Answer:
The answer is "Choice C ".
Explanation:
The relationship between the E and V can be defined as follows:
[tex]\to E= -\Delta V[/tex]
Let,
[tex]\to E= \frac{\delta V}{\delta x}[/tex]
When E=0
[tex]\to \frac{\delta V}{\delta x}=0[/tex]
v is a constant value
Therefore, In the electric potential in a region is a constant value then the electric-field must be into zero that is everywhere in the given region, that's why in this question the "choice c" is correct.
is 250 000 miles from the earth to the moon" is a qualitative
Observation
TRUE
Or false
Answer:
True
Explanation:
- .
?
y
(っ◔◡◔)っ ♥ chose the answer with the question marks ♥
Answer:
okay I'm a bit confused but I like the little emoji dudw
Answer:
?
Explanation:
.
An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance.
Show two data points from your simulation that demonstrate this behavior.
I1 V1 I2= 2I1 V2=2V1 V1/ I1 =V2/I2
For the light bulb, why is it better to take more measurements in the range 20mA < I < 40mA, instead of just taking equally spaced measurements in the entire range of 0 mA < I< 55mA
Answer:
hello your question is incomplete attached below is the complete and the required circuit diagrams
answer :
Ai) This proves that when the current across the resistor is doubled the value of the voltage across the resistor doubles as well
B) It is better to take more measurements in the range 20mA < I < 40mA because of the amount of temperature reached by the bulb and the change in resistance is affected by the temperature
hence At 0 mA current, there won't be any noticeable change
Explanation:
Ai) The voltage across the resistor will double when you double the current through the resistor
Given that : V = I*R.
lets assume : I = 2 amperes , R = 3 ohms
V = 2*3 = 6 v
secondly lets assume double the value of (I) i.e. I = 4 amperes
hence : V = 4*3 = 12 volts
This proves that when the current across the resistor is doubled the value of the voltage across the resistor doubles as well
Aii) Showing the two data points from simulation
I1 V1 I2= 2I1 V2=2V1 V1/ I1 =V2/I2
0.9*10^3 9 * 10^3 1.8*10^3 18*10^3 10 ohms
1.6 * 10^3 16 * 10^3 3.2*10^3 32*10^3 10 ohms
B) It is better to take more measurements in the range 20mA < I < 40mA because of the amount of temperature reached by the bulb and the change in resistance is affected by the temperature
hence At 0 mA current, there won't be any noticeable change
The masses of astronauts are monitored during long stays in orbit, such as when visiting a space station. The astronaut is strapped into a chair that is attached to the space station by springs and the period of oscillation of the chair in a friction-less track is measured.
(a) The period of oscillation of the 10.0 kg chair when empty is 0.750 s. What is the effective force constant of the springs?
(b) What is the mass of an astronaut who has an oscillation period of 2.00 s when in the chair?
(c) The movement of the space station should be negligible. Find the maximum displacement of the 100,000 kg sace station if the astronaut's motion has an amplitude of 0.100 m.
Answer:
a) k = 701.8 N / m, b) m_{ast} = 61.1 kg, c) v ’= -1.3 10⁻⁴ m / s
Explanation:
a) For this exercise let's use the relationship of the angular velocity
w = [tex]\sqrt{ \frac{k}{m} }[/tex]
k = w² m
the angular velocity is related to the period
w = 2π / T
we substitute
k = 4 π² [tex]\frac{m}{T^2}[/tex]
let's calculate
k = 4 π² 10 /0.75²
k = 701.8 N / m
b) now repeat the measurement with an astronaut on the chair
w = [tex]\sqrt{ \frac{k}{m} }[/tex]
where the mass Month the mass of the chair plus the mass of the astronaut
M = m + [tex]m_{ast}[/tex]
M = k / w²
w = 2π / T
let's calculate
w = 2π / 2
w = π rad / s
M = 701.8 /π²
M = 71,111 kg
now we use that
M = m + m_{ast}
m_{ast} = M - m
m_{ast} = 71.111 - 10.0
m_{ast} = 61.1 kg
c) if the astronaut's movement is simple harmonic
x = A cos wt
therefore the speed is
v = [tex]\frac{dx}{dt}[/tex]
v = -Aw sin wt
maximum speed is
v = - Aw
v = 0.100 π
v = 0.31416 m / s
we can suppose that the movement of the space station and the astronaut is equivalent to division of the same
initial instant. Before the move
p₀ = 0
final instant. When the astronaut is moving
p_f = M_station v’+ m_{ast} v
the moment is preserved
p₀ = pf
0 = M__{station} v ’+ m_{ast} v
v ’= - [tex]\frac{m_{ast} }{M_{station} } \ v[/tex]
we substitute
v ’= [tex]\frac{61.1 }{ 100000 } \ 0.31416[/tex]
v ’= -1.3 10⁻⁴ m / s
the negative sign indicates that the station is moving in the opposite direction from the astronaut
Which statement best compares potential and kinetic energy?
O Objects always have more potentiał energy than kinetic energy.
O Kinetic energy increases and potential energy decreases when the velocity of an object increases
O Only potential energy decreases when an object's height increases.
O Objects always have more kinetic energy than potential energy.
Answer:
Kinetic energy increases and potential energy decrease when velocity of an object increase.
What is the acceleration of a car that goes from 0 MS to 60 MS and six seconds
Which is an example of kinetic energy?
A. The energy stored in
ethanol
B. A ball sitting at the top of a ramp
C. A compressed spring
D. A hockey puck sliding across ice
D. A hockey puck sliding across ice
if a car travels 200 m to the east in 8.0 s what is the cars average velocity?
Answer:
25 m/s
Explanation:
200/8 = 25
An accelerometer has a damping ratio of 0.5 and a natural frequency of 18,000 Hz. It is used to sense the relative displacement of a beam to which it is attached. (a)If an impact to the beam imparts a vibration at 4500 Hz, calculate the dynamic error and phase shift in the accelerometer output. (b)Calculateits resonance frequency.(c)What isthe maximumpossiblemagnitude ratio that the system can achieve
Answer:
A) i) Dynamic error ≈ 3.1%
ii) phase shift ≈ -12°
B) 79971.89 rad/s
Explanation:
Given data :
Damping ratio = 0.5
natural frequency = 18,000 Hz
a) Calculate the dynamic error and phase shift in accelerometer output at an impart vibration of 4500 Hz
i) Dynamic error
This can be calculated using magnitude ratio formula attached below is the solution
dynamic error ≈ 3.1%
ii) phase shift
This phase shift can be calculated using frequency dependent phase shift formula
phase shift ≈ -12°
B) Determine resonance frequency
Wr = 2[tex]\pi[/tex] ( 18000 [tex]\sqrt{0.5}[/tex] ) = 79971.89 rad/s
C) The maximum magnitude ratio that the system can achieve
Explain why two electric charges of the same magnitude, when on a collision course with each other, won't actually collide
(serious answers only)
Answer:
Explanation:
When two charges of equal magnitude and sign approach each other, they interact through Coulomb's law
F = [tex]k \frac{q_ 1q_2}{z^2 }[/tex]k q1 q2 / r2
In you case the house are of equal magnitude and sign
q1 = q2 = q
F = k q2 / r2
Let's analyze this expression, the charge is repulsive on each charge, when they are on a collision course as they approach they feel an electric field opposite to their direction of movement, this field decreases its speed, the closer they get, the greater the repulsive force. , up to the point where this force is equal to or greater than the impulse, therefore the point where the velocity reaches zero, for this reason the particles do not actually touch
A student is conducting an experiment to compare the resistivity of two unknown materials by using two wires, each made of one of the materials and each connected in a circuit. The student measures the potential difference across and current in the wires. What must be the same to be able to compare the resistivities using just the potential difference and current measurements?
Answer:
is there a. b. c or d?
Explanation:
Derase
An electric heater Consumes 1.8 MJ When connected to a 250V supply for 30 minutes. Find the power rating of the heater and the current taken from the supply
Answer:
a. Power = 1000 Watts or 1 Kilowatts.
b. Current = 4 Amperes.
Explanation:
Given the following data;
Energy consumed = 1.8MJ = 1.8 × 10^6 = 1800000 Joules
Voltage = 250V
Time = 30 minutes to seconds = 30 * 60 = 1800 seconds
To find the power rating;
Power = energy/time
Substituting into the equation, we have;
Power = 1800000/1800
Power = 1000 Watts or 1 Kilowatts.
b. To find the current taken from the supply;
Power = current * voltage
1000 = current * 250
Current = 1000/250
Current = 4 Amperes.
A storage tank has the shape of an inverted circular cone with height 12 m and base radius of 4 m. It is filled with water to a height of 10 m. Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is 1000 kg/m3. Assume g
Answer:
Work required to empty the tank by pumping all of the water to the top of the tank = 1674700 Kgm/s^2
Explanation:
Volume of Circular cone = V = (1/3)πr2h
where r is the radius in meters
and h is the height in meters
Substituting the given values in above equation, we get -
V = [tex]\frac{1}{3} * 3.14 * 4^2 * 10 = 167.47[/tex] cubic meters.
The force required will be equal to the mass of water in the cone
[tex]= 167.47 * 1000[/tex]
= 167470 Kg
Weight = Mass * g
= 167470 * 10
= 1674700 Kgm/s^2
Given that Carbon-14 has a half-life of 5700 years, determine how long it would take for
this reduction to occur.
Answer:It will take about 3000 years
Explanation:
The current flow in the light bulb is 0.5A
a.Calculate the amount of electric charge that flow through the bulb in 2 hour
b.If one election carries a
charge 1.6 x 10-14 c Find the number of election through the bulb in 2 hour?
Answer:
Explanation:
Given that,
The current in the light bulb, I = 0.5 A
(a) We know that,
Electric current = charge/time
or
Q = It
Put t = 2 hours = 7200 s
So,
Q = 0.5 × 7200
Q = 3600 C
(b) Charge on one electron, [tex]Q=1.6\times 10^{-19}\ C[/tex]
Let there are n electrons flow through the bulb in 2 hours.
I = Q/t
Since, Q = ne
So,
I = ne/t
[tex]n=\dfrac{I\times t}{e}\\\\n=\dfrac{0.5\times 7200}{1.6\times 10^{-19}}\\\\n=2.25\times 10^{22}[/tex]
Hence, this is the required solution.
Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of 12 X10^-9 C and the other is given a charge of -18 X 10^-9 C. a. Find the electric force exerted on one sphere by the other. b. The sphere are connected by a conducting wire. After equilibrium has occurred, find the electric force between the two spheres.
Answer:
Explanation:
Force between two charged conducting sphere
= k x Q₁ x Q₂ / r² , k is a constant Q₁ and Q₂ are charges and r is distance between them .
= 9 x 10⁹ x 12 x 10⁻⁹ x 18 x 10⁻⁹ / .30²
= 21600 x 10⁻⁹
= 2.16 x 10⁻⁵ N .
b )
After the spheres are joined together , there is redistribution of charge and remaining charge will be equally shared by them .
Charge on each sphere = (12 - 18 ) x 10⁻⁹ / 2
= - 3 x 10⁻⁹ C .
Force = 9 x 10⁹ x 3 x 10⁻⁹ x 3 x 10⁻⁹ / .30²
= 900 x 10⁻⁹ N .
If you have a 0.125 kg lead piece at
20.0°C, how much heat must you
add to melt it? (Remember, you
must warm it to its melting point
first.)
Material
Lead
Melt Pt (°C)
327
L (1/kg)
2.32.104
Boil Pt (°C) Lv (1/kg)
1750 8.59.105
c (1/(kg*c)
128
(Unit = J)
Answer:
7,812 J
Explanation:
Using the relation:
Q = mcΔθ
Q = quantity of heat
C = specific heat capacity of lead
Δθ = temperature change (T2 - T1)
M = mass of substance
Q = mass * specific heat * Δθ
Q = 0.125kg * 128 * (327 – 20)
Q = 0.125 * 128 * 307
Q = 4912 J
For melting:
Q = mass * Hf
0.125 * (2.32 * 10^4)
= 2,900 J
Total = 4,912 J + 2,900 J = 7,812 J
A 450.0 kg roller coaster is traveling in a circle with radius 15.0m. Its speed at point A is 28.0m/s and its speed at point B is 14.0 m/s. At point A the cart is already moving with circular motion. a) Draw free bodydiagramsfor the cartatpointsAand B(two separate free body diagrams). b) Calculate the acceleration of the cartat pointsAandB(magnitude and direction). c) Calculate the magnitude of the normal force exerted by the trackson the cartat point A. d) Calculate the magnitude of the normal force exerted by the tracks on the cart at point B.
Answer:
b) a = 52.26 m / s², a ’= 13.06 m / s², c) N = 2.79 10⁴ N, d) N = 1.89 10³ N
Explanation:
a) In the attached we can see the free body diagrams for the two positions, position A in the lower part of the circle and position B in the upper part of the circle
b) Let's start at point A
Let's use that the acceleration is centripetal
a = v² / r
let's calculate
a = 28² / 15.0
a = 52.26 m / s²
as they relate it is centripetal it is directed towards the center of the circle, therefore for this point it is directed vertically upwards
Point B
a ’= 142/15
a ’= 13.06 m / s²
in this case the acceleration is vertical downwards
c) The values of the normal force
point A
let's use Newton's second law
∑ F = m a
N- W = m a
N = mg + ma
N = m (g + a)
N = 450.0 (9.8 + 52.25)
N = 2.79 10⁴ N
d) Point B
-N -W = m (-a)
N = ma -m g
N = m (a-g)
N = 450.0 (14.0 - 9.8)
N = 1.89 10³ N
2. Using a giant screw, a crew does 650 J of work to drill a hole into a rock.
The screw does 65 J of work. What is the efficiency of the screw? Show your
work. Hellpppp
Answer:
42,250
Explanation:
It goes inside=
Displacemt
It does work=
Work done
To find efficiency of jule we do=
Dicplacement × Work done
650 × 65
42,250
Please mark me as a brainlist
how many pennies can 4 folds of a paper hold?
A garbage truck and a minivan are moving at the same velocity.
Which automobile will have greater momentum and why? Explain your response using Newton’s second law of motion specifically.
If the garbage truck and minivan in Part A get into an accident with each other, how can safety restraints in a car can save a life? Explain your response using one of Newton’s laws.
Which of Newton’s laws of motion act upon the vehicles at the point of impact? Explain your answer.
Answer:
Part A
Newton's second law of motion states that the force applied to an object is directly proportional to the rate of change of momentum that is produced
Mathematically, we have;
F = m·v - m·u/Δt
Where;
m = The mass of the object
v = The final velocity of the object
u = The initial velocity of the object
Δt = The duration of motion of the object during change in velocity
Therefore, given that the mass, 'M', of the truck is larger than the mass, 'm', of the minivan, where the time of change in velocity Δt, and the initial and final velocities of both automobiles are the same such as in a sudden stop, the garbage ruck will exert more force than the minivan, and therefore, the garbage truck has a greater initial momentum before the automobiles are brought to a stop
Part B;
According to Newton's first law of motion, we have;
The use of a seat belt (and airbag for front seated passengers) will prevent dashboard or windscreen for the front passengers or the front seat for the passengers in the back, from being the item that stops the continued forward motion of the passengers in the car, which can lead to injury
Part C; The Newton's law of motion that act on a body at the point of impact is Newton's third law of motion, which states that the action and reaction are equal and opposite
Therefore, the action of the garbage truck on the minivan upon impact is equal to the reaction of the minivan to the force the garbage truck exerts on the minivan
Explanation:
Help plsssssssssss I write it 100 time no one answer
Answer:
1.93×10²⁸ s
Explanation:
From the question given above, the following data were obtained:
Number of electron (e) = 2×10²⁴
Current (I) = 10 A
Time (t) =?
Next, we shall determine the quantity of electricity flowing through pasing through the point. This can be obtained as follow:
1 e = 96500 C
Therefore,
2×10²⁴ e = 2×10²⁴ e × 96500 / 1 e
2×10²⁴ e = 1.93×10²⁹ C
Thus, 1.93×10²⁹ C of electricity is passing through the point.
Finally, we shall determine the time. This can be obtained as follow:
Current (I) = 10 A
Quantity of electricity = 1.93×10²⁹ C
Time (t) =?
Q = it
1.93×10²⁹ = 10 × t
Divide both side by 10
t = 1.93×10²⁹ / 10
t = 1.93×10²⁸ s
Thus, it took 1.93×10²⁸ s for 2×10²⁴ electrons to pass through the point
Please help 25 points!
Three waves with frequencies of 1 Hertz (Hz), 3 Hz, and 9Hz travel at the same speed. Which of the following statements is correct?
A. The 1 Hz wave contains the most energy.
B. The crests of all three waves are of equal height.
C. The wavelength of the 9Hz wave is three times that of the 3 Hz wave.
D. The 1 Hz wave has the longest wavelength.
Answer:
B
Explanation:
The crest of all three waves are of equal height
You and a friend each hold a lump of wet clay. Each lump has a mass of 30 grams. You each toss your lump of clay into the air, where the lumps collide and stick together. Just before the impact, the velocity of one lump was < 3, 3, -3 > m/s, and the velocity of the other lump was < -4, 0, -4 > m/s. What is the velocity of the stuck-together lump just after the collision
Answer:
[tex]<-0.5, 1.5, -3.5>\ \text{m/s}[/tex]
Explanation:
[tex]u_1[/tex] = Velocity of one lump = [tex]3x+3y-3z[/tex]
[tex]u_2[/tex] = Velocity of the other lump = [tex]-4x+0y-4z[/tex]
m = Mass of each lump = [tex]30\ \text{g}[/tex]
The collision is perfectly inelastic as the lumps stick to each other so we have the relation
[tex]mu_1+mu_2=(m+m)v\\\Rightarrow m(u_1+u_2)=2mv\\\Rightarrow v=\dfrac{u_1+u_2}{2}\\\Rightarrow v=\dfrac{3x+3y-3z-4x+0y-4z}{2}\\\Rightarrow v=-0.5x+1.5y-3.5z=<-0.5, 1.5, -3.5>\ \text{m/s}[/tex]
The velocity of the stuck-together lump just after the collision is [tex]<-0.5, 1.5, -3.5>\ \text{m/s}[/tex].
What two air masses creates hurricanes?
Answer:
The warm seas create a large humid air mass. The warm air rises and forms a low pressure cell, known as a tropical depression.
Explanation:
Hurricanes arise in the tropical latitudes (between 10 degrees and 25 degrees N) in summer and autumn when sea surface temperature are 28 degrees C (82 degrees F) or higher.
Answer:
air
Explanation:
QUCIK!! SOMEONE PLEASE HELP! I’LL MARK BRAINLIEST!!
Answer:
A. v = √2gh
B. No! The final velocity does not depend on the mass of the car.
C. Yes! the final velocity depends on the steepness of the hill
D. 3.28 m/s
Explanation:
A. Determination of the final velocity.
½mv² = mgh
Cancel out m
½v² = gh
Cross multiply
v² = 2gh
Take the square root of both side
v = √2gh
B. Considering the formula obtained for the final velocity i.e
v = √2gh
We can see that there is no mass (m) in the formula.
Thus, the final velocity does not depend on the mass of the car.
C. Considering the formula obtained for the final velocity i.e
v = √2gh
We can see that there is height (h) in the formula.
Thus, the final velocity depends on the steepness of the hill
D. Determination of the final velocity.
Height (h) = 0.55 m
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) =?
v = √2gh
v = √(2 × 9.8 × 0.55)
v = √10.78
v = 3.28 m/s
Calculate the magnitude of the gravitational force exerted by Mercury on a 70 kg human standing on the surface of Mercury. (The mass of Mercury is 3.31023 kg and its radius is 2.4106 m.)
Answer:
2.66×10⁻⁹ N.
Explanation:
From the question,
Applying newton's law of universal gravitation,
Fg = GMm/r²............................... Equation 1
Where Fg = gravitational force, G = universal constant, M = mass of the mercury, m = mass of the human, r = radius of Mercury
Given: M = 3.31023 kg, M = 70 kg, r = 2.4106
Constant: G = 6.67×10⁻¹¹ Nm²/kg²
Substitute these values into equation 1
Fg = 6.67×10⁻¹¹(70×3.31023)/(2.4106²)
Fg = 2.66×10⁻⁹ N.
A soccer ball was kicked over the edge of a wall and traveled 35 m horizontally at a speed of 5.6m/s. Calculate the vertical height of the wall.
Answer:
Are you sure it was soccer ball? Or meine hearts
Explanation:
A solar panel is used to collect energy from the sun and change it into other forms of energy. The picture below shows some solar panels on the roof of a building. Which form of energy to collected by the solar panels?
A. Wind
B. sound
C. Magnetic
D. Light