which one of the following statements is not correct about twinning?
A. Twinning is observed visually as wide bands under the microscope that cannot be eliminated by polishing
B. The atoms in specific plans move more than one atomic spacing.
C. Crystallographic planes will change their orientation to form a new latest arrangement
D. There is no threshold value for the shear stress to initiate atomic movements
E. It can only occurs in metals, having HCP or BCC crystal structures
F. None of the above.

Answers

Answer 1

It can only occur in metals, having HCP or BCC crystal structures.

The statement that is not correct about twinning is: E.

In crystallography, twinning is the occurrence of two or more crystal structures with the same or nearly same atomic arrangements that are intergrown. Twinning is a phenomenon in which crystal lattices form "mirror image" intergrowths.Twinning can happen in any crystal structure, including face-centered cubic (FCC) and body-centered cubic (BCC) structures. As a result, statement E, which states that twinning can only occur in metals with HCP or BCC crystal structures, is incorrect. Statement A is correct because wide bands appear under a microscope, and these bands cannot be eliminated by polishing.

Statement B is also accurate because atoms in specific plans move more than one atomic spacing, which is known as shear. Statement C is true because when twinning occurs, crystallographic planes shift their orientation to produce a new crystal arrangement. Statement D is also correct because there is no shear stress threshold required to initiate atomic motion during twinning. Finally, statement F is incorrect because not all of the above statements are incorrect; rather, only one of them is wrong. Therefore, the correct option is E.

To know more about BCC crystal structures visit:-

https://brainly.com/question/32823686

#SPJ11


Related Questions

QUESTION 13 Consider the functional group shown below. In what level of protein structure is it involved? -SH

Answers

The functional group -SH, known as a thiol group, is involved in the formation of disulfide bonds, which contribute to the stabilization and structure of proteins at the tertiary level.

The -SH group refers to a thiol group, which consists of a sulfur atom bonded to a hydrogen atom (-SH). Thiol groups can form covalent bonds with each other, resulting in the formation of disulfide bonds (-S-S-) between two cysteine residues in a protein chain. These disulfide bonds play a significant role in stabilizing the tertiary structure of proteins.

Protein structure is organized into four levels: primary, secondary, tertiary, and quaternary. The primary structure refers to the linear sequence of amino acids in a protein chain. The secondary structure involves the folding of the polypeptide chain into regular structures like alpha helices and beta sheets. The tertiary structure represents the overall 3D folding of a single polypeptide chain, and it is at this level that the -SH group of cysteine residues can participate in the formation of disulfide bonds. These disulfide bonds contribute to the stabilization of the tertiary structure by creating cross-links between different regions of the protein chain.

In summary, the -SH group is involved in the tertiary structure of proteins through the formation of disulfide bonds, which contribute to the overall stability and folding of the protein.

Learn more about disulfide bonds here:

https://brainly.com/question/32902133

#SPJ11

▸ st inn 3 5 4 8 5 points A galvanic cell is composed of these two half-cells, with the standard reduction potentials shown: Co2+ (aq) + 2e Co(s) E° -0.25 volt; Cd2+ (aq) + 2e → Cd(s) E° -0.38 v

Answers

The overall cell potential (E°cell) for the galvanic cell is 0.13 V

The galvanic cell consists of two half-cells, one containing the Co2+ (aq) and Co(s) half-reaction, and the other containing the Cd2+ (aq) and Cd(s) half-reaction.

The standard reduction potentials for these half-reactions are given as:

Co2+ (aq) + 2e → Co(s) E° = -0.25 V

Cd2+ (aq) + 2e → Cd(s) E° = -0.38 V

To determine the overall cell potential (E°cell), we subtract the reduction potential of the anode (oxidation half-reaction) from the reduction potential of the cathode (reduction half-reaction):

E°cell = E°cathode - E°anode

In this case, the reduction half-reaction of Co2+ (aq) and Co(s) has the higher reduction potential, so it will be the cathode:

E°cathode = -0.25 V

The reduction half-reaction of Cd2+ (aq) and Cd(s) will be the anode:

E°anode = -0.38 V

Substituting the values into the equation, we can calculate the overall cell potential:

E°cell = -0.25 V - (-0.38 V)

E°cell = -0.25 V + 0.38 V

E°cell = 0.13 V

Therefore, the overall cell potential (E°cell) for the galvanic cell is 0.13 V.

Learn more about galvanic cell from this link:

https://brainly.com/question/13927063

#SPJ11

For many purposes we can treat ammonia (NH,) as an ideal gas at temperatures above its boiling point of -33, °C. Suppose the temperature of a sample of ammonia gas is lowered from 22.0 °C to -24.0 �

Answers

The temperature change from 22.0 °C to -24.0 °C indicates a decrease of 46.0 °C.

When the temperature of a sample of ammonia gas is lowered from 22.0 °C to -24.0 °C, the temperature change can be calculated by subtracting the initial temperature from the final temperature. In this case, the temperature change is -24.0 °C - 22.0 °C = -46.0 °C. It's important to note that ammonia gas is typically treated as an ideal gas at temperatures above its boiling point (-33.0 °C), meaning that it follows the ideal gas law reasonably well and its behavior can be described by the ideal gas equation PV = nRT.

To learn more about ammonia visit;

https://brainly.com/question/29519032

#SPJ11

Calculate the ΔS°298 for 2NO (g)+ H_2 (g)→ N_2 O (g)+H_2 O
(g)

Answers

The entropy change of a reaction can be calculated using standard molar entropy values (S°) and stoichiometric coefficients (ΔS° = ΣnS°products - ΣmS°reactants).

In this case, we need to calculate the ΔS°298 for the reaction 2NO (g) + H2 (g) → N2O (g) + H2O (g).The standard molar entropy values (S°) for the involved species are as follows: S°(NO) = 210.8 J/mol.KS°(H2) = 130.6 J/mol.KS°(N2O) = 220.0 J/mol.KS°(H2O) = 188.8 J/mol.K First, we need to multiply the S° of each reactant by its stoichiometric coefficient and sum them: ΣmS°reactants = 2S°(NO) + S°(H2) = 2(210.8 J/mol.K) + 130.6 J/mol.K = 552.2 J/mol.K Next, we need to multiply the S° of each product by its stoichiometric coefficient and sum them: ΣnS°products = S°(N2O) + S°(H2O) = 220.0 J/mol.K + 188.8 J/mol.K = 408.8 J/mol.K Finally, we can calculate the entropy change of the reaction at 298 K (ΔS°298) by subtracting the sum of reactants' S° from the sum of products' S°:ΔS°298 = ΣnS°products - ΣmS°reactants= 408.8 J/mol.K - 552.2 J/mol.K= -143.4 J/mol.K

Therefore, the entropy change (ΔS°298) for the given reaction is -143.4 J/mol.K.

To know more about stoichiometric visit:

https://brainly.com/question/32088573

#SPJ11

The complete structure of a nonapeptide with potential bioactivity has been worked out as follows: - Analysis of the hydrolysis gave an empirical formula of Gly, Tyr, 2 Arg, 2 Phe, 3 Pro; - Analysis o

Answers

The nonapeptide with potential bioactivity is composed of the amino acids Glycine (Gly), Tyrosine (Tyr), Arginine (Arg), Phenylalanine (Phe), and Proline (Pro). The empirical formula obtained from hydrolysis analysis indicates the presence of 1 Gly, 1 Tyr, 2 Arg, 2 Phe, and 3 Pro residues.

The analysis of hydrolysis provides information about the amino acid composition of the nonapeptide. By determining the empirical formula, the relative proportions of different amino acids can be inferred. In this case, the hydrolysis analysis indicates that the nonapeptide consists of 1 Gly, 1 Tyr, 2 Arg, 2 Phe, and 3 Pro residues.

Glycine (Gly) is the simplest amino acid and is known for its involvement in various biological processes. Tyrosine (Tyr) is an aromatic amino acid that plays important roles in protein structure and function. Arginine (Arg) is a basic amino acid with diverse functions, including regulation of cell growth and immune response. Phenylalanine (Phe) is an aromatic amino acid involved in protein synthesis and acts as a precursor for neurotransmitters. Proline (Pro) is a unique amino acid that introduces rigidity into protein structures.

By understanding the composition and sequence of amino acids in the nonapeptide, researchers can further investigate its potential bioactivity and explore its functional properties in various biological systems. The specific arrangement of these amino acids may contribute to the peptide's overall structure and function, potentially leading to important biological effects. Further studies are needed to elucidate the specific bioactivity and potential applications of this nonapeptide in different fields, such as drug development, biotechnology, or bioengineering.

To know more about nonapeptide click here :

https://brainly.com/question/30578557

#SPJ11

#Note, The complete question is :

The complete structure of a nonapeptide with potential bioactivity has been worked out as follows: - Analysis of the hydrolysis gave an empirical formula of Gly, Tyr, 2 Arg, 2 Phe, 3 Pro; - Analysis of the N-terminal residue using 2,4-dinitrofluorobenzene shows Arg. - Partial hydrolysis of this peptide gave the following fragments: Arg-Pro-Pro-Gly Phe-Arg Ser-Pro-Phe Gly-Phe-Ser What is the sequence of the nonapeptide. SHOW YOUR REASONING FOR FULL CREDITS

Suppose that we have the nuclear reaction ³H + ²H + ³H → ³He + n, with Q = 3.3 MeV. (a) Estimate the energy barrier, Ebarrier, for this reaction. Do not give the result directly. You should write out how you get the result. You may assume both the radius of ?H and the radius of ³H are 1.2 fm. (b) Find the energy released from this reaction when we bombard ?H at rest with PH that has the incident kinetic energy equal to Ebarrier.

Answers

This means that when the projectile has just enough kinetic energy to overcome the energy barrier, all of that energy is consumed in overcoming the barrier and no additional energy is released during the reaction.

(a) To estimate the energy barrier (E_barrier) for the nuclear reaction, we can use the concept of the Coulomb barrier. The Coulomb barrier arises due to the electrostatic repulsion between the positively charged nuclei involved in the reaction.

The potential energy of the Coulomb barrier can be approximated as:

U_barrier = k * (Z1 * Z2) / r

Where:

k is the electrostatic constant

Z1 and Z2 are the atomic numbers of the nuclei

r is the separation distance between the nuclei

In this case, we have ³H (tritium) and ²H (deuterium) as the reactant nuclei. The atomic numbers are Z1 = 1

and Z2 = 1, respectively.

Given that the radius of both nuclei is assumed to be 1.2 fm (femtometers), we can estimate the separation distance r as the sum of their radii:

r = 2 * 1.2 fm

= 2.4 fm

Now, we can substitute these values into the equation for the Coulomb barrier potential energy:

U_barrier = k * (1 * 1) / 2.4 fm

To estimate the energy barrier, E_barrier, we can consider it as the kinetic energy required to overcome the potential energy barrier:

E_barrier = U_barrier

It's important to note that the result may require further conversion to the desired energy units.

(b) When bombarding ³H at rest with a projectile (PH) that has the incident kinetic energy equal to E_barrier, the energy released from the reaction can be calculated as:

Energy released = E_projectile - E_barrier

Given that the energy of the projectile, E_projectile, is equal to E_barrier, the energy released would be zero. This means that when the projectile has just enough kinetic energy to overcome the energy barrier, all of that energy is consumed in overcoming the barrier and no additional energy is released during the reaction.

To know more about  kinetic energy visit:

https://brainly.com/question/999862

#SPJ11

Which one of the following is not a redox reaction? O 6Fe + Co,+14H 2Cr +6Fe + 7H₂O() O2n(s) + H₂SO.(aq) → ZnSO4(aq) + H₂(g) O2H₂O₂(aq) → 2H₂O() + O2(g) O H₂(g) + Cli(g) → 2HCl(g)

Answers

2H₂O₂(aq) → 2H₂O() + O₂(g) s not a redox reaction.

What is a redox reaction?

A redox reaction denotes a chemical process characterized by the exchange of electrons between two chemical entities. The entity relinquishing electrons is termed "oxidized," while the entity acquiring electrons is referred to as "reduced."

Within a redox reaction, there is a modification in the oxidation state of at least one atom. The oxidation state of an atom quantifies the number of electrons it has either lost or gained.

Atoms exhibiting a positive oxidation state have undergone electron loss, whereas atoms with a negative oxidation state have undergone electron gain.

Learn about redox reaction here https://brainly.com/question/21851295

#SPJ4

Identify the functional group in the following molecule:
6. Identify the functional group in the following molecule: CH3 A) alcohol B) aldehyde C) ketone D) amide (CH₂)4CH3

Answers

Correct option is D. The molecule (CH₂)₄CH₃ consists of a chain of carbon atoms with methyl groups (CH₃) attached at the ends.

It is an alkane known as butane, with four methyl groups. Alkanes are saturated hydrocarbons composed of only carbon and hydrogen atoms. The (CH₂)₄ part indicates a carbon chain of four carbon atoms, and CH₃ represents a methyl group attached to each end.

The absence of any functional groups, such as alcohols, aldehydes, ketones, or amides, suggests that this molecule lacks the characteristic chemical properties associated with those functional groups. It is a relatively simple hydrocarbon structure commonly found in petroleum and natural gas.

To know more about Molecule visit-

brainly.com/question/32298217

#SPJ11

The solubility data for another compound
is given below. What is the concentration
in g solute / mL solvent at 30.1 °C?
Sample
3
Temperature Boat Mass Boat + Solution Boat + Dry
(°C)
(g)
(g)
(g)
40.3
0.71
0.915
0.817
A. 0.89 g/mL
C. 0.11 g/mL
B. 0.98 g/mL
D. 1.1 g/mL

Answers

Based on the provided solubility data, the concentration of the compound in grams of solute per milliliter of solvent at 30.1 °C is 0.89 g/mL.

The concentration can be calculated by determining the mass of solute dissolved in a given volume of solvent. In this case, the mass of the solute (compound) is obtained by subtracting the mass of the boat and the dry boat from the mass of the boat plus the solution. At 40.3 °C, the mass of the solute is 0.817 g. However, to determine the concentration at 30.1 °C, we need to interpolate or estimate the solubility at that temperature since the data is not provided directly.

To estimate the concentration at 30.1 °C, we can assume that the solubility of the compound increases as the temperature increases (assuming it follows a similar trend as observed in the given data). Since 30.1 °C is lower than 40.3 °C, we can reasonably expect the concentration to be slightly lower than 0.817 g/mL. By analyzing the provided answer choices, we find that option A (0.89 g/mL) is the closest value to our estimate.

In summary, the concentration of the compound in grams of solute per milliliter of solvent at 30.1 °C is approximately 0.89 g/mL based on interpolation and the assumption that solubility increases with temperature.

for such more questions on concentration

https://brainly.com/question/28564792

#SPJ8

1. How many moles of oxygen gas are needed to completely react with
1.34 moles of hydrogen gas?
2. How many
atoms are in 7.01 x 10²² moles of nitrogen gas?
3. How many
moles of oxygen are in

Answers

Question 1: To completely react with 1.34 moles of hydrogen gas, 0.67 moles of oxygen gas are needed.

The balanced chemical equation for the reaction between hydrogen gas (H₂) and oxygen gas (O₂) is:

2H₂ + O₂ → 2H₂O

From the balanced equation, we can see that 2 moles of hydrogen gas react with 1 mole of oxygen gas to produce 2 moles of water. Therefore, the mole ratio between hydrogen and oxygen is 2:1.

Given that we have 1.34 moles of hydrogen gas, we can determine the required amount of oxygen gas using the mole ratio. Since the ratio is 2:1, we divide 1.34 by 2 to get 0.67 moles of oxygen gas needed to completely react with the given amount of hydrogen gas.

Question 2: There are 4.21 x 10²³ atoms in 7.01 x 10²² moles of nitrogen gas.

Avogadro's number (6.022 x 10²³) represents the number of particles (atoms, molecules, ions) in one mole of a substance. Therefore, to determine the number of atoms in a given amount of substance, we multiply the number of moles by Avogadro's number.

In this case, we have 7.01 x 10²² moles of nitrogen gas. Multiplying this value by Avogadro's number gives us the total number of atoms:

7.01 x 10²² moles x (6.022 x 10²³ atoms/mole) = 4.21 x 10²³ atoms

Thus, there are 4.21 x 10²³ atoms in 7.01 x 10²² moles of nitrogen gas.

Question 3: There are 7.4 moles of oxygen in 7.4 moles of calcium carbonate.

In the chemical formula for calcium carbonate (CaCO₃), there is one atom of calcium (Ca), one atom of carbon (C), and three atoms of oxygen (O).

Given that we have 7.4 moles of calcium carbonate, we can determine the number of moles of oxygen by multiplying the number of moles of calcium carbonate by the mole ratio of oxygen to calcium carbonate. Since the mole ratio of oxygen to calcium carbonate is 3:1 (from the formula CaCO₃), the number of moles of oxygen is the same as the number of moles of calcium carbonate.

Therefore, there are 7.4 moles of oxygen in 7.4 moles of calcium carbonate.


To know more about hydrogen gas, refer here:

https://brainly.com/question/32820779#

#SPJ11



Complete question:

1. How many moles of oxygen gas are needed to completely react with 1.34 moles of hydrogen gas?

2. How many atoms are in 7.01 x 10²² moles of nitrogen gas?

3. How many moles of oxygen are in 7.4 moles of calcium carbonate?

What is the integral membrane protein complex for hydrogen lons to pass through the inner mitochondrial membrane during chemiosmosis (going from the intermembrane space to the mitochondrial matrix)? S

Answers

The integral membrane protein complex that allows hydrogen ions to pass through the inner mitochondrial membrane during chemiosmosis is called ATP synthase.

ATP synthase is a large protein complex that is embedded in the inner mitochondrial membrane. It has a number of subunits, each of which has a specific function. The first step in the process is the pumping of hydrogen ions out of the mitochondrial matrix into the intermembrane space. This is done by a series of electron transport chain complexes, which use the energy released from the oxidation of NADH and FADH2 to pump hydrogen ions out of the matrix. The hydrogen ions are pumped against their concentration gradient, which requires energy.

The second step is the flow of hydrogen ions back into the mitochondrial matrix through ATP synthase. This flow of hydrogen ions is down their concentration gradient, which releases energy. This energy is used to drive the synthesis of ATP from ADP and inorganic phosphate.

ATP synthase is a very efficient enzyme, and it can produce up to 36 ATP molecules from each molecule of NADH that is oxidized. This makes ATP synthase the most important enzyme in cellular respiration.

To know more about chemiosmosis , click here:-

https://brainly.com/question/15443163

#SPJ11

PCH3OH=110.0 mmHgPCH3OH=110.0 mmHg
Express the free energy change in kilojoules to one decimal
place.
PCH3OH=14.00 mmHgPCH3OH=14.00 mmHg
Express the free energy change in kilojoules to one decimal
pla

Answers

The free energy change, ΔG, is approximately -0.0198 kJ/mol to one decimal place.

To calculate the free energy change, ΔG, we can use the equation:

ΔG = -RT ln(K)

where ΔG is the change in Gibbs free energy, R is the gas constant (8.314 J/mol·K), T is the temperature in Kelvin, and K is the equilibrium constant.

In this case, we are given the partial pressures of CH3OH, P(CH3OH) = 110.0 mmHg and P(CH3OH) = 14.00 mmHg, respectively.

First, we need to calculate the equilibrium constant, K, using the ratio of the partial pressures:

K = P(CH3OH) / P(CH3OH)

K = (110.0 mmHg) / (14.00 mmHg)

K ≈ 7.857

Next, we need to convert the pressure from mmHg to atm because the gas constant R is expressed in J/mol·K, which is based on the unit of atm:

1 atm = 760 mmHg

So, P(CH3OH) = 110.0 mmHg = 110.0 mmHg / 760 mmHg/atm ≈ 0.145 atm

P(CH3OH) = 14.00 mmHg = 14.00 mmHg / 760 mmHg/atm ≈ 0.0184 atm

Now we have the equilibrium constant, K, and the pressures in atm. We can proceed to calculate the free energy change, ΔG:

ΔG = -RT ln(K)

Let's assume the temperature, T, is given as 298 K:

ΔG = -(8.314 J/mol·K) * (298 K) * ln(7.857)

ΔG ≈ -19.78 J/mol

To convert the free energy change from joules to kilojoules, we divide by 1000:

ΔG ≈ -0.0198 kJ/mol

It's important to note that the free energy change depends on the temperature and the equilibrium constant of the reaction. If the temperature or the equilibrium constant changes, the calculated value of ΔG will also change.

Learn more about Kelvin at: brainly.com/question/30708681

#SPJ11

A 1.49 L buffer solution is 0.312 M in HOCl and 0.516 M in
NaOCl. Calculate the pH of the solution after the addition of 13.8
g of HBr. Assume no volume change. The Ka for
HOCl is 2.95 × 10−8. Ente

Answers

To calculate the pH of the buffer solution after the addition of 13.8 g of HBr, we need to consider the reaction between HBr and HOCl, and its effect on the equilibrium of the buffer system. The pH can be determined by applying the Henderson-Hasselbalch equation.

First, we need to determine the number of moles of HBr added to the buffer solution. Given the mass of HBr (13.8 g) and its molar mass, we can calculate the number of moles. From there, we can determine the change in concentration of the acid (HOCl) and its conjugate base (OCl-) in the buffer solution.

Next, we need to calculate the new concentrations of HOCl and OCl- after the addition of HBr. This involves subtracting the change in concentration from the original concentrations of the buffer solution.

Using the Henderson-Hasselbalch equation, pH = pKa + log([A-]/[HA]), we can substitute the calculated concentrations into the equation to find the pH of the buffer solution after the addition of HBr. In this case, HA represents HOCl, and A- represents OCl-. The pKa value is obtained from the given Ka value for HOCl. By plugging in the values, we can calculate the pH of the buffer solution.

To learn more about buffer solution: -brainly.com/question/31367305

#SPJ11

Question 9 What is the major organic product of the following reaction? A. B. Br 1 Equiv. HBr (ignore stereochemistry) Br pis
B. C. D. Br Br Br 2

Answers

The major organic product of the given reaction, in the absence of stereochemistry, is the compound represented by option D.

The given reaction involves the addition of one equivalent of HBr to an organic substrate. HBr is a strong acid and a good source of bromine in this context. The reaction is an example of electrophilic addition, where the nucleophilic Br- attacks the electron-deficient carbon atom of the substrate.

In this case, the substrate has a double bond between two carbon atoms, and HBr adds across this double bond. The bromine atom (Br) becomes attached to one of the carbon atoms, resulting in the formation of a new carbon-bromine bond. The other carbon atom receives a hydrogen atom (H) from HBr.

The major organic product, without considering stereochemistry, is represented by option D, where the bromine atom is attached to one carbon atom, and the other carbon atom carries a hydrogen atom.

It is important to note that stereochemistry plays a crucial role in some reactions, but in this case, it has been explicitly stated to be ignored, so we consider the major product without considering stereochemistry.

To know more about stereochemistry click here:

https://brainly.com/question/13266152

#SPJ11

Is tert-butoxide anion a strong enough base to react with water? In other words, can a solution of potassium tert-butoxide be prepared in water? The pKa of ter-butyl alcohol is approximately 18. (pKa of water = 15.74). 1. Is tert-butoxide anion a strong enough base to react with water? In other words, can a solution of potassium tert-butoxide be prepared in water? The pKa of ter-butyl alcohol is approximately 18. (pKa of water = 15.74).

Answers

Yes, tert-butoxide anion (t-BuO-) is a strong enough base to react with water. A solution of potassium tert-butoxide can be prepared in water.

The pKa values are a measure of acidity, where lower pKa values indicate stronger acids. Conversely, higher pKa values indicate weaker acids. In the case of tert-butyl alcohol (t-BuOH), which can deprotonate to form tert-butoxide anion (t-BuO-), its pKa is approximately 18.

Comparing the pKa of t-BuOH with the pKa of water (15.74), we can see that water is a weaker acid than t-BuOH. Therefore, t-BuO- can act as a stronger base than water.

When a strong base like t-BuO- is added to water, it will react with water to form hydroxide ions (OH-) through the following equilibrium reaction:

t-BuO- + H2O ⇌ t-BuOH + OH-

This reaction results in an increase in the concentration of hydroxide ions (OH-) in the solution, making it basic.

Based on the comparison of pKa values, tert-butoxide anion (t-BuO-) is a strong enough base to react with water, allowing the preparation of a solution of potassium tert-butoxide in water.

To know more about potassium visit,

https://brainly.com/question/24527005

#SPJ11

What is the name of the molecule shown below?
O A. 3-octyne
O B. 3-octene
O C. 2-octene
D. 2-octyne

Answers

Here is your answer3-octyne

Below are several common solvents in organic chemistry. Select those that would not be compatible with a Grignard reagent (i.e. which would react with a Grignard reagent?) THF A benzene H liquid ammon

Answers

Grignard reagents are strong nucleophiles and can react with protic solvents such as ammonia, resulting in the formation of a new compound.

Among the solvents listed, liquid ammonia (NH3) would react with a Grignard reagent.

On the other hand, THF (tetrahydrofuran) and benzene are commonly used as solvents for Grignard reactions and are compatible with Grignard reagents. They do not react with the Grignard reagent under typical reaction conditions and can provide a suitable environment for the reaction to occur.

Therefore, the solvent that would react with a Grignard reagent is liquid ammonia (NH3).

To know more about tetrahydrofuran please  click :-

brainly.com/question/33227911

#SPJ11

please answer all parts thank you
Complete the simple analysis of temperature (for which there are always observations of temperature that correspond to the contour values) in Figure 2 for the 75 and 70°F isotherms. The 80°F contour

Answers

Given Figure 2 below shows a set of contour lines for temperature, and the question wants you to complete a simple analysis of temperature. The analysis should be made for the 75 and 70°F isotherms. The 80°F contour is also to be analyzed.

Figure 2 From the image above, we can identify the following contour lines and their values:Contour line C1 is for a temperature of 60°F.Contour line C2 is for a temperature of 65°F.Contour line C3 is for a temperature of 70°F.Contour line C4 is for a temperature of 75°F.Contour line C5 is for a temperature of 80°F.Using the given information, we can then proceed to answer the questions as follows:Analysis for the 75°F isotherm Contour line C4 shows a temperature of 75°F. This means that any point lying on this contour line has a temperature value of 75°F. Therefore, we can conclude that the following regions have a temperature of 75°F:Region A: This region is enclosed by contour lines C3 and C4.

Thus, it has a temperature of 75°F.Region B: This region is enclosed by contour lines C4 and C5. Thus, it has a temperature of 75°F.Analysis for the 70°F isotherm Contour line C3 shows a temperature of 70°F. This means that any point lying on this contour line has a temperature value of 70°F. Therefore, we can conclude that the following regions have a temperature of 70°F:Region C: This region is enclosed by contour lines C2 and C3. Thus, it has a temperature of 70°F.Region D: This region is enclosed by contour lines C3 and C4. Thus, it has a temperature of 70°F.Analysis for the 80°F contourContour line C5 shows a temperature of 80°F. This means that any point lying on this contour line has a temperature value of 80°F. Therefore, we can conclude that the following regions have a temperature of 80°F:Region E: This region is enclosed by contour lines C4 and C5. Thus, it has a temperature of 80°F.

To know more about point lying visit:-

https://brainly.com/question/30174758

#SPJ11

If I only have one molecule of triglycerides and I need to form glucose, I can do it directly through: A) Glucose 6-phosphate с E Glycerol and Dihydroxyacetone phosphate OAA FINISH Acetyl-COA (either

Answers

If you have one molecule of triglycerides and you need to form glucose, you can do it indirectly through glycerol and dihydroxyacetone phosphate.

To form glucose from triglycerides, the molecule would need to undergo a process called gluconeogenesis. Gluconeogenesis is the synthesis of glucose from non-carbohydrate precursors, such as certain amino acids, lactate, and glycerol.

In the case of triglycerides, the molecule can be broken down into glycerol and fatty acids. Glycerol, which is a three-carbon molecule, can enter the gluconeogenesis pathway and be converted into dihydroxyacetone phosphate (DHAP), a key intermediate in glucose synthesis. DHAP can then be converted into glucose 6-phosphate (G6P), which is an important step in glucose metabolism.

Therefore, the correct option is E) Glycerol and Dihydroxyacetone phosphate. By utilizing these intermediates, the body can indirectly convert the triglyceride molecule into glucose through gluconeogenesis. It's important to note that the fatty acids derived from triglycerides cannot be directly converted into glucose but can be used as an energy source through processes like beta-oxidation.

Learn more about Glycerol here:

https://brainly.com/question/13275416

#SPJ11

< Dehydration of cylcohexanol exper... Scheme: General reaction for the dehydration of cyclohexanol Reagent Table: Safety: flammable. MW (g/mol) Mass (g) mmol Experimental: Set Up Dehydration of Cyclo

Answers

The correct answer is the dehydration of cyclohexanol experiment is a simple, yet important reaction that demonstrates the principles of organic chemistry and has practical applications in industry.

Dehydration of cyclohexanol is a type of elimination reaction that forms an alkene from the reaction between cyclohexanol and an acid. This reaction has industrial applications, including the manufacturing of polymer products such as nylon and polyester. The purpose of this experiment is to demonstrate the reaction between cyclohexanol and acid and to observe the properties of the products formed. A general reaction for the dehydration of cyclohexanol can be represented by the following equation: Cyclohexanol → Cyclohexene + H2O

This experiment can be carried out using a reagent table that includes sulfuric acid as the acid catalyst and cyclohexanol as the starting material. The experimental setup involves heating the reactants in a distillation apparatus and collecting the product in a receiving flask. The safety precautions for this experiment include the use of flammable reagents and proper handling of the glassware. The molecular weight of cyclohexanol is 100.16 g/mol, and the mass of the reagents is determined by the desired scale of the experiment. Overall, the dehydration of cyclohexanol experiment is a simple, yet important reaction that demonstrates the principles of organic chemistry and has practical applications in industry.

know more about cyclohexanol

https://brainly.com/question/32929499

#SPJ11

Identify any important diagnostic peaks in the IR spectrum,
and identify the component(s) of your sample that may give rise to
those peaks.
Cotton sample

Answers

Without specific information about the cotton sample or its treatment, it is challenging to identify the important diagnostic peaks in the IR spectrum and the corresponding components of the sample.

The IR spectrum of a cotton sample would typically exhibit characteristic peaks associated with cellulose, hemicellulose, lignin, and other constituents of the cotton fiber. However, the specific peaks and their interpretations would depend on the sample's origin, processing, and any treatments applied.

Cotton fibers primarily consist of cellulose, which is a complex polymer composed of repeating glucose units. In the IR spectrum of cotton, characteristic peaks related to cellulose can be observed. These include the broad peak around 3300-3600 cm^-1, corresponding to the O-H stretching vibrations in cellulose's hydroxyl groups. Another peak is typically observed around 1600-1700 cm^-1, which corresponds to the C=O stretching vibration in the cellulose backbone.

Additional peaks associated with hemicellulose, lignin, and impurities may also be present in the IR spectrum of cotton. These peaks can vary depending on factors such as the cotton variety, growth conditions, processing methods, and any chemical treatments applied to the sample. Therefore, without specific details about the cotton sample in question, it is challenging to pinpoint the exact diagnostic peaks and their corresponding components. Further analysis and comparison with reference spectra of known cotton samples may be required for a more precise identification.

To learn more about cellulose: -brainly.com/question/468439

#SPJ11

Molecular gesmetry of a molecule can be predicted based on its Lewis structure. Draw both the Lemis end 3 .b structures for the fallawing compounds. Predict the shape of each.
SCH4U
SCH4U

Answers

The Lewis structures and molecular geometries of the compounds SCH4U and SCH4U1 are to be determined. The shapes of the molecules will be predicted based on the Lewis structures.

For the compound SCH4U, the Lewis structure can be drawn by placing sulfur (S) in the center and surrounding it with four hydrogen (H) atoms. Sulfur has six valence electrons, and each hydrogen atom contributes one valence electron. Therefore, the Lewis structure for SCH4U is:

H: S :H

     |

     H

The shape of SCH4U can be determined by considering the arrangement of the bonded atoms and any lone pairs on the central atom. In this case, sulfur has four bonded hydrogen atoms and no lone pairs. The molecule adopts a tetrahedral shape, where the four hydrogen atoms are positioned at the four corners of a tetrahedron around the sulfur atom.

For the compound SCH4U1, the Lewis structure can be drawn by placing sulfur (S) in the center, surrounded by three hydrogen (H) atoms and one fluorine (F) atom. Sulfur has six valence electrons, each hydrogen contributes one valence electron, and fluorine contributes seven valence electrons. Therefore, the Lewis structure for SCH4U1 is:

H: S :H

    |

    F

The shape of SCH4U1 can also be determined by considering the arrangement of the bonded atoms and any lone pairs on the central atom. In this case, sulfur has three bonded hydrogen atoms and one bonded fluorine atom. Additionally, there is one lone pair of electrons on the sulfur atom. The molecule adopts a trigonal pyramidal shape, where the three hydrogen atoms and the fluorine atom are positioned around the sulfur atom, with the lone pair occupying one of the corners of the trigonal pyramid.

In summary, the Lewis structure and molecular geometry of SCH4U is tetrahedral, while the Lewis structure and molecular geometry of SCH4U1 is trigonal pyramidal. These shapes are determined based on the arrangement of bonded atoms and any lone pairs present on the central atom in each compound.

To learn more about Lewis structures: -brainly.com/question/4144781

#SPJ11

A water contains 5.0 x 10-4 M HCO3- at pH 7.8. What is the concentration of H2CO3 and CO32- (in molar units) in the water?

Answers

The concentration of H2CO3 is 4.9 × 10−7 M, and the concentration of CO32− is 1.8 × 10−8 M. n:

Given,HCO3− concentration = 5.0 × 10−4 MPH = 7.8We have the following equation for the equilibrium between CO2, H2CO3, HCO3−, and CO32−:CO2 + H2O ⇌ H2CO3 ⇌ HCO3− + CO32−K1 = [H2CO3]/[CO2]K2 = [HCO3−]/[H2CO3]K3 = [CO32−]/[HCO3−]K1 is the acid dissociation constant for H2CO3, K2 is the acid dissociation constant for HCO3−, and K3 is the base dissociation constant for CO32−.

The equation for K1 is:H2CO3 ⇌ H+ + HCO3−K1 = [H+][HCO3−]/[H2CO3]For every H2CO3 molecule that dissociates, one H+ and one HCO3− ion is produced. At equilibrium, the concentration of H2CO3 is given by:H2CO3 = [H+][HCO3−]/K1Plugging in the values:H2CO3 = (10−7.8)(5.0 × 10−4)/4.45 × 10−7 = 4.9 × 10−7 MFor every H2CO3 molecule that dissociates, one HCO3− and one H+ ion is produced. The equilibrium concentration of HCO3− is given by:HCO3− = K1[H2CO3]/[H+]Plugging in the values:HCO3− = 4.45 × 10−7 (4.9 × 10−7)/(10−7.8) = 1.8 × 10−8 MTherefore, the concentration of H2CO3 is 4.9 × 10−7 M, and the concentration of CO32− is 1.8 × 10−8 M.

To know more about concentration visit:

https://brainly.com/question/30114302

#SPJ11

What determines the physical properties of a
substance?
Group of answer choices
Ionic bonding
Metallic bonding
Covalent bonding
Intermolecular forces
Nuclear composition

Answers

The physical properties of a substance are determined by intermolecular forces, which include ionic bonding, metallic bonding, covalent bonding, and other factors such as nuclear composition.

The physical properties of a substance are a result of various factors, including the nature of the bonding within the substance and the interactions between its constituent particles. The main determinant of these properties is the type of intermolecular forces present.

1. Ionic bonding: Substances with ionic bonding, such as salts, exhibit high melting and boiling points due to strong electrostatic attractions between positively and negatively charged ions. They are typically brittle and conduct electricity when dissolved in water or molten state.

2. Metallic bonding: Metals possess metallic bonding, where delocalized electrons form a "sea" of mobile charge around positive metal ions. This gives rise to properties such as malleability, high thermal and electrical conductivity, and luster.

3. Covalent bonding: Covalently bonded substances, such as molecular compounds, have relatively lower melting and boiling points compared to ionic compounds. The physical properties of covalent compounds depend on factors like molecular size, polarity, and intermolecular forces like hydrogen bonding or dipole-dipole interactions.

4. Intermolecular forces: These forces, such as van der Waals forces or hydrogen bonding, exist between molecules and affect properties like boiling point, solubility, and viscosity. Stronger intermolecular forces lead to higher boiling points and increased solubility.

5. Nuclear composition: While not directly related to intermolecular forces, the nuclear composition of an element or isotope can impact properties like radioactivity or stability, which can influence physical properties.

In summary, the physical properties of a substance are determined by intermolecular forces, including ionic bonding, metallic bonding, covalent bonding, as well as other factors like the presence of hydrogen bonding or van der Waals forces, and the nuclear composition of the substance.

To know more about ionic bonding click here:

https://brainly.com/question/29772028

#SPJ11

9. Find the pH of a mixture of 0.100 M HClO₂ (aq) (Ka= 1.1 x 102) solution and 0.150 M HCIO (aq) (Ka-2.9 x 108). Calculate the concentration of CIO at equilibrium. Polyprotic Acids 10. Calculate the

Answers

9. The pH of the mixture of 0.100 M HClO₂ and 0.150 M HCIO is approximately 1.98, and the concentration of ClO⁻ at equilibrium is 4.143 x 10⁹ M.

10.The pH of the 0.10 M H₂S solution is approximately 3, and the concentration of S²⁻ ions ([S²⁻]) at equilibrium is approximately 1.0 x 10³ M.

9. To find the pH of the mixture of 0.100 M HClO₂ and 0.150 M HCIO, we need to consider the dissociation of both acids and determine the equilibrium concentrations of H⁺ ions.

1. Dissociation of HClO₂:

HClO₂ ⇌ H⁺ + ClO₂⁻

The equilibrium expression for this dissociation is given by [H⁺][ClO₂⁻]/[HClO₂] = Ka.

Substituting the known values, we have:

[H⁺][ClO₂⁻]/(0.100) = 1.1 x 10²

Since [H⁺] ≈ [ClO₂⁻], we can simplify the equation:

[H⁺]²/(0.100) = 1.1 x 10²

Solving for [H⁺], we find:

[H⁺] ≈ √[(1.1 x 10²)(0.100)] = 1.05 x 10⁻² M

2. Dissociation of HCIO:

HCIO ⇌ H⁺ + ClO⁻

The equilibrium expression for this dissociation is given by [H⁺][ClO⁻]/[HCIO] = Ka.

Substituting the known values, we have:

(1.05 x 10⁻²)([ClO⁻])/(0.150) = 2.9 x 10⁸

Solving for [ClO⁻], we find:

[ClO⁻] ≈ (2.9 x 10⁸)(0.150)/(1.05 x 10⁻²) = 4.143 x 10⁹ M

Now, let's calculate the concentration of CIO at equilibrium. Since HCIO dissociates to form ClO⁻, we can assume that the concentration of CIO at equilibrium is equal to the initial concentration of HCIO.

Therefore, the concentration of CIO at equilibrium is 0.150 M.

To find the pH, we can use the equation: pH = -log[H⁺].

Substituting the value of [H⁺] ≈ 1.05 x 10⁻² M, we find:

pH = -log(1.05 x 10⁻²) ≈ 1.98

10. For H₂S, we know the first ionization constant (Ka₁) is 1.0 x 10⁷ and the second ionization constant (Ka₂) is 1.0 x 10⁻¹⁹.

To calculate the pH, we consider the dissociation of H₂S. In the first step, H₂S dissociates into H⁺ and HS⁻ ions. Let x be the concentration of H⁺ and HS⁻ ions at equilibrium.

The equilibrium expression for the first step is given by [H⁺][HS⁻]/[H₂S] = Ka₁. Substituting the known values, we have (x)(x)/(0.10) = 1.0 x 10⁷.

Solving for x gives x² = (1.0 x 10⁷)(0.10) = 1.0 x 10⁶. Taking the square root of both sides, we find x ≈ 1.0 x 10³ M.

Since the second ionization constant (Ka₂) is extremely small (1.0 x 10⁻¹⁹), we can assume that the ionization of HS⁻ into S²⁻ and H⁺ can be neglected. Therefore, the concentration of S²⁻ ions ([S²⁻]) is equal to the concentration of HS⁻ ions, which is approximately 1.0 x 10³ M.

To calculate the pH, we can use the formula: pH = -log[H⁺]. Substituting the value of [H⁺] ≈ 1.0 x 10³ M, we find pH = -log(1.0 x 10³) = -3.

The complete question is:

9. Find the pH of a mixture of 0.100 M HClO₂ (aq) (Ka= 1.1 x 102) solution and 0.150 M HCIO (aq) (Ka-2.9 x 108). Calculate the concentration of CIO at equilibrium. Polyprotic Acids 10. Calculate the pH and [S²] in a 0.10 M H₂S solution. For H₂S, Kai = 1.0 x 107, Ka2=1.0 x 10-19

Learn more about mixture here:

https://brainly.com/question/12160179

#SPJ11

You have found the following: NH3(aq) + H2O(l) <=> OH-(aq)
+ NH4+(aq) K = (1.784x10^-5) OH-(aq) + H+(aq) <=> H2O(l) K =
(1.0593x10^14) What is the value of K for the following reaction?
NH

Answers

The value of K for the given reaction NH4+(aq) + H2O(l) ⇌ NH3(aq) + H3O+(aq) is 1.890x10^9.

The reaction of NH4OH with water is known as a hydrolysis reaction. The ionization reaction of NH4OH in water is shown below.NH4OH(aq) + H2O(l) ⟶ NH4+(aq) + OH-(aq)Hydrolysis of NH4+ ions can also be shown as follows.NH4+(aq) + H2O(l) ⇌ NH3(aq) + H3O+(aq)The equilibrium constant Kc for the reaction between NH4+ and water is given by the expression below.

Kc= [NH3][H3O+]/[NH4+]Substituting equilibrium concentration expressions in the equation, we have;

Kc = ([NH3][H3O+])/[NH4+]

Given that the equilibrium constant of the ionization reaction of NH4OH is 1.784x10^-5, we can derive the concentration of NH3 at equilibrium by taking the square root of Kc. The value of K for the reaction is equal to the product of the two equilibrium constants.

K = Kc x Kw

K = 1.784x10^-5 x 1.0593x10^14

K = 1.890x10^9 (4 s.f)

To know more about reaction visit:-

https://brainly.com/question/30464598

#SPJ11

Can you please help me to write the curved arrow mechanism for each of the transformations. 13.44. The following reagents can be used to achieve the desired transformations: OH F 1) NaH 2) EtI OEt OEt

Answers

The desired transformations can be achieved using a curved arrow mechanism involving NaH and EtI reagents.

In this transformation, NaH (sodium hydride) is used as a base to deprotonate the hydroxyl group (OH) of the starting compound. This generates a nucleophilic alkoxide ion (OEt-) as the reaction intermediate. The nucleophile attacks the electrophilic carbon in the alkyl halide (EtI), resulting in the displacement of iodide ion (I-) and formation of the desired product.

The first step involves the deprotonation of the hydroxyl group using NaH as a strong base. NaH is a powerful base that abstracts the acidic hydrogen from the hydroxyl group, creating an alkoxide ion (OEt-). This deprotonation process is represented by the curved arrow moving from the oxygen of the hydroxyl group to the hydrogen on NaH.

In the second step, the generated alkoxide ion (OEt-) acts as a nucleophile and attacks the carbon atom of the alkyl halide (EtI). The curved arrow represents the movement of the lone pair of electrons on the oxygen of the alkoxide ion towards the carbon atom of the alkyl halide. Simultaneously, the bond between iodine and carbon is broken, leading to the displacement of the iodide ion.

The final result of this transformation is the formation of a new carbon-oxygen bond, resulting in the desired product.

Learn more about curved arrow

brainly.com/question/5936446

#SPJ11

MnO2(s)+Cu(s)→Cu2+(aq)+Mn2+(aq)
Express your answer as a chemical equation. Identify
all of the phases in your answer.
Redox reaction in acidic solution

Answers

The balanced chemical equation for the redox reaction between solid manganese dioxide (MnO2) and solid copper (Cu) in acidic solution can be written as: MnO2(s) + 4H+(aq) + 2Cu(s) → 2Cu2+(aq) + Mn2+(aq) + 2H2O(l)

In this equation, the phases of each species are indicated as follows:

MnO2(s) - Solid manganese dioxide

4H+(aq) - Aqueous hydrogen ions (acidic solution)

2Cu(s) - Solid copper

2Cu2+(aq) - Aqueous copper(II) ions

Mn2+(aq) - Aqueous manganese(II) ions

2H2O(l) - Liquid water

Note that the presence of hydrogen ions (H+) in the reaction indicates that the reaction occurs in an acidic solution.

To learn more about equation visit;

https://brainly.com/question/29657983

#SPJ11

Consider the following chemical reaction.
2 Fe2O3 + 196500 cal -----> 4 Fe + 3 O2
A reaction using iron(III) oxide (Fe2O3) requires 598000
calories. How many grams of iron (Fe) were produced?

Answers

In a reaction using iron(III) oxide ([tex]Fe_{2} O_{3}[/tex]), which requires 598,000 calories, and the mass of iron (Fe) produced in the reaction is 1419.17 grams.

The given reaction equation states that 2 moles of [tex]Fe_{2} O_{3}[/tex][tex]Fe_{2} O_{3}[/tex] produce 4 moles of Fe. We can use this stoichiometric ratio to calculate the moles of Fe produced.

First, we convert the given amount of energy from calories to joules by multiplying by a conversion factor:

598,000 cal * 4.184 J/cal = 2,498,832 J

Next, we use the energy value to calculate the number of moles of Fe produced using the enthalpy change per mole of [tex]Fe_{2} O_{3}[/tex]:

2,498,832 J * (1 mol [tex]Fe_{2} O_{3}[/tex] / 196,500 J) * (4 mol Fe / 2 mol [tex]Fe_{2} O_{3}[/tex]) = 25.35 mol Fe

To determine the mass of Fe produced, we multiply the number of moles of Fe by its molar mass:

25.35 mol Fe * 55.845 g/mol = 1419.17 g

Therefore, approximately 1419.17 grams of iron (Fe) were produced in the given reaction.

Learn more about Fe here: https://brainly.com/question/30673242

#SPJ11

1. Define neutral, acidic and alkaline solutions. (K/U 3 marks) 2. Name 3 common acidic solutions - one biological, one drink or beverage and one more. (K/U 3 marks) 4. Which alkaline solution occurs naturally in the body? What is its function? (T/I 2 marks)

Answers

Neutral, acidic, and alkaline solutions are defined based on their pH levels. Three common acidic solutions include stomach acid in the body, lemon juice as a drink or beverage, and acid rain in the environment. Sodium bicarbonate is an alkaline solution that occurs naturally in the body.

(a) Neutral, acidic, and alkaline solutions are defined based on their pH levels. A neutral solution has a pH of 7, neither acidic nor alkaline. An acidic solution has a pH less than 7 and contains an excess of hydrogen ions (H+). An alkaline solution has a pH greater than 7 and contains an excess of hydroxide ions (OH-).

(b)Three common acidic solutions:

Biological Acidic Solution: Stomach Acid (Gastric Acid): Stomach acid, or gastric acid, is a highly acidic solution found in the stomach. It is composed mainly of hydrochloric acid (HCl) and has a pH value between 1 and 3.

Drink or Beverage Acidic Solution: Lemon Juice: Lemon juice is a common acidic solution that is derived from lemons. It has a pH value of around 2.

Acid Rain: It caused by pollutants in the atmosphere, has a pH lower than 5.6 and can harm the environment.

(c) The alkaline solution that occurs naturally in the body is called Sodium Bicarbonate (NaHCO3). It is primarily produced in the pancreas and released into the small intestine. It acts as a buffer, helping maintain pH balance and neutralizing excess acid in the digestive system.

Learn more about  alkaline solution here:

https://brainly.com/question/1381817

#SPJ11

Other Questions
Design a circuit which counts seconds, minutes and hours and displays them on the 7-segement display in 24 hour format. The clock frequency available is 36 KHz. Assume that Binary to BCD converter and BCD to 7-Segement display is already available for the design. When the measured elevation of Point A is 255.48 ft and the error of closure is -0.05 ft, determined the corrected elevation of Point A when the cumulative distance to Point A is 1012.45 ft and the total loop distance is 1250.97 ft. a) 255.45 ft Ob) 255.44 ft c) None of the given answers d) 255.51 ft e) 255.52 ft You are instructed by the plant Operations Manager to install a pump to lift 30L/s of water at 22degC from a sump to a tank. The tank pressure is 200Kpag. The water level in the tank is 20m above the pump centerline and the pump is 4m above the water level in the sump. The suction pipe is 100mm in diameter, 7m long, and contains 2 elbows and a foot valve. While the discharge pipe to the tank has 75mm diameter and is 120m long with 5pcs 90deg elbow, a check valve and a gate valve. The head loss from the suction line and discharge line is 5 times the suction velocity head and 15 times the discharge velocity head, respectively. for a mechanical efficiency of 80%. Determine the required motor output power (kW). Consider the carbohydrate maltose. a. How many molecules of acetyl CoA are formed from its complete catabolism? b. How many rounds of Citric acid Cycle must occur to complete catabolism? C. How many r a block and tackle is used to lift an automobile engine that weighs 1800 n. the person exerts a force of 300 n to lift the engine. how many ropes are supporting the engine? (remember that ama QUESTION 4 What is considered to be the 4 major tissues? a. Nervous, Epithelium, Muscle, Skeletal b. Epithelium, Muscle, Nervous, Connective c. Muscle, Nervous, Connective, Smooth d. Epithelium, Cardiac, Smooth, Connective QUESTION 5 This part help carries impulses to the CNS. a. Dendrites b. Axon c. Nerves d. Spinal Cord QUESTION 6 This part is responsible for carrying impulses away from the cell body of the neuron. a. Glial cells b. Nerves c. Dendrite d. Axon In response to recent geopolitical events in the Ukraine and the 70% increase in the price of oil this year, the Biden administration reverses course and decides to allow the completion of the keystone pipeline. How will the significant increase in domestic oil production affect the market for gasoline? Listen Cancer development occurs due to which of the following? Select all that apply. A) Frameshift mutations, both insertions and deletions B) Mutations in tumor suppressor genes C) Mutations in oncogenes D) Nonstop mutations Question 17 (1 point) Listen Viruses _. Select all that apply. A) can perform metabolism on their own B) target a specific cell type C) must enter a host cell to produce new viral particles D) are noncellular You are told that an organism contains a nucleus, a cell membrane, and multiple cells. Which of the following categories could the organism belong to? Select all that apply. A) Plantae B) Bacteria C) Archaea D) Animalia E) Eukarya Given the following data involving 20 radish seeds mixed in water only in a petri dish (control), 20 radish seeds mixed in water with ground-up leaves from plant A in a petri dish, and 20 radish seeds mixed in water with ground-up leaves from plant B in a petri dish, answer the following questions. The seeds were allowed to grow for 7 days. Control: 16/20 seeds sprouted, average length of seedling: 40 mm Plant A: 8/20 seeds sprouted, average length of seedling: 20 mm Plant B: 17/20 seeds sprouted, average length of seedling: 42 mm 1. What can you conclude about the effect of plant A on radish seed germination and growth? 2. What can you conclude about the effect of plant B on radish seed germination and growth? The spacecraft has 4 solar panels. Each panel has the dimension of 2m x 1m x 20mm with a density of 7830 kg/m3 and is connected to the body by aluminum rods of a length of 0.4 m and a diameter of 20mm. Determine the natural frequency of vibration of each panel about the axis of the connecting rod. Use G = 26GPa. Im= m (w2 + h2)/12 = a) Describe the following: i. Encoder ii. Decoder iii. RAM iv. ROMb) Describe the operation of: i. Write and read ii. Basic binary decoder Please answer two of the following prompts. Remember, completeness and accuracy are important and will be used to determine you grade! Make sure to read the rubric!! Describe the major features and components of the ISM. Describe extinction and reddening. The power jmput P to a centrifugal pump is assumed to be a function of volume flow Q, the pressure p delivered, the impeller diameter D, the rotational speed is L, and the mass density rho and dynamic viscosity of the fluid. Use Buckingham's method to obtain dimensionless groups applicable to the situation. Show that the groups are indeed dimensionless. Use D,rhoQ as the repeated variables. Limits to Measurement /6 Explain the difference between accuracy and precision; giving an example to support your answer. (2 marks) When I created the playhouse I had to haul many loads of material fr Methane (CH) is burned with dry air. The volumetric analysis of the products on a dry basis is 5.2% CO2, 0.33% CO, 11.24% O, and 83.23% N2. Determinem the balanced reaction equation, 1. According tothe Elaboration Likelihood Model, under what conditions wouldcelebrity endorsements be effective?2. Identify and describe the key,and the sub-factors of long-term memory networks. can you assist me with my culinary arts II test?1. a brown roux is able to thicken liquids _____ as much as a blind.a. twiceb. Halfc. the samed. it won't thicken2. the texture of meat comes from?a. the muscle fibersb. the connective tissuec. the fatd. none of the above What are some reasons why a designer might select a 10-bit A/D converter instead of a 12-bit or higher resolution converter? Which of the following would result in a lower cost ofcapital?I. Using more debtsII. Higher tax rateIII. Using more equitiesIV. Lower tax ratea. I and II onlyb. III and IV onlyc. I only II onl please show me the work6. Consider the quadratic function f(x) = 2x 20x - 50. (a) Compute the discriminant of f. (b) How many real roots does f have? Do not graph the function or solve for the roots.