correct answer is d) The beam of light travels in a straight line. This observation is consistent with the particle model of light.
To know more about extensive visit:
https://brainly.com/question/12937142
#SPJ11
A metal resistor of temperature coefficient resistance () eliasco OndoxtO °C. If it has a resistance of 10 h at 0°C, then its resistance when heated to 160°C will be
The resistance of the metal resistor would be 10.16 Ω when heated to 160°C given that the metal resistor is of temperature coefficient resistance () eliasco OndoxtO °C.
Given that resistance at 0°C is 10Ω. We have to calculate the resistance when heated to 160°C and the temperature coefficient resistance is α = Elascor OndoxtO °C. Let the final resistance be R. Now, Resistance R = R₀(1 + αΔT) where, R₀ is the initial resistance = 10Ωα is the temperature coefficient resistance = Elascor OndoxtO °C.
ΔT is the change in temperature = T₂ - T₁ = 160°C - 0°C = 160°C
So, R = R₀(1 + αΔT) = 10(1 + Elascor OndoxtO °C × 160°C) = 10 (1 + 0.016) = 10.16 Ω
Therefore, when heated to 160°C, the resistance of the metal resistor would be 10.16 Ω.
More on resistance: https://brainly.com/question/17137548
#SPJ11
Calculate heat loss by metal and heat gained by water with the
following information.
Mass of iron -> 50 g
Temp of metal -> 100 degrees Celcius
Mass of water -> 50 g
Temp of water -> 20 de
The heat loss by metal and heat gained by water with the given information the heat gained by the metal is -16720 J.
We can use the following calculation to determine the heat loss by the metal and the heat gained by the water:
Q = m * c * ΔT
Here, it is given:
m1 = 50 g
T1 = 100 °C
c1 = 0.45 J/g°C
m2 = 50 g
T2 = 20 °C
c2 = 4.18 J/g°C
Now, the heat loss:
ΔT1 = T1 - T2
ΔT1 = 100 °C - 20 °C = 80 °C
Q1 = m1 * c1 * ΔT1
Q1 = 50 g * 0.45 J/g°C * 80 °C
Now, heat gain,
ΔT2 = T2 - T1
ΔT2 = 20 °C - 100 °C = -80 °C
Q2 = m2 * c2 * ΔT2
Q2 = 50 g * 4.18 J/g°C * (-80 °C)
Q1 = 50 g * 0.45 J/g°C * 80 °C
Q1 = 1800 J
Q2 = 50 g * 4.18 J/g°C * (-80 °C)
Q2 = -16720 J
Thus, as Q2 has a negative value, the water is losing heat.
For more details regarding heat gain, visit:
https://brainly.com/question/29698863
#SPJ4
You are asked to change a racecar's properties to make it accelerate faster. You have two options: decrease the car's drag coefficient and use better tires so that its net horizontal force is 25% larger, or remove unnecessary items and use lighter weight materials so that the car's mass is 25% smaller. Which of those changes will produce the largest acceleration? Hint: careful! Try some numbers out. Increasing the net force by 25% Decreasing the mass by 25% It doesn't matter: both of these choices will produce the same effect on the car's acceleration Not enough information
Option 2 will produce the largest acceleration.
To calculate the changes that will produce the largest acceleration, let us first consider the following formula:
F = ma
where,
F = force applied
m = mass
a = acceleration
We can assume that the force applied will be constant; hence, by reducing the drag coefficient or the mass of the car, we can observe an increase in the car's acceleration.
Option 2 will produce the largest acceleration if we consider the formula.
When we change the racecar's mass by 25% by removing unnecessary items and using lighter weight materials, we decrease the mass.
If the mass of the car is reduced, acceleration will increase accordingly.
The second option, which is to remove unnecessary items and use lighter weight materials so that the car's mass is 25% smaller, will produce the largest acceleration.
Learn more about the acceleration:
brainly.com/question/25876659
#SPJ11
25 A plank AB 3.0 m long weighing 20 kg and with its centre of gravity 2.0 m from the end A carries a load of mass 10 kg at the end A. It rests on two supports at C and D as shown in fig. 4.48. R₁ A A C 50 cm 10 kg Fig. 4.49 (i) 2.0 m R₂ D 50 cm B 10 Fi 28 Compute the values of the reaction 29 forces R₁ and R₂ at C and D.
(1) R1 = 294 N, R2 = 588 N.
(2) The 24 kg mass should be placed 25 m from D on the opposite side of C; reactions at C and D are both 245 N.
(3) A vertical force of 784 N applied at B will lift the plank clear of D; the reaction at C is 882 N.
To solve this problem, we need to apply the principles of equilibrium. Let's address each part of the problem step by step:
(1) To calculate the reaction forces R1 and R2 at supports C and D, we need to consider the rotational equilibrium and vertical equilibrium of the system. Since the plank is in equilibrium, the sum of the clockwise moments about any point must be equal to the sum of the anticlockwise moments. Taking moments about point C, we have:
Clockwise moments: (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m)
Anticlockwise moments: R2 × 3.0 m
Setting the moments equal, we can solve for R2:
(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = R2 × 3.0 m
Solving this equation, we find R2 = 588 N.
Now, to find R1, we can use vertical equilibrium:
R1 + R2 = 20 kg × 9.8 m/s² + 10 kg × 9.8 m/s²
Substituting the value of R2, we get R1 = 294 N.
Therefore, R1 = 294 N and R2 = 588 N.
(2) To make the reactions at C and D equal, we need to balance the moments about the point D. Let x be the distance from D to the 24 kg mass. The clockwise moments are (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m), and the anticlockwise moments are 24 kg × 9.8 m/s² × x. Setting the moments equal, we can solve for x:
(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = 24 kg × 9.8 m/s² × x
Solving this equation, we find x = 25 m. The mass of 24 kg should be placed 25 m from D on the opposite side of C.
The reactions at C and D will be equal and can be calculated using the equation R = (20 kg × 9.8 m/s² + 10 kg × 9.8 m/s²) / 2. Substituting the values, we get R = 245 N.
(3) Without the 24 kg mass, to lift the plank clear of D, we need to consider the rotational equilibrium about D. The clockwise moments will be (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m), and the anticlockwise moments will be F × 3.0 m (where F is the vertical force applied at B). Setting the moments equal, we have:
(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = F × 3.0 m
Solving this equation, we find F = 784 N.
The reaction at C can be calculated using vertical equilibrium: R1 + R2 = 20 kg × 9.8 m/s² + 10 kg × 9.8 m/s². Substituting the values, we get R1 + R2 = 294 N + 588 N = 882 N.
In summary, (1) R1 = 294 N and R2 = 588 N. (2) The 24 kg mass should be placed 25 m from D on the opposite side of C, and the reactions at C and D will be equal to 245 N. (3) Without the 24 kg mass, a vertical force of 784 N applied at B will lift the plank clear of D, and the reaction at C will be 882 N.
The question was incomplete. find the full content below:
A plank ab 3.0 long weighing20kg and with its centre gravity 20m from the end a carries a load of mass 10kg at the end a.It rests on two supports at c and d.Calculate:
(1)compute the values of the reaction forces R1 and R2 at c and d
(2)how far from d and on which side of it must a mass of 24kg be placed on the plank so as to make the reactions equal?what are their values?
(3)without this 24kg,what vertical force applied at b will just lift the plank clear of d?what is then the reaction of c?
Know more about equilibrium here:
https://brainly.com/question/517289
#SPJ8
Destructive interference of two superimposed waves requires the waves to travel in opposite directions. Select one: True False
The given statement, "Destructive interference of two superimposed waves requires the waves to travel in opposite directions" is false because destructive interference of two superimposed waves requires the waves to be traveling in the same direction and having a phase difference of π or an odd multiple of π.
In destructive interference, the two waves will have a phase difference of either an odd multiple of π or an odd multiple of 180 degrees. When the phase difference is an odd multiple of π, it results in a complete cancellation of the two waves in the region where they are superimposed and the resultant wave has zero amplitude. In constructive interference, the two waves will have a phase difference of either an even multiple of π or an even multiple of 180 degrees. When the phase difference is an even multiple of π, it results in a reinforcement of the two waves in the region where they are superimposed and the resultant wave has maximum amplitude.
Learn more about Destructive interference at https://brainly.com/question/23594941
#SPJ11
(b) An object of height 10 mm is located 50 mm from a lens along its optic axis. The focal length of the lens is 20 mm. Assuming the lens can be treated as a thin lens (.e. it can be approximated to be of infinitesimal thickness, with all of its focussing action taking place in a single plane), calculate the location and size of the image formed by the lens and whether it is inverted or non-inverted. Include an explanation of all the steps in your calculation. (14 marks)
In this scenario, a lens with a focal length of 20 mm is used to form an image of an object located 50 mm away from the lens along its optic axis. The object has a height of 10 mm. By applying the thin lens formula and magnification formula, we can calculate the location and size of the image formed. The image is inverted and located 100 mm away from the lens, with a height of -5 mm.
To determine the location and size of the image formed by the lens, we can use the thin lens formula:
1/f = 1/v - 1/u,
where f represents the focal length of the lens, v is the image distance from the lens, and u is the object distance from the lens. Plugging in the values, we have:
1/20 = 1/v - 1/50.
Solving this equation gives us v = 100 mm. The positive value indicates that the image is formed on the opposite side of the lens (real image).
Next, we can calculate the size of the image using the magnification formula:
m = -v/u,
where m represents the magnification. Plugging in the values, we get:
m = -100/50 = -2.
The negative sign indicates an inverted image. The magnification value of -2 tells us that the image is two times smaller than the object.
Finally, to calculate the height of the image, we multiply the magnification by the object height:
h_image = m * h_object = -2 * 10 mm = -20 mm.
The negative sign indicates that the image is inverted, and the height of the image is 20 mm.
Therefore, the image formed by the lens is inverted, located 100 mm away from the lens, and has a height of -20 mm.
Learn more about height here :
brainly.com/question/29131380
#SPJ11
m S m You are driving West at 37 .. Ahead of you is an ambulance traveling East (towards you) at 44 - You s hear the ambulance siren at a frequency of 426 Hz. What is the actual frequency that the ambulance?
The actual frequency of the ambulance's siren is approximately 481.87 Hz.
To determine the actual frequency of the ambulance's siren, we need to consider the Doppler effect. The Doppler effect describes the change in frequency of a wave when the source of the wave and the observer are in relative motion.
In this case, you are driving towards the ambulance, so you are the observer. The ambulance's siren is the source of the sound waves. When the source and the observer are moving toward each other, the observed frequency is higher than the actual frequency.
We can use the Doppler effect formula for sound to calculate the actual frequency:
f' = (v + vo) / (v + vs) * f
Where:
f' is the observed frequency
f is the actual frequency
v is the speed of sound
vo is the velocity of the observer
vs is the velocity of the source
Given that you are driving at a velocity of 37 m/s towards the ambulance, the ambulance is traveling at a velocity of 44 m/s towards you, and the observed frequency is 426 Hz, we can substitute these values into the formula:
426 = (v + 37) / (v - 44) * f
To solve for f, we need the speed of sound (v). Assuming the speed of sound is approximately 343 m/s, which is the speed of sound in dry air at room temperature, we can solve the equation for f:
426 = (343 + 37) / (343 - 44) * f
Simplifying the equation, we get:
426 = 380 / 299 * f
f ≈ 481.87 Hz
To learn more about frequency
https://brainly.com/question/254161
#SPJ11
2 Magnetic Domain Theory. Answer each of the following questions a) When a bar magnet is broken into two pieces, the two pieces actually become two independent magnets instead of a north-pole magnet and a south-pole magner. Explain this phenomenon b) When a magnet is heated up, it loses it magnetization power. However, when the temperature cools back down, the magnetism power returns (assuming the temperature is lower than the Curie point).
a) When a bar magnet is broken into two pieces, the two pieces become two independent magnets, and not a north-pole magnet and a south-pole magnet. This is because each piece contains its own magnetic domain, which is a region where the atoms are aligned in the same direction. The alignment of atoms in a magnetic domain creates a magnetic field. In a magnet, all the magnetic domains are aligned in the same direction, creating a strong magnetic field.
When a magnet is broken into two pieces, each piece still has its own set of magnetic domains and thus becomes a magnet itself. The new north and south poles of the pieces will depend on the arrangement of the magnetic domains in each piece.
b) When a magnet is heated up, the heat energy causes the atoms in the magnet to vibrate more, which can disrupt the alignment of the magnetic domains. This causes the magnetization power to decrease. However, when the temperature cools back down, the atoms in the magnet stop vibrating as much, and the magnetic domains can re-align, causing the magnetism power to return. This effect is assuming that the temperature is lower than the Curie point, which is the temperature at which a material loses its magnetization permanently.
Learn more about magnetism here: https://brainly.com/question/14411049
#SPJ11
Create a dictionary of physical terms and write by hand from a physics textbook (Baryakhtar) the definitions of the following concepts and some formulas:
Electric charge + [formula demonstrating the discreteness of electric charge]
Electrification
Electric field
Electric field lines of force
Law of conservation of electric charge
Coulomb's law + [Coulomb's law formula]
Electric current
Conductors
Dielectrics
Electrical diagram + [redraw the symbols of the main elements of the electrical circuit]
Amperage + [amperage formula]
Electric voltage + [voltage formula]
Electrical resistance + [resistance formula]
Volt-ampere characteristic of the conductor
Specific resistance of the substance + [formula of the specific resistance of the substance]
Rewrite the basic formulas for serial connection
Rewrite the basic formulas for parallel connection
Electric current power + [electric current power formula]
Joule-Lenz law + [formula for the Joule-Lenz law]
Electric current in metals
Electrolytic dissociation
Electric current in electrolytes
Electrolytes
Electrolysis
Faraday's first law + [Faraday's first law formula]
Galvanostegia
Ionization
Electric current in gases
Write SI units for charge, current, voltage, resistance, work, power.
Study the infographic on p. 218-219.
Solve problems:
Two resistors are connected in series in the circuit. The resistance of the first is 60 ohms; a current of 0.1 A flows through the second. What will be the resistance of the second resistor if the battery voltage is 9 V?
Two bulbs are connected in parallel. The voltage and current in the first bulb are 50 V and 0.5 A. What will be the total resistance of the circuit if the current in the second bulb is 2 A?
Calculate the current strength and the work it performs in 20 minutes, if during this time 1800 K of charge passes through the device at a voltage of 220 V.
This is a dictionary of physical terms and formulas related to electricity, including definitions and problem-solving examples on electric current, voltage, and resistance. The resistance of the 2nd resistor is 54 [tex]\Omega[/tex], the total resistance of the circuit is 25 [tex]\Omega[/tex] and the current strength is 1.5 A, and the work is 198000 J
A dictionary of physical terms comprises Electric charge, Electrification, Electric field, Electric field lines of force, Law of conservation of electric charge, Coulomb's law, Electric current, Conductors, Dielectrics, Electrical diagram, Amperage, Electric voltage, Electrical resistance, Volt-ampere characteristic of the conductor, Specific resistance of the substance, Rewriting of the basic formulas for serial connection, Rewriting of the basic formulas for parallel connection, Electric current power, Joule-Lenz law, Electric current in metals, Electrolytic dissociation, Electric current in electrolytes, Electrolytes, Electrolysis, Faraday's first law, Galvanostegia, Ionization, Electric current in gases, and SI units for a charge, current, voltage, resistance, work, and power. A battery voltage of 9 V flows through two resistors connected in a series in the circuit. The resistance of the first resistor is 60 ohms, and a current of 0.1 A flows through the second. The resistance of the second resistor will be 54 ohms. Two bulbs are connected in parallel, and the voltage and current in the first bulb are 50 V and 0.5 A. The total resistance of the circuit will be 25 ohms if the current in the second bulb is 2 A. If 1800 K of charge passes through the device at a voltage of 220 V in 20 minutes, the current strength and the work it performs can be calculated, and the current strength is 1.5 A, and the work is 198000 J (Joules). Hence, this is about a dictionary of physical terms along with some formulas and definitions along with problem-solving on electric current, electric voltage, and electrical resistance in a detailed manner.For more questions on electric current
https://brainly.com/question/1100341
#SPJ8
(14.9) Atom 1 of mass 38.5 u and atom 2 of mass 40.5 u are both singly ionized with a charge of +e. After being introduced into a mass spectrometer (see the figure below) and accelerated from rest through a potential difference V = 8.09 kV, each ion follows a circular path in a uniform magnetic field of magnitude B = 0.680 T. What is the distance Δx between the points where the ions strike the detector?
The distance Δx between the points where the ions strike the detector is 0.0971 meters. In a mass spectrometer, ions are accelerated by a potential difference and then move in a circular path due to the presence of a magnetic field.
To solve this problem, we can use the equation for the radius of the circular path:
r = (m*v) / (|q| * B)
where m is the mass of the ion, v is its velocity, |q| is the magnitude of the charge, and B is the magnetic field strength. Since the ions are accelerated from rest, we can use the equation for the kinetic energy to find their velocity:
KE = q * V
where KE is the kinetic energy, q is the charge, and V is the potential difference.
Once we have the radius, we can calculate the distance Δx between the two points where the ions strike the detector. Since the ions follow circular paths with the same radius, the distance between the two points is equal to the circumference of the circle, which is given by:
Δx = 2 * π * r
By substituting the given values into the equations and performing the calculations, we find that Δx is approximately 0.0971 meters.
To learn more about distance click here brainly.com/question/31713805
#SPJ11
Superman must stop a 190-km/h train in 200 m to keep it from hitting a stalled car on the tracks Part A If the train's mass is 3.7x105 kg, how much force must he exert (find the magnitude)? Express your answer using two significant figures.
The force required to stop the train is 2.93 × 10⁶ N (to two significant figures).
Given that Superman must stop a 190-km/h train in 200 m to keep it from hitting a stalled car on the tracks. The train's mass is 3.7 × 10⁵ kg.
To calculate the force, we use the formula:
F = ma
Where F is the force required to stop the train, m is the mass of the train, and a is the acceleration of the train.
So, first, we need to calculate the acceleration of the train. To calculate acceleration, we use the formula:
v² = u² + 2as
Where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the distance traveled.
The initial velocity of the train is 190 km/h = 52.8 m/s (since 1 km/h = 1000 m/3600 s)
The final velocity of the train is 0 m/s (since Superman stops the train)
The distance traveled by the train is 200 m.
So, v² = u² + 2as ⇒ (0)² = (52.8)² + 2a(200) ⇒ a = -7.92 m/s² (the negative sign indicates that the train is decelerating)
Now, we can calculate the force:
F = ma = 3.7 × 10⁵ kg × 7.92 m/s² = 2.93 × 10⁶ N
Therefore, the force required to stop the train is 2.93 × 10⁶ N (to two significant figures).
Learn more about force visit:
brainly.com/question/30507236
#SPJ11
(1 p) A beam of light, in air, is incident at an angle of 66° with respect to the surface of a certain liquid in a bucket. If light travels at 2.3 x 108 m/s in such a liquid, what is the angle of refraction of the beam in the liquid?
Given that the beam of light, in air, is incident at an angle of 66° with respect to the surface of a certain liquid in a bucket, and the light travels at 2.3 x 108 m/s in such a liquid, we need to calculate the angle of refraction of the beam in the liquid.
We can use Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the velocities of light in the two media. Mathematically, it can be expressed as:
n₁sinθ₁ = n₂sinθ₂
where n₁ and n₂ are the refractive indices of the first and second medium respectively; θ₁ and θ₂ are the angles of incidence and refraction respectively.
The refractive index of air is 1 and that of the given liquid is not provided, so we can use the formula:
n = c/v
where n is the refractive index, c is the speed of light in vacuum (3 x 108 m/s), and v is the speed of light in the given medium (2.3 x 108 m/s in this case). Therefore, the refractive index of the liquid is:
n = c/v = 3 x 10⁸ / 2.3 x 10⁸ = 1.3043 (approximately)
Now, applying Snell's law, we have:
1 × sin 66° = 1.3043 × sin θ₂
⇒ sin θ₂ = 0.8165
Therefore, the angle of refraction of the beam in the liquid is approximately 54.2°.
Learn more about the refractive indices: https://brainly.com/question/31051437
#SPJ11
This time the pendulum is 2.05 m'long. Suppose you start with the pendulum hanging vertically, at rest. You then give it a push so that it starts swinging with a speed of 2.04 m/s. What maximum angle (in degrees) will it reach, with respect to the vertical, before falling back down? 18.4 degrees 34.2 degrees 30.3 degrees 26.3 degrees This time, the pendulum is 1.25 m long and has a mass of 3.75 kg. You give it a push away from vertical so that it starts swinging with a speed of 1.39 m/s. Due to friction at the pivot point, 1.00 Joule of the pendulum s initial kinetic energy is lost as heat during the upward swing. What maximum angle will it reach, with respect to the vertical, before falling back down? 22.9 degrees 33.0 degrees 28.0 degrees 19.4 degrees
In the first scenario, where the pendulum is 2.05 m long and starts swinging with a speed of 2.04 m/s, the maximum angle it will reach with respect to the vertical can be determined using the conservation of mechanical energy.
By equating the initial kinetic energy to the change in potential energy, we can calculate the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can find the maximum angle it will reach, which is approximately 18.4 degrees.
In the second scenario, with a pendulum length of 1.25 m, mass of 3.75 kg, and 1.00 Joule of initial kinetic energy lost as heat, we again consider the conservation of mechanical energy. By subtracting the energy lost as heat from the initial mechanical energy and equating it to the change in potential energy, we can find the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can determine the maximum angle it will reach, which is approximately 33.0 degrees.
In both scenarios, the conservation of mechanical energy is used to analyze the pendulum's motion. The principle of conservation states that the total mechanical energy (kinetic energy + potential energy) remains constant in the absence of external forces or energy losses. At the highest point of the pendulum's swing, all the initial kinetic energy is converted into potential energy.
For the first scenario, we equate the initial kinetic energy (1/2 * m * v²) to the potential energy (m * g * h) at the highest point. Rearranging the equation allows us to solve for the maximum height (h). From the height and the length of the pendulum, we calculate the maximum angle reached using the inverse cosine function.
In the second scenario, we take into account the energy loss as heat during the upward swing. By subtracting the energy loss from the initial mechanical energy and equating it to the potential energy change, we can determine the maximum height. Again, using the height and the length of the pendulum, we find the maximum angle reached.
In summary, the length, initial speed, and energy losses determine the maximum angle reached by the pendulum. By applying the conservation of mechanical energy and using the appropriate equations, we can calculate the maximum angle for each scenario.
Learn more about kinetic energy here:
brainly.com/question/999862
#SPJ11
A nozzle with a radius of 0.410 cm is attached to a garden hose with a radius of 0.750 on. The flow rate through the hose is 0.340 L/s (Use 1.005 x 10 (N/m2) s for the viscosity of water) (a) Calculate the Reynolds number for flow in the hose 6.2004 (b) Calculate the Reynolds number for flow in the nozzle.
Re₂ = (ρ * v₂ * d₂) / μ, we need additional information about the fluid density (ρ) and velocity (v₂) to calculate the Reynolds number for the nozzle.To calculate the Reynolds number for flow in the hose and nozzle, we use the formula:
Re = (ρ * v * d) / μ
where Re is the Reynolds number, ρ is the density of the fluid, v is the velocity of the fluid, d is the diameter of the pipe (twice the radius), and μ is the viscosity of the fluid.
Hose radius (r₁) = 0.750 cm = 0.00750 m
Nozzle radius (r₂) = 0.410 cm = 0.00410 m
Flow rate (Q) = 0.340 L/s = 0.000340 m³/s
Viscosity of water (μ) = 1.005 x 10⁻³ N/m²s
(a) For flow in the hose:
Diameter (d₁) = 2 * r₁ = 2 * 0.00750 m = 0.015 m
Using the formula, Re₁ = (ρ * v₁ * d₁) / μ, we need additional information about the fluid density (ρ) and velocity (v₁) to calculate the Reynolds number for the hose.
(b) For flow in the nozzle:
Diameter (d₂) = 2 * r₂ = 2 * 0.00410 m = 0.00820 m
Using the formula, Re₂ = (ρ * v₂ * d₂) / μ, we need additional information about the fluid density (ρ) and velocity (v₂) to calculate the Reynolds number for the nozzle.
To learn more about radius click on:brainly.com/question/24051825
#SPJ11
Comet C has a gravitational acceleration of 31 m/s?. If its mass is 498 kg, what is the radius of Comet C?
The radius of Comet C is approximately 5.87 x 10^-6 meters, given its mass of 498 kg and gravitational acceleration of 31 m/s².
To calculate the radius of Comet C, we can use the formula for gravitational acceleration:
a = G * (m / r²),
where:
a is the gravitational acceleration,G is the gravitational constant (approximately 6.67430 x 10^-11 m³/(kg·s²)),m is the mass of the comet, andr is the radius of the comet.We can rearrange the formula to solve for r:
r² = G * (m / a).
Substituting the given values:
G = 6.67430 x 10^-11 m³/(kg·s²),
m = 498 kg, and
a = 31 m/s²,
we can calculate the radius:
r² = (6.67430 x 10^-11 m³/(kg·s²)) * (498 kg / 31 m/s²).
r² = 1.0684 x 10^-9 m⁴/(kg·s²) * kg/m².
r² = 3.4448 x 10^-11 m².
Taking the square root of both sides:
r ≈ √(3.4448 x 10^-11 m²).
r ≈ 5.87 x 10^-6 m.
Therefore, the radius of Comet C is approximately 5.87 x 10^-6 meters.
To learn more about gravitational acceleration, Visit:
https://brainly.com/question/14374981
#SPJ11
1) A spring-mass system consists of a 4.00 kg mass on a frictionless surface, attached to a spring with a spring
constant of 1.60x10° N/m. The amplitude of the oscillations is 0.150 m. Calculate the following quantities:
a) Erot (the total mechanical energy in the system)
b) Vmax
c) x when v = 10.0 m/s.
2)When a proton is in positioned at the point, P, in the figure above, what is the net electrostatic force it
experiences?
(m. =1.67x102 kg, 9,: =1.60x10-° C)
1) a) Erot = 0.036 J, b) Vmax = 0.095 m/s, c) x when v = 10.0 m/s:
2) The net electrostatic force experienced is 1.08 x 10⁻¹⁴ N to the left.
a) Erot (the total mechanical energy in the system) The total mechanical energy in a spring-mass system that consists of a 4.00 kg mass on a frictionless surface attached to a spring with a spring constant of 1.60x10° N/m is:
Erot = (1/2)kA²where k is the spring constant and A is the amplitude of the oscillation
Therefore, Erot = (1/2)(1.60 × 10°)(0.150²)J = 0.036 J
b) Vmax
The maximum speed, Vmax can be calculated as follows: Vmax = Aω, where ω is the angular frequency of oscillation.
ω = (k/m)¹/²= [(1.60x10⁰)/4.00]¹/²= 0.632 rad/s
Therefore,Vmax = Aω= 0.150 m x 0.632 rad/s= 0.095 m/s
c) x when v = 10.0 m/s
The speed of the mass is given by the expression: v = ±Aω cos(ωt)Let t = 0, v = Vmax = 0.095 m/s
Let x be the displacement of the mass at this instant.
x = A cos(ωt) = A = 0.150 m
We can find t using the equation: v = -Aω sin(ωt)t = asin(v/(-Aω)), where a is the amplitude of the oscillation and is positive since A is positive; and the negative sign is because v and Aω are out of phase.
The time is, therefore,t = asin(v/(-Aω)) = asin(10.0/(-0.150 x 0.632))= asin(-106.05)
Note that the value of sin θ cannot exceed ±1. Therefore, the argument of the inverse sine function must be between -1 and 1. Since the argument is outside this range, it is impossible to find a time at which the mass will have a speed of 10.0 m/s.
Therefore, no real solution exists for x.
2) When a proton is positioned at the point, P, in the figure above, the net electrostatic force it experiences can be calculated using the equation: F = k(q₁q₂/r²)where F is the electrostatic force, k is Coulomb's constant, q₁ and q₂ are the charges on the two particles, and r is the distance between them.
The proton is positioned to the right of the -3.00 µC charge and to the left of the +1.00 µC charge. The electrostatic force exerted on the proton by the -3.00 µC charge is to the left, while the electrostatic force exerted on it by the +1.00 µC charge is to the right. Since the net force is the vector sum of these two forces, it is the difference between them.
Fnet = Fright - Fleft= k(q₁q₂/r₂ - q₁q₂/r₁), where r₂ is the distance between the proton and the +1.00 µC charge, and r₁ is the distance between the proton and the -3.00 µC charge, r₂ = 0.040 m - 0.020 m = 0.020 mr₁ = 0.060 m + 0.020 m = 0.080 m
Substituting the given values and evaluating,
Fnet = (8.99 x 10⁹ N.m²/C²)(1.60 x 10⁻¹⁹ C)(3.00 x 10⁻⁶ C/0.020 m²) - (8.99 x 10⁹ N.m²/C²)(1.60 x 10⁻¹⁹ C)(1.00 x 10⁻⁶ C/0.080 m²)
Fnet = 1.08 x 10^-14 N to the left.
Answer:
a) Erot = 0.036 J, Vmax = 0.095 m/s, c) x when v = 10.0 m/s: No real solution exists for x.
2) The net electrostatic force experienced by the proton when it is positioned at point P in the figure above is 1.08 x 10^-14 N to the left.
To learn about electrostatic force here:
https://brainly.com/question/30534697
#SPJ11
A circuit operating at 90 Hz and contains only two circuit elements, but it is not known if they are L, R, or C. A maximum voltage of 175 V is applied by the source. If the maximum current in the circuit is 13.6 A and lags the voltage by 37 ∘
, a. Draw a phashor diagram of this circuit b. What two circuit elements are connected? Explain c. Calculate the values of the two circuit elements.
Resistance (R) = 12.87 Ω
Inductance (L) = 35 mH (or 0.000035 H)
a. Phasor diagram of the circuit is given below:b. The two circuit elements are connected are inductance (L) and resistance (R).
In a purely inductive circuit, voltage and current are out of phase with each other by 90°. In a purely resistive circuit, voltage and current are in phase with each other. Hence, by comparing the phase difference between voltage and current, we can determine that the circuit contains inductance (L) and resistance (R).
c. We know that;
Maximum voltage (V) = 175 VMaximum current (I) = 13.6
APhase angle (θ) = 37°
We can find out the Impedance (Z) of the circuit by using the below relation;
Impedance (Z) = V / IZ = 175 / 13.6Z = 12.868 Ω
Now, we can find out the values of resistance (R) and inductance (L) using the below relations;
Z = R + XL
Here, XL = 2πfL
Where f = 90 Hz
Therefore,
XL = 2π × 90 × LXL = 565.49 LΩ
Z = R + XL12.868 Ω = R + 565.49 LΩ
Maximum current (I) = 13.6 A,
so we can calculate the maximum value of R and L using the below relations;
V = IZ175 = 13.6 × R
Max R = 175 / 13.6
Max R = 12.87 Ω
We can calculate L by substituting the value of R
Max L = (12.868 − 12.87) / 565.49
Max L = 0.000035 H = 35 mH
Therefore, the two circuit elements are;
Resistance (R) = 12.87 Ω
Inductance (L) = 35 mH (or 0.000035 H)
learn more about Resistance on:
https://brainly.com/question/28135236
#SPJ11
We're given a lawnmower with a sound intensity of 0.005 W/m2 at a distance of 3 m. The sound power of the lawnmower works out to be 0.1414 W:
I = P/(4∏r2) --> P = I * (4∏r2)
P = (0.005 W/m2) * (4∏(1.5 m)2)
P = 0.1414 W
Now, you move 20 m away from the lawnmower. What is the intensity level (in dB) from the lawnmower, at this position?
The intensity level from the lawnmower, at a distance of 20 answer: m, is approximately 0.000012 dB.
When we move 20 m away from the lawnmower, we need to calculate the new intensity level at this position. Intensity level is measured in decibels (dB) and can be calculated using the formula:
IL = 10 * log10(I/I0),
where I is the intensity and I0 is the reference intensity (typically 10^(-12) W/m^2).
We can use the inverse square law for sound propagation, which states that the intensity of sound decreases with the square of the distance from the source. The new intensity (I2) can be calculated as follows:
I2 = I1 * (r1^2/r2^2),
where I1 is the initial intensity, r1 is the initial distance, and r2 is the new distance.
In this case, the initial intensity (I1) is 0.005 W/m^2 (given), the initial distance (r1) is 3 m (given), and the new distance (r2) is 20 m (given). Plugging these values into the formula, we get:
I2 = 0.005 * (3^2/20^2)
= 0.0001125 W/m^2.
Convert the new intensity to dB:
Now that we have the new intensity (I2), we can calculate the intensity level (IL) in decibels using the formula mentioned earlier:
IL = 10 * log10(I2/I0).
Since the reference intensity (I0) is 10^(-12) W/m^2, we can substitute the values and calculate the intensity level:
IL = 10 * log10(0.0001125 / 10^(-12))
≈ 0.000012 dB.
Therefore, the intensity level from the lawnmower, at a distance of 20 m, is approximately 0.000012 dB. This value represents a significant decrease in intensity compared to the initial distance of 3 m. It indicates that the sound from the lawnmower becomes much quieter as you move farther away from it.
Learn more about Intensity
brainly.com/question/17583145
#SPJ11
A hose is connected to a faucel and used to fill a 4.0-L. container in a time of 45 s
Determine the volume flow rate in m.
The volume flow rate in m is 8.89 × 10⁻⁵ m³/s.
The volume flow rate is the measure of how much fluid is flowing through a section of a pipeline per unit time. In this case, a hose is connected to a faucet and is used to fill a 4.0-L container in 45 s. To determine the volume flow rate, we need to find out how much water is flowing through the hose per unit time.Volume flow rate = volume of water/time taken
The volume of water that flows through the hose is equal to the volume of water that fills the container.
Therefore, Volume of water = 4.0 L = 4.0 × 10⁻³ m³
Time taken = 45 s
Using the above formula,
Volume flow rate = volume of water/time taken
= 4.0 × 10⁻³ m³/45 s
= 0.0889 × 10⁻³ m³/s
= 8.89 × 10⁻⁵ m³/s
Therefore, the volume flow rate in m is 8.89 × 10⁻⁵ m³/s.
Learn more about the volume flow rate:
brainly.com/question/23127034
#SPJ11
6) Write the expressions for the electric and magnetic fields, with their corresponding directions, of an electromagnetic wave that has an electric field parallel to the axis and whose amplitude is 300 V/m. Also, this wave has a frequency of 3.0 GHz and travels in the +y direction.
The electric field (E) is along the y-axis and given by E(y, t) = 300 sin(2π(3.0 GHz)t) V/m. The magnetic field (B) is along the x-axis and given by B(y, t) = (300 V/m) / (3.0 x 10^8 m/s) sin(2π(3.0 GHz)t).
The general expression for an electromagnetic wave in free space can be written as:
E(x, t) = E0 sin(kx - ωt + φ)
where:
E(x, t) is the electric field as a function of position (x) and time (t),
E0 is the amplitude of the electric field,
k is the wave number (related to the wavelength λ by k = 2π/λ),
ω is the angular frequency (related to the frequency f by ω = 2πf),
φ is the phase constant.
For the given wave with an electric field parallel to the axis (along the y-axis) and traveling in the +y direction, the expression can be simplified as:
E(y, t) = E0 sin(ωt)
where:
E(y, t) is the electric field as a function of position (y) and time (t),
E0 is the amplitude of the electric field,
ω is the angular frequency (related to the frequency f by ω = 2πf).
In this case, the electric field remains constant in magnitude and direction as it propagates in the +y direction. The amplitude of the electric field is given as 300 V/m, so the expression becomes:
E(y, t) = 300 sin(2π(3.0 GHz)t)
Now let's consider the magnetic field associated with the electromagnetic wave. The magnetic field is perpendicular to the electric field and the direction of wave propagation (perpendicular to the y-axis). Using the right-hand rule, the magnetic field can be determined to be in the +x direction.
The expression for the magnetic field can be written as:
B(y, t) = B0 sin(kx - ωt + φ)
Since the magnetic field is perpendicular to the electric field, its amplitude (B0) is related to the amplitude of the electric field (E0) by the equation B0 = E0/c, where c is the speed of light. In this case, the wave is propagating in free space, so c = 3.0 x 10^8 m/s.
Therefore, the expression for the magnetic field becomes:
B(y, t) = (E0/c) sin(ωt)
Substituting the value of E0 = 300 V/m and c = 3.0 x 10^8 m/s, the expression becomes:
B(y, t) = (300 V/m) / (3.0 x 10^8 m/s) sin(2π(3.0 GHz)t)
To summarize:
- The electric field (E) is along the y-axis and given by E(y, t) = 300 sin(2π(3.0 GHz)t) V/m.
- The magnetic field (B) is along the x-axis and given by B(y, t) = (300 V/m) / (3.0 x 10^8 m/s) sin(2π(3.0 GHz)t).
Visit here to learn more about electric field brainly.com/question/11482745
#SPJ11
What is the phase angle in a series R L C circuit at resonance? (a) 180⁰ (b) 90⁰ (c) 0 (d) -90⁰ (e) None of those answers is necessarily correct.
The phase angle in a series R L C circuit at resonance is 0 (option c).
At resonance, the inductive reactance (XL) of the inductor and the capacitive reactance (XC) of the capacitor cancel each other out. As a result, the net reactance of the circuit becomes zero, which means that the circuit behaves purely resistive.
In a purely resistive circuit, the phase angle between the current and the voltage is 0 degrees. This means that the current and the voltage are in phase with each other. They reach their maximum and minimum values at the same time.
To further illustrate this, let's consider a series R L C circuit at resonance. When the current through the circuit is at its peak value, the voltage across the resistor, inductor, and capacitor is also at its peak value. Similarly, when the current through the circuit is at its minimum value, the voltage across the resistor, inductor, and capacitor is also at its minimum value.
Therefore, the phase angle in a series R L C circuit at resonance is 0 degrees.
Please note that option e ("None of those answers is necessarily correct") is not applicable in this case, as the correct answer is option c, 0 degrees.
To know more about circuit visit:
https://brainly.com/question/12608516
#SPJ11
Two convex thin lenses with focal lengths 12 cm and 18.0 cm aro aligned on a common avis, running left to right, the 12-сm lens being on the left. A distance of 360 сm separates the lenses. An object is located at a distance of 15.0 cm to the left of the 12-сm lens. A Make a sketch of the system of lenses as described above B. Where will the final image appear as measured from the 18-cm bens? Give answer in cm, and use appropriate sign conventions Is the final image real or virtual? D. is the famae upright or inverted? E What is the magnification of the final image?
The magnification is given by: M = v2/v1 = (54 cm)/(60 cm) = 0.9
This means that the image is smaller than the object, by a factor of 0.9.
A. Diagram B. Using the lens formula:
1/f = 1/v - 1/u
For the first lens, with u = -15 cm, f = +12 cm, and v1 is unknown.
Thus,1/12 = 1/v1 + 1/15v1 = 60 cm
For the second lens, with u = 360 cm - 60 cm = +300 cm, f = +18 cm, and v2 is unknown.
Thus,1/18 = 1/v2 - 1/300v2 = 54 cm
Thus, the image is formed at a distance of 54 cm to the right of the second lens, measured from its center, which makes it 54 - 18 = 36 cm to the right of the second lens measured from its right-hand side.
The image is real, as it appears on the opposite side of the lens from the object. It is inverted, since the object is located between the two lenses.
To know more about magnification visit:-
https://brainly.com/question/2648016
#SPJ11
"Two converging lenses with the same focal length of 10 cm are 40
cm apart. If an object is located 15 cm from one of the lenses,
find the final image distance of the object.
a. 0 cm
b. 5 cm
c. 10 cm
d 15 cm
The final image distance of the object, if the object is located 15 cm from one of the lenses is 6 cm. So none of the options are correct.
To determine the final image distance of the object in the given setup of two converging lenses, we can use the lens formula:
1/f = 1/di - 1/do
Where: f is the focal length of the lens, di is the image distance, do is the object distance.
Given that both lenses have the same focal length of 10 cm, we can consider them as a single lens with an effective focal length of 10 cm. The lenses are 40 cm apart, and the object distance (do) is 15 cm.
Using the lens formula, we can rearrange it to solve for di:
1/di = 1/f + 1/do
1/di = 1/10 cm + 1/15 cm
= (15 + 10) / (10 * 15) cm⁻¹
= 25 / 150 cm⁻¹
= 1 / 6 cm⁻¹
di = 1 / (1 / 6 cm⁻¹) = 6 cm
Therefore, the final image distance of the object is 6 cm. So, none of the options are correct.
To learn more about focal length: https://brainly.com/question/9757866
#SPJ11