White dwarfs are dead stars. Because they are so small
(r = rEarth), it’s possible to orbit very close to them, even
though they still have huge masses. Find the force of gravity
between a planet of

Answers

Answer 1

To find the force of gravity between a planet and a white dwarf, we can use Newton's law of universal gravitation, which states that the force of gravity between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.

Mathematically, the equation for gravitational force is given by:

[tex]F = (G * M₁ * M₂) / r²[/tex]

where F is the force of gravity, G is the gravitational constant, M₁ and M₂ are the masses of the planet and the white dwarf, respectively, and r is the distance between their centers.

Given the small size of a white dwarf (r = rEarth), a planet can orbit very close to it. The force of gravity between the two objects will depend on the masses of the planet and the white dwarf.

The gravitational force will be significant due to the large mass of the white dwarf, even at close distances.

By plugging in the values of the masses and the distance, we can calculate the force of gravity between the planet and the white dwarf.

To know more about gravitation refer here:

https://brainly.com/question/3009841#

#SPJ11


Related Questions

Previous Page Next Page Page 13 of 30 A Question 37 (4 points) Retake question A transformer is used to drop the voltage from 3,600 V down to 120 V. The secondary coil has 150 windings. How many windi

Answers

The number of windings in the primary coil is 4,500.

A transformer is used to drop the voltage from 3,600 V to 120 V. The secondary coil has 150 windings.

We can use the transformer equation to find the number of turns in the primary coil.

According to the transformer equation:

Vp/Vs = Np/Ns

where Vp = primary voltage,

Vs = secondary voltage,

Np = number of turns in the primary coil,

and Ns = number of turns in the secondary coil

Therefore, the number of turns in the primary coil Np is given by:

Np = (Vp/Vs) × Ns

where Ns is the number of turns in the secondary coil.

Given that the voltage dropped from 3,600 V to 120 V, the transformer equation becomes:

Np/150 = 3,600/120

Np/150 = 30

Np = 30 × 150

Np = 4,500

Therefore, the number of windings in the primary coil is 4,500.

To know more about transformer, visit:

https://brainly.com/question/15200241

#SPJ11

In a cutting operation of a given work performed by the same tool at constant feed rate and depth of cut, let the cutting speeds Vmax and Vmin respectively be the maximum production rate speed, and the minimum production cost speed. Which one among the following sentences is true (C and n are the constant parameters in the Taylor tool life equation)? A. Vmax < Vmin, independently by C and n values, B. Vmax > Vmin, independently by C and n values, C. Vmax > Vmin, only if V is less than C, D. Vmax > Vmin, only if V is greater than C.

Answers

In a cutting operation of a given work performed by the same tool at a constant feed rate and depth of cut, let the cutting speeds Vmax and Vmin respectively be the maximum production rate speed, and the minimum production cost speed. The statement that is true among the given alternatives is D. Vmax > Vmin, only if V is greater than C.

Let the cutting speeds Vmax and Vmin respectively be the maximum production rate speed and the minimum production cost speed. The following statement is true: Vmax > Vmin, only if V is greater than C. The tool life equation is given as T = C / V^n where T is the tool life, V is the cutting speed, and C and n are constants.

By taking the derivative of the tool life equation, one can obtain that the maximum production rate speed, Vmax, is when the derivative of the equation is zero. This occurs when V = C/n. Similarly, the minimum production cost speed, Vmin, is when the derivative of the equation is equal to the production cost. Therefore, Vmax > Vmin only if V is greater than C. Hence, D is the correct option.

You can learn more about cutting operations at: brainly.com/question/13002080

#SPJ11

A Question 72 (4 points) Retake question Energy (eV) -1.6 n-3 -3.4 n = 2 -13.6 n=1 The energy level diagram for a hydrogen atom is shown. What is the wavelength of the light emitted when an electron d

Answers

the light emitted when an electron drops from n = 2 to n = 1 in a hydrogen atom, if the ionization energy of hydrogen is 2.18 × 10-18 J?A) 4.45 × 10-7 mB) 1.22 × 10-6 mC) 8.22 × 10-8 mD) 1.65 × 10-7 m

(4.45 × 10-7 m We are given that the energy level diagram for a hydrogen atom is shown below:Energy (eV) -1.6 n-3 -3.4 n = 2 -13.6 n=1We are to determine the wavelength of the light emitted when an electron drops from n = 2 to n = 1 in a hydrogen atom and we are also given that the ionization energy of hydrogen is 2.18 × 10-18 J.Now, using the formula:Energy difference = Efinal - Einitialwhere Efinal is the final energy level and Einitial is the initial energy level of the electron.As the electron drops from n = 2 to n = 1 in a hydrogen atom, we have:Einitial = -13.6 eV (energy at n = 2)Efinal = -3.4 eV (energy at n = 1)Therefore,Energy difference = Efinal - Einitial= (-3.4) - (-13.6)= 10.2 eVConverting the energy difference to Joules,

we have:1 eV = 1.6 × 10-19 JTherefore,10.2 eV = 10.2 × 1.6 × 10-19= 1.632 × 10-18 JThe energy released when an electron drops from a higher energy level to a lower energy level is given by:E = hfwhere E is the energy of the light, h is the Planck's constant and f is the frequency of the light.Rearranging the above formula, we have:f = E/hwhere f is the frequency of the light and E is the energy of the light.Substituting E = 1.632 × 10-18 J and h = 6.626 × 10-34 J s in the above equation, we have:f = (1.632 × 10-18)/(6.626 × 10-34)f = 2.46 × 1015 HzThe velocity of light (c) is related to its frequency (f) and wavelength (λ) by the equation:c = λ fwhere c is the velocity of light, f is the frequency of the light and λ is the wavelength of the light.Rearranging the above formula, we have:λ = c/fwhere λ is the wavelength of the light, c is the velocity of light and f is the frequency of the light.Substituting c = 3 × 108 m/s and f = 2.46 × 1015 Hz in the above equation, we have:λ = (3 × 108)/(2.46 × 1015)= 1.22 × 10-7 mHence, the wavelength of the light emitted when an electron drops from n = 2 to n = 1 in a hydrogen atom is 1.22 × 10-7 m.

TO know more about that emitted visit:

https://brainly.com/question/13490538

#SPJ11

A point charge Q = +4.90 μC is held fixed at the origin. A second point charge q = +1.70 μC with mass of 2.40x10-4 kg is placed on the x-axis, 0.210 m from the origin.
Part A What is the electric p

Answers

Given values are:Charge Q = +4.90 μCCharge q = +1.70 μCDistance between Q and q, r = 0.210 m The mass of q, m = 2.40 × 10⁻⁴ kg The electric potential energy of two point charges is given by,PE = kqQ / r where k = Coulomb constant = 9 × 10⁹ Nm²/C².

Electric potential energy of charge qSolution:Charge Q is fixed at the origin while charge q is placed at a distance of 0.210 m on the x-axis.Therefore,Distance between Q and q, r = 0.210 m The electric potential energy of charge q is given by,PE = kqQ / rPE = 9 × 10⁹ × (1.70 × 10⁻⁶) × (4.90 × 10⁻⁶) / 0.210PE = 3.81 × 10⁻⁹ J Part B: Velocity of charge q at infinity We know that,Total mechanical energy = KE + PE net= constant Initially, the velocity of charge q is zero.Therefore, the initial kinetic energy is zero.Hence,Total mechanical energy = PEnet Total mechanical energy = 3.81 × 10⁻⁹ JAt infinity, the potential energy of charge q is zero.

Therefore, the total mechanical energy is equal to the final kinetic energy of the charge q.Therefore,KEfinal= Total mechanical energy KEfinal= 3.81 × 10⁻⁹ J The final kinetic energy of the charge q is given by,KEfinal= ½mv²where v is the velocity of the charge q at infinity.Substituting the values of KEfinal, m and v, we get3.81 × 10⁻⁹ = ½ × (2.40 × 10⁻⁴) × v²v² = (3.81 × 10⁻⁹ × 2) / (2.40 × 10⁻⁴)We get,v² = 3.175 × 10⁻¹⁴The velocity of the charge q at infinity is given by,v = √(3.175 × 10⁻¹⁴) v = 1.78 × 10⁻⁷ m/s (approx)Therefore, the velocity of charge q at infinity is 1.78 × 10⁻⁷ m/s (approx).

To know more about potential energy visit:-

https://brainly.com/question/24284560

#SPJ11

Q.6. a) Write down the Hamiltonian for the H, (rigid) molecule. b) Discuss the Molecular orbital approximation and the Heitler-London method for the solution of the H, molecule.

Answers

The Hamiltonian for H₂ (rigid) molecule is - ½∇₁² - ½∇₂² - Z/r₁ - Z/r₂ + 1/r₁₂. MO theory is based on the linear combination of atomic orbitals. The Heitler-London method is a simple molecular orbital method.

Molecular orbital (MO) theory is a method of calculating the electronic structure of molecules based on the linear combination of atomic orbitals. In this approach, the electrons are viewed as particles moving in the field of both nuclei in a molecule. MO theory is an extension of valence bond theory, which views the electrons in a molecule as being localized between specific atoms. In MO theory, the electrons are considered to be distributed throughout the molecule in a set of molecular orbitals (MOs).The Heitler-London method is a simple molecular orbital method that was developed to predict the ground state of diatomic molecules. In this method, the electrons in a molecule are assumed to be in a superposition of atomic orbitals. The wavefunctions for the individual atoms are used to generate a linear combination of atomic orbitals that represents the molecule. The energy of the system is then minimized to obtain the ground state of the molecule.

In conclusion, the Hamiltonian for H₂ (rigid) molecule is - ½∇₁² - ½∇₂² - Z/r₁ - Z/r₂ + 1/r₁₂. MO theory is based on the linear combination of atomic orbitals. The Heitler-London method is a simple molecular orbital method that was developed to predict the ground state of diatomic molecules.

To know more about Molecular orbital (MO) theory visit:

brainly.com/question/12651320

#SPJ11

A rod of carbon steel (0.5%C) with a diameter of 1 cm and initial temperature of 300 °C is immersed in a large container with machine oil at 30 °C. The heat transfer coefficient between the rod surface and the surrounding oil is 100 W/m²K. a) Calculate the temperature in the center of the rod after 2 minutes of exposure. b) Evaluate the same temperature using the lumped capacitance model.

Answers

Diameter of rod, d = 1 cm = 0.01 m Initial temperature of rod, T1 = 300 °C. Heat transfer coefficient, h = 100 W/m²K Temperature of surrounding oil, T∞ = 30 °C

The thermal properties of steel are: Specific heat of steel, Cp = 0.5 kJ/kgK. Density of steel, ρ = 7800 kg/m³Thermal conductivity of steel, k = 43 W/mK. Now we have to calculate the temperature in the center of the rod after 2 minutes of exposure. To calculate this we have to use the formula for unsteady heat transfer in cylindrical coordinates, the formula is given below:[tex]q=-[2πkL/hln(ri/ro)]∫[0]^[t](T(r,t)-T∞)dt[/tex]

By solving the above formula we will get the value of q which will be used in further calculations. For that we have to put all the given values in the formula, so we get

[tex]q=-[2π(43)(0.01)/(100ln(0.5/0.01))]∫[0]^[120](T(r,t)-30)dt[/tex]

The integral can be simplified as:[tex]∫[0]^[120](T(r,t)-30)dt = T(r,t) * t ︸ t = 120 - (T(r,t) - 30)/(300 - 30) * 120 ︸ t = 0[/tex]

to solve the integral, now our formula will be,

[tex]q=-[2π(43)(0.01)/(100ln(0.5/0.01))] [T(r,t) * t - (T(r,t) - 30)/(300 - 30) * t²/2][/tex]Now we can take the Laplace transform of q with respect to time to get the temperature T(r,s), the formula is given below:

[tex]T(r,s)=[Ti−T∞+s(0)×Cp×ρ×V×exp(−s×V×ρ×Cp/2hA)]/[1+V×s×ρ×Cp/(3hA)][/tex]Now we can put the values in the above formula and solve it, so we get,

[tex]T(r,s) = [300 - 30 + s(0) * 0.5 * 7800 * 3.14 * 0.005² * exp(-s * 3.14 * 0.005² * 7800 * 0.5 / 2 * 100) / 100] / [1 + 3.14 * 0.005² * 7800 * s / (3 * 100)][/tex]Now we can solve this equation to get the value of s, by equating it to lumped capacitance model. The formula for lumped capacitance model is given below:[tex]T(r,t) - T∞ = [Ti - T∞] * exp(-ht/(ρVcp))[/tex]

The equation can be simplified by substituting all the values, so we get,[tex]T(r, t) - 30 = (300 - 30) * exp(-100 * 3.14 * 0.005 / (2 * 7800 * 0.5 * 0.5 * 0.5 * 3.14 * 0.005))[/tex]Finally by solving this equation we get, T(r, t) = 63.57°C

Therefore, the temperature in the center of the rod after 2 minutes of exposure is 63.57°C.

To learn more about Heat transfer coefficient visit:

brainly.com/question/13088479

#SPJ11

In Windsor area of New South Wales, flood flow needs to be drained from a small locality at a rate of 120 m³/s in uniform flow using an open channel (n = 0.018). Given the bottom slope as 0.0013 calculate the dimensions of the best cross section if the shape of the channel is (a) circular of diameter D and (b) trapezoidal of bottom width b.

Answers

the best cross-sectional dimensions of the open channel is D = 3.16 m (circular channel) and h = 1.83 m, b = 5.68 m (trapezoidal channel).

When the shape of the channel is circular, the hydraulic radius can be expressed as;Rh = D / 4

The discharge Q is;Q = AV

Substituting Rh and Q in Manning's formula;

V = (1/n) * Rh^(2/3) * S^(1/2)...............(1)

A = π * D² / 4V = Q / A = 120 / (π * D² / 4) = 48 / (π * D² / 1) = 48 / (0.25 * π * D²) = 192 / (π * D²)

Hence, the equation (1) can be written as;48 / (π * D²) = (1/0.018) * (D/4)^(2/3) * 0.0013^(1/2)

Solving for D, we have;

D = 3.16 m(b) Solution

When the shape of the channel is trapezoidal, the hydraulic radius can be expressed as;

Rh = (b/2) * h / (b/2 + h)

The discharge Q is;Q = AV

Substituting Rh and Q in Manning's formula;

V = (1/n) * Rh^(2/3) * S^(1/2)...............(1)A = (b/2 + h) * hV = Q / A = 120 / [(b/2 + h) * h]

Substituting the above equation and Rh in equation (1), we have;

120 / [(b/2 + h) * h] = (1/0.018) * [(b/2) * h / (b/2 + h)]^(2/3) * 0.0013^(1/2)

Solving for h and b, we get;

h = 1.83 m b = 5.68 m

Hence, the best cross-sectional dimensions of the open channel are;

D = 3.16 m (circular channel)h = 1.83 m, b = 5.68 m (trapezoidal channel).

Therefore, the best cross-sectional dimensions of the open channel is D = 3.16 m (circular channel) and h = 1.83 m, b = 5.68 m (trapezoidal channel).

learn more about dimensions here

https://brainly.com/question/27404871

#SPJ11

10292 repetitive arrays of diffracting elements are uniformly spaced over 45 mm. This grating is illuminated at normal by yellow sodium vapor lamp which has a frequency 5. 09. 10¹4 Hz. Assume that the light travels in vacuum. a) [1 point] Which formula can be used to calculate the location of a bright fringe on the viewing screen? (refer to the formula sheet and select the number of the correct formula from the list) b) [5 point] At what angle will the third order maximum occur? Find your answer in degree (do not use the small angle approximation). 0 = Ө

Answers

a) The formula that can be used to calculate the location of a bright fringe on the viewing screen for a diffraction grating is:

λ = d * sin(θ)

where:

λ is the wavelength of the light,

d is the spacing between diffracting elements (grating spacing),

and θ is the angle at which the bright fringe appears.

b) To find the angle at which the third-order maximum occurs, we can use the formula:

m * λ = d * sin(θ)

where:

m is the order of the maximum (in this case, m = 3),

λ is the wavelength of the light,

d is the spacing between diffracting elements (grating spacing),

and θ is the angle at which the maximum occurs.

We can rearrange the equation to solve for θ:

θ = arcsin((m * λ) / d)

Substituting the values:

m = 3

λ = speed of light / frequency = 3 * 10^8 / (5.09 * 10^14)

d = 45 mm = 0.045 m

θ = arcsin((3 * (3 * 10^8 / (5.09 * 10^14))) / 0.045)

Calculating this value will give us the angle at which the third-order maximum occurs.

Learn more about diffraction grating

https://brainly.com/question/30409878

#SPJ11

In your own words explain at what ratio of (input/natural)
frequencies system will have vibration transmission
Please include as much information and as detailed as possible. I
will upvote thank you

Answers

The ratio of input frequency to natural frequency plays a significant role in determining the extent of vibration transmission in a system. When the input frequency is close to the natural frequency of the system, resonance occurs, leading to a higher level of vibration transmission.

Resonance happens when the input frequency matches or is very close to the natural frequency of the system. At this point, the system's response to the input force becomes amplified, resulting in increased vibration amplitudes. This phenomenon is similar to pushing a swing at its natural frequency, causing it to swing higher and higher with each push.
On the other hand, when the input frequency is significantly different from the natural frequency, the system's response is relatively low. The system is less responsive to the input force, and therefore, vibration transmission is reduced.
To summarize, the closer the ratio of the input frequency to the natural frequency is to 1, the more pronounced the vibration transmission will be due to resonance. Conversely, when the ratio is far from 1, the system's response is minimized, resulting in reduced vibration transmission.

To learn more about, Resonance, click here, https://brainly.com/question/33217735

#SPJ11

Consider the optical transitions from the spin-orbit splitted
2F to the spin-orbit splitted 2D states of
the hydrogen atom. Find the relative ratios of their
intensities?

Answers

When the hydrogen atom's spin-orbit split 2F state transitions to the spin-orbit split 2D state, the relative ratios of their intensities can be found as follows:The oscillator strength (f), which represents the transition probability from the initial state to the final state, is proportional to the transition intensity.

The ratio of the oscillator strengths is proportional to the ratio of the transition probabilities.

Therefore, the ratio of the intensities of the optical transitions can be found by comparing the oscillator strengths for the 2F to 2D transitions.

The oscillator strengths are determined by the transition matrix elements, which are represented by the bra-ket notation as:[tex]$$\begin{aligned}\langle f | r | i\rangle &=\langle 2 D | r | 2 F\rangle \\ \langle f | r | i\rangle &=\langle 2 D | r | 2 F\rangle\end{aligned}$$[/tex]

The above matrix elements can be evaluated using Wigner-Eckart theorem. According to the Wigner-Eckart theorem, the selection rule for dipole transitions is[tex]Δl = ±1, and Δm = 0, ±1.[/tex]

Using these rules, the matrix elements for the transitions can be calculated, and the ratio of the intensities is obtained as follows[tex]:$$\frac{I_{2 D}}{I_{2 F}}=\frac{\left|\left\langle 2 D\left|z\right| 2 F\right\rangle\right|^{2}}{\left|\left\langle 2 F\left|z\right| 1 S\right\rangle\right|^{2}}$$[/tex]

The ratio of the intensities of the 2F to 2D transitions is found by substituting the matrix elements into the above equation and simplifying it. This yields the desired relative ratios of the intensities.

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

Use your knowledge from this chapter to model the Crane Runway
Beam with the appropriate supports and proper loadings. Hint:
Should it be modeled as a cantilever beam or as a simple-span beam?
Attach

Answers

When modeling a crane runway beam, it is typically more appropriate to consider it as a simple-span beam rather than a cantilever beam. A crane runway beam is typically supported at both ends, and the load from the crane and the moving trolley is distributed along the length of the beam.

To properly model the crane runway beam, you need to consider the following aspects:

The crane runway beam is supported at both ends, usually by columns or vertical supports. These supports provide the necessary resistance to vertical and horizontal loads. The type of supports will depend on the specific design and structural requirements of the crane system and the building structure.

The crane runway beam is subjected to various loadings, including the weight of the crane, trolley, and any additional loads that may be lifted. The weight of the beam itself should also be considered. Additionally, dynamic loads caused by the movement of the crane and trolley should be taken into account.

To determine the appropriate dimensions and reinforcement of the crane runway beam, you need to perform a structural analysis. This analysis involves calculating the reactions at the supports, shear forces, and bending moments along the length of the beam.

Consulting a structural engineer or referring to relevant structural design codes and standards specific to your location is highly recommended to ensure the safe and accurate design of the crane runway beam.

Learn more about dimensions on:

https://brainly.com/question/31460047

#SPJ4

Which of the following is not the unit of stress? ON/m^2 O Pascal MN/mm^2 Pascal/m^2 27

Answers

The unit of stress measures the amount of force per unit area on a material. The following is not the unit of stress: 27.

Therefore, the option D) 27 is the correct option that is not the unit of stress.Stress is defined as force per unit area. Mathematically, it is expressed as Stress = Force/Area. Stress is a measure of how much force is applied to an object or material per unit area. It is commonly expressed in units of Pascal (Pa), which is equal to one Newton per square meter (N/m²).

The various units of stress are as follows:Newtons per square meter (N/m²) or Pascal (Pa) - It is the most common unit used for stress.Megapascal (MPa) - 1 MPa is equivalent to 1,000,000 Pa.Kilonewton per square meter (kN/m²) - It is a unit used to measure stress in soil mechanics.Gigapascal (GPa) - It is equivalent to 1,000,000,000 Pa.What is Strain?Strain is a measure of how much deformation or change in shape occurs when a force is applied to an object or material.

Mathematically, it is expressed as Strain = Change in length/Original length. The following are the various units of strain:1) Percentage (%) - It is the most common unit used for strain.2) Parts per thousand (ppt) - It is equal to 0.1 percent or 1/1000.3) Parts per million (ppm) - It is equal to 0.0001 percent or 1/1,000,000.

To know more about unit of stress visit:

https://brainly.com/question/30460372

#SPJ11

before pulling into an intersection with limited visibility, check your shortest sight distance last. a. true b. false

Answers

The answer is False. Explanation: Before pulling into an intersection with limited visibility, check your longest sight distance last and not the shortest sight distance.

As it is more than 100 feet B the intersection. Therefore, we can conclude that the correct option is false.In general, you should always check your visibility before turning at an intersection.

You should always be aware of all traffic signs and signals in the area. If you can't see the intersection properly, slow down or stop to avoid an accident.

To know more about answer visit:

https://brainly.com/question/21212046

#SPJ11

Final answer:

It's false that you should check your shortest sight distance last when approaching an intersection with limited visibility. This should actually be the first place you check as it's crucial for spotting any immediate potential hazards.

Explanation:

The statement is false. When approaching an intersection with limited visibility, it's vital to first check the shortest sight distance. This allows you to quickly react if there's a vehicle, pedestrian or any potential hazard within this distance. The logic behind this is that shorter sight distances are associated with immediate threats whilst longer sight distances give you more time to respond. Therefore, always ensure that the closest areas to your vehicle are clear before checking further down the road.

Learn more about Road Safety here:

https://brainly.com/question/33417376

#SPJ12

statistical mechanics
process. 3. The energy of a particular atomic level is found to be e in terms of the quantum numbers n., ny, ne. What is the degeneracy of this particular level? [20] List all the possible energy stat

Answers

The degeneracy of this particular level is infinite, and there are infinitely many possible energy states.

The energy of a particular atomic level is Ej = 33h^2 / (8mV^(2/3)), where n, ny, and ne are the quantum numbers.

To determine the degeneracy of this level, we need to find the number of distinct quantum states that have the same energy. In other words, we need to find the values of n, ny, and ne that satisfy the given energy expression.

Let's analyze the given energy expression and compare it with the general formula for energy in terms of quantum numbers:

Ej = 33h^2 / (8mV^(2/3))

E = (h^2 / (8m)) * (n^2 / x^2 + y^2 / ny^2 + z^2 / ne^2)

By comparing the two equations, we can determine the values of x, y, and z:

33h^2 / (8mV^(2/3)) = (h^2 / (8m)) * (n^2 / x^2 + y^2 / ny^2 + z^2 / ne^2)

From this comparison, we can deduce that:

x = V^(1/3)

y = ny

z = ne

Now, let's find the values of x, y, and z:

x = V^(1/3)

y = ny

z = ne

To determine the degeneracy, we need to find the number of distinct quantum states that satisfy the given energy expression. Since there are no specific constraints mentioned in the problem, the values of n, ny, and ne can take any positive integers.

Therefore, the degeneracy of this particular level is infinite, and there are infinitely many possible energy states corresponding to this level.

In summary, the  answer is:

The degeneracy of this particular level is infinite, and there are infinitely many possible energy states.

Learn more about energy at: https://brainly.com/question/2003548

#SPJ11

4. Consider two infinite parallel plates at x = 0 and x=d The space between them is filled by electrons (-e) of a uniform density ne= no. and positrons (+e) of uniform density np = 2n (a) find the pot

Answers

The potential difference (ΔV) between the plates is given by:  ΔV = - [e * (2n + no) / ε₀] d

To find the potential between the two infinite parallel plates, we can use the concept of Gauss's Law and the principle of superposition.

Let's assume that the positively charged plate is located at x = 0, and the negatively charged plate is located at x = d. We'll also assume that the potential at infinity is zero.

First, let's consider the electric field due to the negatively charged plate. The electric field inside the region between the plates will be constant and pointing towards the positive plate. Since the electron density is uniform, the electric field due to the negative plate is given by:

E₁ = (σ₁ / ε₀)

where σ₁ is the surface charge density on the negative plate, and ε₀ is the permittivity of free space.

Similarly, the electric field due to the positive plate is given by:

E₂ = (σ₂ / ε₀)

where σ₂ is the surface charge density on the positive plate.

The total electric field between the plates is the sum of the fields due to the positive and negative plates:

E = E₂ - E₁ = [(σ₂ - σ₁) / ε₀]

Now, to find the potential difference (ΔV) between the plates, we integrate the electric field along the path between the plates:

ΔV = - ∫ E dx

Since the electric field is constant, the integral simplifies to:

ΔV = - E ∫ dx

ΔV = - E (x₂ - x₁)

ΔV = - E d

Substituting the expression for E, we have:

ΔV = - [(σ₂ - σ₁) / ε₀] d

Now, we need to relate the surface charge densities (σ₁ and σ₂) to the electron and positron densities (ne and np). Since the electron density is uniform (ne = no) and the positron density is twice the electron density (np = 2n), we can express the surface charge densities as follows:

σ₁ = -e * ne

σ₂ = +e * np

Substituting these values into the expression for ΔV:

ΔV = - [(+e * np - (-e * ne)) / ε₀] d

ΔV = - [e * (np + ne) / ε₀] d

Since ne = no and np = 2n, we can simplify further:

ΔV = - [e * (2n + no) / ε₀] d

Therefore, the , the potential difference (ΔV) between the plates is given by:

ΔV = - [e * (2n + no) / ε₀] d

To learn more about potential difference click here:

brainly.com/question/23716417

#SPJ11

1-) Consider the two dimensional rotation matrix cos a sin a [N (a)] = [. - sin a cosa Show that a) The determinant of N is unity as det [N] - 1. b) The inverse of [N] defined over the equation [N][N]

Answers

Since the inverse of [N] is equal to its transpose, we have[N]−1 = [cos(a) sin(a)][-sin(a) cos(a)] = [cos(a) sin(a)][-sin(a) cos(a)]Therefore, the inverse of [N] is given by[N]−1 = [cos(a) sin(a)][-sin(a) cos(a)] = [cos(a) sin(a)][-sin(a) cos(a)]This can be simplified to[N]−1 = [cos(a) sin(a)][-sin(a) cos(a)] = [cos(a) sin(a)][-sin(a) cos(a)]

The two-dimensional rotation matrix is shown by the equation[N(a)]

=cos(a) -sin(a)sin(a) cos(a)

The determinant of N is unity as det[N]

=1.Therefore, the determinant of [N] is given by det[N]

=cos(a)*cos(a)+sin(a)*sin(a)

=cos2(a)+sin2(a)

=1since cos2(a)+sin2(a)

=1.

The inverse of [N] defined over the equation [N][N]

= [N][N]

= [1]

Where [1] is the identity matrix.To calculate the inverse of [N], we write[N][N]

= [cos(a) -sin(a)][cos(a) sin(a)] [sin(a) cos(a)] [-sin(a) cos(a)]

= [1]Solving this equation for N, we get[N]−1

= [cos(a) sin(a)][-sin(a) cos(a)]

= [cos(a) sin(a)][-sin(a) cos(a)]We have[N][N]

= [cos(a) -sin(a)][sin(a) cos(a)] [cos(a) sin(a)] [-sin(a) cos(a)]

= [1]Multiplying the left-hand side of the equation by [N]−1[N] gives[N][N]−1[N]

= [1] [N]−1[N]

= [1].

Since the inverse of [N] is equal to its transpose, we have[N]−1

= [cos(a) sin(a)][-sin(a) cos(a)]

= [cos(a) sin(a)][-sin(a) cos(a)]

Therefore, the inverse of [N] is given by[N]−1

= [cos(a) sin(a)][-sin(a) cos(a)]

= [cos(a) sin(a)][-sin(a) cos(a)]

This can be simplified to[N]−1

= [cos(a) sin(a)][-sin(a) cos(a)]

= [cos(a) sin(a)][-sin(a) cos(a)]

To know more about inverse visit:

https://brainly.com/question/30339780

#SPJ11

Check Score Hide Answer A hollow, thick-walled, conducting cylinder carries a current of 12.4 A and has an inner radius r;=r and outer radius r 3r/2, where r-5.20 mm. Determine the magnitude of the ma

Answers

The magnitude of the magnetic field within the hollow, thick-walled, conducting cylinder when a current of 12.4 A flows through it, with an inner radius r;=r and outer radius r 3r/2, where r = 5.20 mm .

loop of the radius r located at a distance r from the axis of the cylinder, as shown in the figure below, and apply Ampere's circuital law on it.math-image0We know that the magnetic field outside the cylinder is zero since the current flows through the walls of the cylinder. Now, the magnetic field inside the cylinder is given by: B.2πrL = μ0Iinside the cylinder here, L = length of the cylinder inside the loop= 3r/2 - r= r/2Now, substituting the given values in the above equation: B.2πr(r/2) = μ0(12.4)B = (μ0.12.4)/πr²B = (4π×10-7 × 12.4)/π(5.20 × 10-3)²B = 5.94 × 10-3 therefore, the magnitude of the magnetic field within the hollow, thick-walled, conducting cylinder when a current of 12.4 A flows through it, with an inner radius r;=r and outer radius r 3r/2, where r = 5.20 mm is 5.94 × 10-3 T.

The magnetic field is the area of magnetism surrounding a magnet or current-carrying conductor. The magnetic field at a particular point is defined as the force exerted on a unit magnetic pole located at that point. The force exerted by a magnetic field on a current-carrying conductor is given by the force on each charge carrier multiplied by the number of carriers per unit length and the length of the conductor. When a current is passed through a conducting cylinder, a magnetic field is generated around it. This magnetic field is known as the magnetic field of the cylinder. The magnitude of the magnetic field depends on the current passing through the cylinder, the radius of the cylinder, and the magnetic permeability of the material of the cylinder.

By applying Ampere's circuital law, the magnetic field within a hollow, thick-walled, conducting cylinder can be determined. In the given problem, the magnitude of the magnetic field within the hollow, thick-walled, conducting cylinder is determined using the formula of Ampere's circuital law.

Learn more about magnitude here:

https://brainly.com/question/14154454

#SPJ11

2 Given the following velocity field of a fluid: Find the vorticity of this flow V(x, y) = yi + (x-y)j

Answers

The vorticity is calculated by the formula:[tex]\[{\omega _z} = \left( {\frac{{\partial V}}{{\partial x}} - \frac{{\partial U}}{{\partial y}}} \right)\][/tex]

Where U and V are the velocities in the x and y directions, respectively. In this scenario, we have: [tex]\[\frac{{\partial V}}{{\partial x}} = 0\]\[\frac{{\partial U}}{{\partial y}} = 1\][/tex]

Therefore,[tex]\[{\omega _z} = \left( {\frac{{\partial V}}{{\partial x}} - \frac{{\partial U}}{{\partial y}}} \right) = - 1\][/tex]

Thus, the vorticity of the given flow is -1.

We know that the vorticity is defined as the curl of the velocity field:

[tex]\[\overrightarrow{\omega }=\nabla \times \overrightarrow{v}\][/tex]

We are given the velocity field of the fluid as follows:

[tex]\[\overrightarrow{v}=y\widehat{i}+(x-y)\widehat{j}\][/tex]

We are required to calculate the vorticity of the given flow.

Using the curl formula for 2D flows, we can write: [tex]\[\nabla \times \overrightarrow{v}=\left(\frac{\partial }{\partial x}\widehat{i}+\frac{\partial }{\partial y}\widehat{j}\right)\times (y\widehat{i}+(x-y)\widehat{j})\]\[\nabla \times \overrightarrow{v}=\left(\frac{\partial }{\partial x}\times y\widehat{i}\right)+\left(\frac{\partial }{\partial x}\times (x-y)\widehat{j}\right)+\left(\frac{\partial }{\partial y}\times y\widehat{i}\right)+\left(\frac{\partial }{\partial y}\times (x-y)\widehat{j}\right)\][/tex]

Now, using the identities: [tex]\[\frac{\partial }{\partial x}\times f(x,y)\widehat{k}=-\frac{\partial }{\partial y}\times f(x,y)\widehat{k}\]and,\[\frac{\partial }{\partial x}\times f(x,y)\widehat{k}+\frac{\partial }{\partial y}\times f(x,y)\widehat{k}=\nabla \times f(x,y)\widehat{k}\][/tex]

We have: [tex]\[\nabla \times \overrightarrow{v}=\left(-\frac{\partial }{\partial y}\times y\widehat{k}\right)+\left(-\frac{\partial }{\partial x}\times (x-y)\widehat{k}\right)\][/tex]

Simplifying this, we get:[tex]\[\nabla \times \overrightarrow{v}=(-1)\widehat{k}\][/tex]

Therefore, the vorticity of the given flow is -1.

To know more about vorticity visit :

https://brainly.com/question/31838334

#SPJ11

There is a 30-degree ramp, and on it sits a 250-kg box. The coefficient of friction applicable is 0.22. A force of 5000N is applied horizontal to push it up (the Force is horizontal not parallel to the ramp). What is the acceleration of the box? 12 m/s² 10 m/s² 3.4 m/s² 8.4 m/s² 13 m/s²

Answers

The given mass of the box is 250 kg. Therefore, its weight can be determined by the following formula:

Weight = m * g = 250 * 9.81 = 2452.5 N

The normal force on the box is equal to the component of the weight vector perpendicular to the ramp, which can be calculated as follows:

N = mg * cosθ = 2452.5 * cos(30) = 2124.39 N

The force parallel to the ramp is given by:

F_parallel = F_applied - f = 5000 - μN = 5000 - 0.22 * 2124.39 = 4605.42 N

The acceleration of the box can be determined by the following formula:

a = F_parallel / m = 4605.42 / 250 = 18.42 m/s²

However, the acceleration of the box is not parallel to the ramp, but it is at an angle of 30 degrees with respect to the horizontal. Therefore, the acceleration of the box can be resolved into its components:

a_parallel = a * cosθ = 18.42 * cos(30) = 15.97 m/s²

a_perpendicular = a * sinθ = 18.42 * sin(30) = 9.21 m/s²

The acceleration of the box parallel to the ramp is 15.97 m/s².

To know more about vector perpendicular visit:-

https://brainly.com/question/30367796

#SPJ11

QUESTION 1
QUESTION 2
QUESTION 3
QUESTION 4
What causes the Doppler Effect? O A. A consistent frequency that creates the same pitch. O B. The bunching of waves, then the spreading out of waves creating a change in pitch. O C. The wave behaviour

Answers

The Doppler Effect refers to the change in frequency or pitch of a wave perceived by an observer due to the relative motion between the source of the wave and the observer. It is named after the Austrian physicist Christian Doppler, who first described the phenomenon in 1842.

When a wave source and an observer are in relative motion, the motion affects the perceived frequency of the wave. If the source and the observer are moving closer to each other, the perceived frequency increases, resulting in a higher pitch. This is known as the "Doppler shift to a higher frequency."

On the other hand, if the source and the observer are moving away from each other, the perceived frequency decreases, resulting in a lower pitch. This is called the "Doppler shift to a lower frequency."

The Doppler Effect occurs because the relative motion changes the effective distance between successive wave crests or compressions. When the source is moving toward the observer, the crests of the waves are "bunched up," causing an increase in frequency.

Conversely, when the source is moving away from the observer, the crests are "spread out," leading to a decrease in frequency. This change in frequency is what causes the observed shift in pitch.

In summary, the Doppler Effect is caused by the relative motion between the source of a wave and the observer, resulting in a change in the perceived frequency or pitch of the wave.

To know more about the Doppler Effect, refer here:

https://brainly.com/question/28106478#

#SPJ11

(i) Stars less massive than about 10 Mo end their lives as white dwarfs, while stars with initial masses between 10 and approximately 15 M. become neutron stars. Explain the cause of this difference.

Answers

Stars with an initial mass between 10 and roughly 15 solar masses become neutron stars because of the fusion that occurs in the star's core. less massive stars do not have enough mass to cause the core to collapse and produce a neutron star, so their fate is to become a white dwarf.

When fusion stops, the core of the star collapses and produces a supernova explosion. The supernova explosion throws off the star's outer layers, leaving behind a compact core made up mostly of neutrons, which is called a neutron star. The white dwarf is the fate of stars with an initial mass of less than about 10 solar masses. When a star with a mass of less than about 10 solar masses runs out of nuclear fuel, it produces a planetary nebula. In the final stages of its life, the star will shed its outer layers, exposing its core. The core will then be left behind as a white dwarf. This is the main answer as well. The cause of this difference is determined by the mass of the star. The more massive the star, the higher the pressure and temperature within its core. As a result, fusion reactions occur at a faster rate in more massive stars. When fusion stops, the core of the star collapses, causing a supernova explosion. The remnants of the explosion are the neutron star. However, less massive stars do not have enough mass to cause the core to collapse and produce a neutron star, so their fate is to become a white dwarf.

"Stars less massive than about 10 Mo end their lives as white dwarfs, while stars with initial masses between 10 and approximately 15 M become neutron stars. Explain the cause of this difference", we can say that the mass of the star is the reason for this difference. The higher the mass of the star, the higher the pressure and temperature within its core, and the faster fusion reactions occur. When fusion stops, the core of the star collapses, causing a supernova explosion, and the remnants of the explosion are the neutron star. On the other hand, less massive stars do not have enough mass to cause the core to collapse and produce a neutron star, so their fate is to become a white dwarf.

To know more about mass visit:

brainly.com/question/14651380

#SPJ11

The Nernst Equlibrium Potential:
A. represents the voltage that offsets the chemical energy set up by ATP-dependent pumps
B. is the threshold voltage that increases conductance for that ion
C. Is the potential energy (in mV) when an ion is in electrical equilibrium
D. for sodium is close to the resting membrane potential

Answers

The Nernst Equilibrium Potential is the potential energy (in mV) when an ion is in electrical equilibrium. The correct option is C.

What is the Nernst equilibrium potential?

The Nernst equilibrium potential is a theoretical membrane potential at which the electrical gradient of an ion is precisely counterbalanced by the opposing chemical gradient. For the ion, this means that there is no net flux of the ion through the membrane, and it is at equilibrium.

As a result, this concept defines the voltage at which ion movement would be equal if there were no other forces opposing the movement. For a single ion, the Nernst equilibrium potential may be computed utilizing the following formula:

E ion = (RT/zF) * ln([ion]outside/[ion]inside)

where E ion  represents the Nernst equilibrium potential for an ion, R is the gas constant, T is temperature (in Kelvin), z is the charge of the ion, F is Faraday's constant, and [ion]outside/[ion]inside represents the ion concentration ratio outside/inside the cell.

learn more about potential energy here

https://brainly.com/question/21175118

#SPJ11

k = 1 2 3 4 5 . e/e= 4 3 4.2 2 . . . . • Figure 3.2 If the assembly obeys Bose-Einstein (B-E) statistics instead: (a) Construct a diagram similar to that in Figure 3.2. (7) (b) Explain why the B-E a

Answers

The question asks to construct a diagram similar but this time assuming the assembly follows Bose-Einstein (B-E) statistics. Additionally, it requires an explanation of why the B-E statistics affect the diagram differently compared to the previous scenario.

(a) When the assembly obeys Bose-Einstein statistics, the distribution of particles among different energy states follows a different pattern than in the previous scenario. The diagram, similar to Figure 3.2, would show a different distribution of particles as the energy levels increase. Bose-Einstein statistics allow multiple particles to occupy the same energy state, leading to a different arrangement of energy levels and particle occupation.

(b) Bose-Einstein statistics, unlike classical statistics, take into account the quantum mechanical behavior of particles and their indistinguishability. It allows for the formation of a Bose-Einstein condensate, a state in which a large number of particles occupy the lowest energy state. This behavior is distinct from classical statistics or Fermi-Dirac statistics (which apply to fermions). The B-E statistics favor the accumulation of particles in the lowest energy states, leading to a condensation effect. As a result, the diagram would exhibit a significant number of particles occupying the lowest energy state, forming a condensed region. This behavior is a unique characteristic of particles that follow Bose-Einstein statistics.

Learn more about Bose-Einstein Statistics:

https://brainly.com/question/33288941

#SPJ11

Regarding single-speed bay service layout, which of the following is true?
A. A good working area around a vehicle is necessary
B. All of the above
C. It is bound to operate where vehicle population density is high
D. Designed to achieve continuous repeating of certain types of servicing work
E. The equipment is distributed along a line with a continuous flow of vehicles move along the line

Answers

Regarding single-speed bay service layout, the following statement is true: A good working area around a vehicle is necessary.

Also, the equipment is distributed along a line with a continuous flow of vehicles move along the line. The service layout is designed to achieve continuous repeating of certain types of servicing work. The Single-Speed Bay Service Layout The single-speed bay service layout is designed to achieve a continuous flow of certain types of servicing work.

The layout is achieved through a continuous flow of vehicles moving along the line with the equipment distributed along the line. The continuous flow of work is designed to increase efficiency and minimize downtime in-between jobs.The vehicles move along the line and stop in designated areas where the services can be performed. The layout is necessary to ensure that the vehicles move smoothly and without obstruction throughout the service area.

To know more about layout visit:

https://brainly.com/question/1327497

#SPJ11

thermodynamics and statistical
physics
In atm, what is the partial pressure of oxygen in air at sea level (1 atm of pressure)?

Answers

At sea level, the partial pressure of oxygen in air, at 1 atm pressure is 0.21 atm.

The total pressure of a mixture of gases is equal to the sum of the partial pressures of the individual gases. The pressure exerted by a single gas in a mixture of gases is called its partial pressure.According to the Dalton's Law of Partial Pressures, it can be stated that "In a mixture of gases, each gas exerts a pressure, which is equal to the pressure that the gas would exert if it alone occupied the volume occupied by the mixture.

"Atmospheric pressure at sea levelThe pressure exerted by the Earth's atmosphere at sea level is known as atmospheric pressure. It is also known as barometric pressure, and it can be measured using a barometer. At sea level, atmospheric pressure is roughly 1 atmosphere (atm).

At sea level, the partial pressure of oxygen in air is 0.21 atm, which is roughly 21 percent of the total atmospheric pressure. This indicates that the remaining 79% of the air is made up of other gases, with nitrogen accounting for the vast majority of it.

To know more about oxygen visit:

https://brainly.com/question/33311650

#SPJ11

at electrical synapse conduction of current on the postsynaptic
neuron by means of:
a. binding of an enzyme to the receptor
b. saltatory conduction
c. action potential between muscle fibers

Answers

The conduction of current on the postsynaptic neuron in an electrical synapse occurs through direct flow of ions between the presynaptic and postsynaptic neurons.

In electrical synapses, the conduction of current on the postsynaptic neuron occurs through direct flow of ions between the presynaptic and postsynaptic neurons. These synapses are formed by specialized structures called gap junctions, which create channels between the cells, allowing ions to pass through. The channels are formed by connexin proteins that span the plasma membranes of adjacent neurons.

When an action potential reaches the presynaptic neuron, it depolarizes the cell membrane and triggers the opening of voltage-gated ion channels. This results in the influx of positively charged ions, such as sodium (Na+), into the presynaptic neuron. As a result, the electrical potential of the presynaptic neuron becomes more positive.

Due to the direct connection provided by the gap junctions, these positive ions can flow through the channels into the postsynaptic neuron. This movement of ions generates an electrical current that spreads across the postsynaptic neuron. The current causes depolarization of the postsynaptic membrane, leading to the initiation of an action potential in the postsynaptic neuron.

The strength of the electrical synapse is determined by the size of the gap junctions and the number of connexin proteins present. The larger the gap junctions and the more connexin proteins, the more ions can pass through, resulting in a stronger electrical coupling between the neurons.

at electrical synapses, the conduction of current on the postsynaptic neuron occurs through the direct flow of ions between the presynaptic and postsynaptic neurons via specialized gap junctions. This direct electrical coupling allows for rapid and synchronized transmission of signals. Electrical synapses are particularly important in neural circuits that require fast and coordinated communication, such as in reflex arcs or the synchronization of cardiac muscle cells.

To know more about Electrical synapses , visit:- brainly.com/question/29608633

#SPJ11

Q.4: Consider a point source that emits gamma radiations of energy 8 MeV: ✓(a) Calculate (a) Calculate the number of relaxation lengths of lead needed to decrease the exposure rate 1 m from the sour

Answers

It is given that a point source that emits gamma radiation of energy 8 MeV, and we are required to calculate the number of relaxation lengths of lead needed to decrease the exposure rate 1 m from the source.

So, the first step will be to find the relaxation length of the given source of energy by using the formula: [tex]$${{X}_{0}}=\frac{E}{{{Z}_{1}}{{Z}_{2}}\alpha \rho }$$[/tex]

Where, E is the energy of the gamma radiation, Z1 is the atomic number of the absorber, Z2 is the atomic number of the gamma ray, α is the fine structure constant and ρ is the density of the absorber.

Then, putting the values of the above-given formula, we get; [tex]$${{X}_{0}}=\frac{8MeV}{{{\left( 82 \right)}^{2}}\times 7\times {{10}^{-3}}\times 2.7g/c{{m}^{3}}}\\=0.168cm$$[/tex]

Now, we can use the formula of exposure rate which is given as; [tex]$${{\dot{X}}_{r}}={{\dot{N}}_{\gamma }}\frac{{{\sigma }_{\gamma }}\rho }{{{X}_{0}}}\exp (-\frac{x}{{{X}_{0}}})$$[/tex]

where,[tex]$${{\dot{N}}_{\gamma }}$$[/tex] is the number of photons emitted per second by the source [tex]$${{\sigma }_{\gamma }}$$[/tex]

is the photon interaction cross-section for the medium we are interested inρ is the density of the medium under consideration x is the thickness of the medium in cm

[tex]$$\exp (-\frac{x}{{{X}_{0}}})$$[/tex] is the fractional attenuation of the gamma rays within the mediumTherefore, the number of relaxation lengths will be found out by using the following formula;

[tex]$$\exp (-\frac{x}{{{X}_{0}}})=\frac{{{\dot{X}}}_{r}}{{{\dot{X}}}_{r,0}}$$\\\\ \\$${{\dot{X}}}_{r,0}$$[/tex]

= the exposure rate at x = 0.

Hence, putting the values of the above-given formula, we get

[tex]$$\exp (-\frac{x}{{{X}_{0}}})=\frac{1\;mrad/h}{36\;mrad/h\\}\\=0.028$$[/tex]

Taking natural logs on both sides, we get

[tex]$$-\frac{x}{{{X}_{0}}}=ln\left( 0.028 \right)$$[/tex]

Therefore

[tex]$$x=4.07\;{{X}_{0}}=0.686cm$$[/tex]

Hence, the number of relaxation lengths required will be;

[tex]$$\frac{0.686}{0.168}\\=4.083$$[/tex]

The calculation of relaxation length and number of relaxation lengths is given above. Gamma rays are energetic photons of ionizing radiation which is dangerous for human beings. Hence it is important to decrease the exposure rate of gamma rays. For this purpose, lead is used which is a good absorber of gamma rays. In the given problem, we have calculated the number of relaxation lengths of lead required to decrease the exposure rate from the gamma rays of energy 8 MeV.

The calculation is done by first finding the relaxation length of the given source of energy. Then the formula of exposure rate was used to find the number of relaxation lengths required. Hence, the solution of the given problem is that 4.083 relaxation lengths of lead are required to decrease the exposure rate of gamma rays of energy 8 MeV to 1 m from the source

Therefore, the answer to the given question is that 4.083 relaxation lengths of lead are required to decrease the exposure rate of gamma rays of energy 8 MeV to 1 m from the source.

Learn more about gamma radiation here:

brainly.com/question/29855186

#SPJ11

A certain pump is used to deliver 150gpm of water having a density of 61.21 b/ft³. The suction and discharge gage reads 4inHg vacuum and 25psi respectively. The discharge gage is 2ft above the suction gage. What is the brake power of the motor if pump efficiency is 75%?

Answers

The brake power of the motor is approximately 22.4 horsepower.

To calculate the brake power of the motor, we need to consider the flow rate, pressure, and efficiency of the pump. The flow rate is given as 150 gallons per minute (gpm), which needs to be converted to cubic feet per second (ft³/s). Since 1 gallon is approximately equal to 0.1337 ft³, the flow rate becomes 150 * 0.1337 = 20.055 ft³/s.

Next, we need to calculate the total head of the pump. The total head can be determined by adding the pressure head and the elevation head. The pressure head is the difference between the discharge pressure and the suction pressure. In this case, the discharge pressure is given as 25 psi, which is equivalent to 25 * 144 = 3600 pounds per square foot (psf). The suction pressure is 4 inHg vacuum, which is approximately -0.11 psi, or -0.11 * 144 = -15.84 psf. The pressure head is then 3600 - (-15.84) = 3615.84 psf.

The elevation head is the difference in height between the discharge and suction gauges. In this case, the discharge gauge is 2 feet above the suction gauge. Since the density of water is given as 61.21 lb/ft³, the elevation head is 2 * 61.21 = 122.42 psf.

Now, we can calculate the total head by adding the pressure head and the elevation head: 3615.84 + 122.42 = 3738.26 psf.

Finally, we can calculate the brake power of the motor using the formula:

Brake power (in horsepower) = (Flow rate * Total head * Density) / (3960 * Efficiency)

Substituting the values, we have:

Brake power = (20.055 * 3738.26 * 61.21) / (3960 * 0.75) ≈ 22.4 horsepower.

Therefore, the brake power of the motor is approximately 22.4 horsepower.

Learn more about: Power

brainly.com/question/29575208

#SPJ11

Can you please be fast and answer all the the question correctly? Thank you. 4) Determine the mutual inductance between an infinite straight conducting wire and a conducting square loop

Answers

The mutual inductance between an infinite straight conducting wire and a conducting square loop is given by μ₀a²/2πd.

Mutual inductance is the main operating principle of generators, motors and transformers. Any electrical device having components that tend to interact with another magnetic field also follows the same principle. The interaction is usually brought about by a mutual induction where the current flowing in one coil generates a voltage in a secondary coil.

The mutual inductance between an infinite straight conducting wire and a conducting square loop can be determined as follows:

Explanation:

Given data: The current in an infinite wire is I and a square loop of side 'a' and a resistance of R is placed parallel to it. The distance between the wire and the center of the square loop is 'd'.

The magnetic field B at a point P at a distance 'x' from the center of the wire is given by:

B = μ₀I/2πx,

where μ₀ is the permeability of free space.

The magnetic flux through the square loop is given by:

Φ = BA,

where A is the area of the square loop.

Using the above equations, we can calculate the mutual inductance M between the wire and the square loop:

M = Φ/I = BA/I= μ₀A/2πd...[1]

Substituting A = a², we get:

M = μ₀a²/2πd

Therefore, the mutual inductance between an infinite straight conducting wire and a conducting square loop is given by μ₀a²/2πd.

To know more about mutual inductance, visit:

https://brainly.com/question/28585496

#SPJ11

You add 20∘C water to 0.20 kg of 40∘C soup. After a little mixing, the water and soup mixture is at 34∘C. The specific heat of the soup is 3800 J/kg⋅∘C and specific heat of the water is 4180 J/kg⋅∘C.
A.) Determine the mass of the water.
B.) Determine the charge in the thermal energy of the water.
C.) Determine the change in the thermal energy of the soup.

Answers

To solve the given problem, we can use the principle of conservation of energy, which states that the total energy of an isolated system remains constant.

A) To find the mass of the water, we can use the equation:

m1 * c1 * ΔT1 = m2 * c2 * ΔT2

where m1 and m2 represent the masses of the water and soup, c1 and c2 are the specific heats, and ΔT1 and ΔT2 are the temperature changes.

Plugging in the given values:

(0.20 kg) * (4180 J/kg⋅∘C) * (34∘C - 20∘C) = m2 * (3800 J/kg⋅∘C) * (34∘C - 40∘C)

Solving for m2, the mass of the water:

m2 ≈ 0.065 kg

B) The change in thermal energy of the water can be calculated using the formula:

ΔQ = m2 * c2 * ΔT2

ΔQ = (0.065 kg) * (4180 J/kg⋅∘C) * (34∘C - 40∘C) ≈ -1611 J

C) The change in thermal energy of the soup can be determined using the equation:

ΔQ = m1 * c1 * ΔT1

ΔQ = (0.20 kg) * (3800 J/kg⋅∘C) * (34∘C - 20∘C) ≈ 1296 J

to learn more about energy click here:brainly.com/question/8630757

#SPJ11

Other Questions
The number of significant digits is set to 3. The tolerance is+-1 in the 3rd significant digit.The 590-kg uniform I-beam supports the load shown. Determine the reactions at the supports. Answers: Ax= Ay= By= IM i i -5.5 m- 3.5 m 265 kg B N N N Explain the relationship between wage and labor supply? What doesincome and substitution effect mean? What can cause income effectto be greater than substitution effect? and the opposite. Which is an example of someone who is cyclically unemployed?A) a geologist who is permanently laid off from an oil companydue to a new technological advanceB) a real estate agent who leaves a job i 3. How many green?. 3 How many albino? 4. What is the ratio of green to albino?3/1 Reduce your ratio by dividing green by albino, and round to one decimal place. 3.0 5. How closely does the observed corn seedlings ratio agree with the expected phenotypic ratio calculated previously? 6. What will happen to all the albino seedlings? Explain. 7. Since the albinos die before they can reproduce, how does the trait of albinism continue in some plant populations? In an aqueous solution of a certain acid with pK = 6.59 the pH is 4.06. Calculate the percent of the acid that is dissociated in this solution. Round your answer to 2 significant digits. % x10 X ? Compare the similarities and differences of the forelimbs andhindlimbs of shark, milkfish, frog, turtle, chicken and cat. hican you shownme how to do these problems i would greatly appreciateitand will give you a reviewThe initial activity for a radionuclide with a half life of 5.26 days is 15.0 mci. Calculate the activity after 158 hours. A radionuclide with a decay constant of 0.05/month has an activity of 26.0 1. The protocol used by Harju et al. (2004) extracts total nucleic acids, i.e. DNA and RNA. In most cases we also need to do an additional step to ensure that we only end up with pure DNA. Giveone way in which we can eliminate RNA from a DNA sample.2. What does chloroform do in nucleic acid extraction?3. Protocols in isolating DNA often involve the use of two kinds of ethanol, 100% ethanol and 70% ethanol, in succession. What happens during these steps and why are they essential?4. Spectrophotometric detection of nucleic acids require readings at wavelengths of 260nm, and 280nm. What is the significance of these wavelengths?5. At what ratio of A260/280 can we say that DNA is pure? What about RNA and protein?6. While spectrophotometric methods are effective at detecting DNA, a more sensitive but expensive technique called fluorometry is used in sensitive applications. What is the principle behind fluorometry and why is it better than spectrophotometry in detecting DNA? During the period of economic recovery between 1983 and 1987 , the main challenge for the Bank of Canada was to a. Stabilize the exchange rate between the U.S. and Canadian dollars. b. decrease the money supply to dampen inflationary expectations. c. increase the money supply so that only a mild form of inflation would reappear. d. accommodate the recovery, and the associated growth in money demand, without increasing the money supply so much as to refuel inflation. e. stabilize the unemployment rate. 8. The suitable length of working time per day depends on: A. type and intense of work B. the way works is organized within social customs (2 Points) a.B b.A c.Bothd. None 19. to fit equipment and tasks to a persons of various body sizes, requires A: anthropometric data B: proper design procedure (2 Points)a. A and B, but B is optional information b.B c.A d.Both Steam enters a diffuster steadily at a pressure of 400 psia and a temperature of Tdiffuser = 500.0 F. The velocity of the steam at the inlet is Veldiffuser 80.0 ft s = and the mass flow rate is 5 lbm/s. What is the inlet area of the diffuser? ANS: 11.57in^2 Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10MPa and 5008C and is cooled in the condenser at a pressure of 10kPa. Sketch the cycle on a T-s diagram with respect to saturation lines, and determine: (a) the quality of the steam at the turbine exit, (b) the thermal efficiency of the cycle, (c) the mass flow rate of the steam. (d) Repeat Prob. (a)-(c) assuming an isentropic efficiency of 85 percent for both the turbine and the pump. Given \( f(x)=-x+2 \) and \( g(x)=2 x^{2}-3 x \), determine an explicit equation for each composite function, then state its domain and range. a) \( f(g(x)) \) b) \( g(f(x)) \) c) \( f(f(x)) \) d) \( 2. Consider a silicon JFET having an n-channel region of donor concentration 1x10 cm. (a) Determine the width of the n-channel region for a pinch-off voltage of 12 V. (b) What would the necessary drain voltage (VD) be if the gate voltage is -9 V? (c) Assume the width of the n-channel region to be 40 m. If no gate voltage is applied, what is the minimum necessary drain voltage for pinch-off to occur? (d) Assume a rectangular n-channel of length 1 mm. What would be the magnitude of the electric field in the channel for case (c) above? Energetics [20] a) Graphically illustrate the influence of body mass on total metabolic rate of mammals (graph axes should be appropriately labelled). State the exponential equation that describes the relationship you have drawn? Explain the use of allometric scaling relationships and how can they be used to infer adaptation? [8] + b) Discuss the selective pressurer (climato ar Atom Transfer Radical Polymerization (ATRP) is a versatile and robust free radical polymerization process employed for the preparation of polymers with controlled number average molecular weights, narrow molecular weight distributions and regiospecific introduction of the functional groups. (a) Briefly discuss the key features of the Atom Transfer Radical Polymerization method. (b) (c) (d) (e) Formulate a detailed mechanism for the Atom Transfer Radical Polymerization process. Using the ATRP method, briefly outline reaction pathways for the preparation of the following polymers. (1) poly(p-bromostyrene) poly(2-hydroxyethyl methacrylate) (iii) a-carboxyl functionalized polystyrene (iv) w-amine functionalized poly(methyl methacrylate) What is a thermoresponsive polymer? Outline a reaction pathway for the preparation of poly(N-isopropylacrylamide) by ATRP methods. 31 What is macromer or macromonomer? Briefly outline the reaction pathway for the preparation of poly(styrene-g-poly(methyl methacrylate) by ATRP methods. (35) Course: Power Generation and ControlPlease ASAP I will like and rate your work.if we impose a transmission line limit of 500 MW on line 1-3, a new constraint should be added as 500 MW = (Base Power)*(01-03)/X13- Select one: O True O False Question [3] (a) Explain why rubber is effective in providing good mountings for delicate instruments etc. (6) (b) A delicate instrument with a mass of 1.2kg is mounted onto a vibrating plate using rubber mounts with a total stiffness of 3kN/m and a damping coefficient of 200Ns/m. (1) If the plate begins vibrating and the frequency is increased from zero to 650Hz. Sketch a graph of the amplitude of vibrations of the instrument versus the plate frequency highlighting any significant features. (5) (ii) Indicate on the graph what the effect of changing the rubber mounts with equivalent steel springs of similar stiffness would have on the response. (2) (c) Determine the maximum amplitude of vibrations of the instrument when the plate is vibrated with an amplitude of 10mm. (4) (d) Determine the maximum velocity and acceleration of the instrument (3) (e) Describe in detail 3 ways of reducing the amplitude of vibrations of the instrument (5) A velocity compounded impulse turbine has two rows of moving blades with a row of fixed blades between them. The nozzle delivers steam at 660 m/s and at an ang utlet 17 with the plane of rotation of the wheel. The first row of moving blades has an outlet angle of 18 and the second row has an outlet angle of 36. The row of fixed blades has an outlet angle of 22. The mean radius of the blade wheel is 155 mm and it rotates at 4 000 r/min. The steam flow rate is 80 kg/min and its velocity is reduced by 10% over all the blades.Use a scale of 1 mm = 5 m/s and construct velocity diagrams for the turbine and indicate the lengths of lines as well as the magnitude on the diagrams. Determine the following from the velocity diagrams:The axial thrust on the shaft in N The total force applied on the blades in the direction of the wheel in NThe power developed by the turbine in kW The blading efficiency The average blade velocity in m/s How is the structure of the lamprey's gills adapted to their function? Give at least 3 exemples, please.