Which of the following transformations represent an increase in the entropy of the system. Choose all that apply 012 g C5H12 (gas, 309K) 12 g C5H12 (liquid, 309K) 4 mol CO₂ (15.9 L, 212K) 4 mol CO�

Answers

Answer 1

The transformations that represent an increase in the entropy of the system are: 012 g C5H12 (gas, 309K) to 12 g C5H12 (liquid, 309K)

4 mol CO₂ (15.9 L, 212K) to 4 mol CO

Entropy is a measure of the randomness or disorder in a system. An increase in entropy indicates an increase in the system's disorder.

In the given options, the transformation from 0.12 g C5H12 (gas, 309K) to 12 g C5H12 (liquid, 309K) represents an increase in entropy. This is because the gas phase is typically more disordered than the liquid phase, as the particles in a gas have higher freedom of movement compared to a liquid.

Similarly, the transformation from 4 mol CO₂ (15.9 L, 212K) to 4 mol CO also represents an increase in entropy. This is because the formation of CO from CO₂ results in a decrease in the number of moles of gas particles. As the number of gas molecules decreases, the disorder or randomness of the system decreases, leading to a decrease in entropy.

Therefore, among the given options, only the transformations from 0.12 g C5H12 (gas, 309K) to 12 g C5H12 (liquid, 309K) and from 4 mol CO₂ (15.9 L, 212K) to 4 mol CO represent an increase in the entropy of the system.

To learn more about entropy click here:

brainly.com/question/20166134

#SPJ11


Related Questions

suppose you have determined that there are 0.000921 mol nh3 present in the initial cobalt complex sample. if the mass of the original sample was 0.049 g, what is the mass % of ammonia?

Answers

The mass percentage of ammonia in the cobalt complex sample is 32.0%.

To calculate the mass percentage of ammonia (NH3) in the cobalt complex sample, we need to determine the mass of ammonia and divide it by the mass of the original sample.

Given that there are 0.000921 mol of NH3 in the sample, we can use the molar mass of ammonia (17.03 g/mol) to calculate the mass of NH3:

Mass of NH3 = 0.000921 mol × 17.03 g/mol = 0.0157 g

Now, we can calculate the mass percentage of NH3:

Mass % of NH3 = (Mass of NH3 / Mass of original sample) × 100

= (0.0157 g / 0.049 g) × 100

= 32.0%

Learn more about complex sample here

https://brainly.com/question/28391568

#SPJ11

3 8. What is the concentration of an unknown potassium hydroxide solution if it take 25.22 mL of KOH to titrate 20.00 mL of 0.100 M H₂SO4?

Answers

The concentration of the unknown KOH solution is approximately 0.0792 M.

To calculate the concentration of the unknown potassium hydroxide (KOH) solution, we can use the concept of stoichiometry and the balanced chemical equation of the reaction between KOH and H₂SO₄. The balanced equation is as follows:

2 KOH + H₂SO₄ → K₂SO₄ + 2 H₂O

From the balanced equation, we can see that two moles of KOH react with one mole of H₂SO₄ to form two moles of water. This means that the ratio of KOH to H₂SO₄ is 2:1.

Given:

Volume of KOH solution used = 25.22 mL

Volume of H₂SO₄ solution = 20.00 mL

Concentration of H₂SO₄ solution = 0.100 M (moles per liter)

First, we need to calculate the number of moles of H₂SO₄ used in the reaction. We can use the formula:

Moles = Concentration × Volume (in liters)

Moles of H₂SO₄ = 0.100 M × 0.02000 L = 0.002 moles

Since the stoichiometric ratio of KOH to H₂SO₄ is 2:1, the number of moles of KOH used in the reaction is also 0.002 moles.

Now, we can calculate the concentration of the KOH solution using the formula:

Concentration = Moles / Volume (in liters)

Concentration of KOH = 0.002 moles / 0.02522 L ≈ 0.0792 M

It's important to note that in titration calculations, we assume that the reaction between the two solutions is stoichiometric and complete. However, in reality, there might be some experimental errors or side reactions that can affect the accuracy of the calculated concentration. To improve accuracy, multiple titrations can be performed and the average value can be taken. Additionally, proper handling and measurement techniques should be employed to minimize errors and ensure accurate results.

Learn more about chemical equation at: brainly.com/question/28792948

#SPJ11

A solution was prepared with 0.219 mol of pyridinium fluoride
(C5H5NHF) and enough water to make a 1.00 L. Pyridine (C5H5N) has a
Kb=1.70×10−9 and HFHF has a Ka=6.30×10−4.
Calculate the pH

Answers

The pH is 0.660.

To calculate the pH of the solution, we need to determine the concentration of hydronium ions ([H3O+]) in the solution.

First, we need to find the concentration of the pyridinium fluoride [tex](C5H5NHF)[/tex]that ionizes to form hydronium ions (H3O+) and fluoride ions (F-).

Initial moles of pyridinium fluoride [tex](C5H5NHF)[/tex] = 0.219 mol

Volume of the solution = 1.00 L

Since the solution is made up to 1.00 L, the concentration of pyridinium fluoride is:

C(C5H5NHF) = 0.219 mol / 1.00 L = 0.219 M

Next, we need to determine the equilibrium concentrations of hydronium ions ([H3O+]) and fluoride ions ([F-]) using the dissociation reaction of pyridinium fluoride:

C5H5NHF + H2O ⇌ C5H5NH+ + F-

From the dissociation reaction, we can see that for every 1 mole of pyridinium fluoride that dissociates, we get 1 mole of hydronium ions and 1 mole of fluoride ions.

Therefore, the equilibrium concentrations of [H3O+] and [F-] are both equal to the concentration of pyridinium fluoride:

[H3O+] = [F-] = 0.219 M

Since we have the concentration of hydronium ions, we can calculate the pH using the formula:

pH = -log[H3O+]

pH = -log(0.219) = 0.660

To know more about equilibrium refer to-

https://brainly.com/question/30694482

#SPJ11

For the following reaction, 38.0 grams of iron are allowed to react with 19.5 grams of oxygen gas. iron (s)+ oxygen (g) iron(III) oxide (s) What is the maximum amount of iron (III) oxide that can be f

Answers

The limiting reactant is the reactant that is completely consumed and determines the maximum amount of product that can be formed.

First, we must convert the given masses of iron and oxygen gas to moles using their respective molar masses. The molar mass of iron is 55.85 g/mol, and the molar mass of oxygen is 32.00 g/mol.

1. Calculate the number of moles for each reactant:

moles of iron = 38.0 g / 55.85 g/mol

moles of oxygen = 19.5 g / 32.00 g/mol

2. Determine the stoichiometric ratio between iron and iron(III) oxide based on the balanced chemical equation. The balanced equation shows that the ratio is 4:2, meaning 4 moles of iron react with 2 moles of iron(III) oxide.

3. Compare the moles of iron and oxygen to determine the limiting reactant. The reactant that produces the smaller amount of moles will be the limiting reactant.

4. Calculate the maximum moles of iron(III) oxide that can be formed using the stoichiometric ratio between iron and iron(III) oxide.

5. Convert the maximum moles of iron(III) oxide to grams by multiplying it by the molar mass of iron(III) oxide, which is 159.69 g/mol.

The calculated value will give us the maximum amount of iron(III) oxide that can be formed in the reaction.

To learn more about limiting reactants

brainly.com/question/10090573

#SPJ11

A set of solubility data is given below.
What is the mass of the dry solute
recovered?
Sample
2
Temperature
(°C)
30.1
Boat Mass
(8)
0.730
Boat +
Solution (g)
0.929
Boat + Dry
(g)
0.816

Answers

Answer:

0.086

Explanation:

got it on acellus

The mass of the dry solute recovered from the given data is 0.086 g.  Option C

To determine the mass of the dry solute recovered, we need to subtract the mass of the boat from the mass of the boat with the dry solute.

Given the data provided:

Boat Mass: 0.730 g

Boat + Solution: 0.929 g

Boat + Dry: 0.816 g

To find the mass of the dry solute, we subtract the boat mass from the boat + dry mass:

Mass of Dry Solute = (Boat + Dry) - (Boat Mass)

Mass of Dry Solute = 0.816 g - 0.730 g

Mass of Dry Solute = 0.086 g

Therefore, the correct answer is c) 0.086 g.

The mass of the dry solute recovered from the given data is 0.086 g. It is important to note that the mass of the dry solute is obtained by subtracting the mass of the boat from the mass of the boat with the dry solute, as the boat mass represents the weight of the empty boat or container used in the experiment.

For more such questions on solute visit:

https://brainly.com/question/25326161

#SPJ8

19) Predict the major and minor products for each of the following E2 reactions: NaOrt NaOE.

Answers

The major product is typically the more substituted alkene, while the minor product is the less substituted alkene.

In an E2 reaction, a strong base removes a proton from a β-carbon while a leaving group departs, resulting in the formation of a double bond. The regioselectivity of the reaction depends on the stability of the transition state.

The more substituted alkene is favored because it forms a more stable transition state, with greater delocalization of the negative charge on the β-carbon.

The stereoselectivity of the E2 reaction depends on the anti-coplanar arrangement of the β-hydrogen and the leaving group. The hydrogen and the leaving group must be in a trans configuration to allow the reaction to proceed. This leads to the formation of the most stable, anti-periplanar transition state.

For the reaction with NaOH (sodium hydroxide), the sodium cation and hydroxide anion dissociate in solution. The hydroxide ion acts as a strong base, abstracting a proton from the β-carbon and leading to the elimination of the leaving group.

The major product in the E2 reaction will be the more substituted alkene, formed through the transition state with more alkyl groups around the double bond. The minor product will be the less substituted alkene, formed through a transition state with fewer alkyl groups.

To determine the specific major and minor products in a given E2 reaction, the substituents on the reacting molecules need to be known. By analyzing the stability of the transition states and the regioselectivity and stereoselectivity principles, the major and minor products can be predicted.

Learn more about alkene here:

https://brainly.com/question/30217914

#SPJ11

Fragrant esters are associated with plants. How do plants use aromas? Fragrant esters must be volatile, by definition. What is it about esters that makes them volatile.

Answers

Plants utilize aromas for various purposes, and fragrant esters are associated with these aromatic compounds. The volatility of esters contributes to their ability to release pleasant scents.

Plants produce fragrant compounds, including esters, to attract pollinators, repel herbivores, and communicate with other organisms. Aromas play a crucial role in attracting pollinators like bees, butterflies, and birds, aiding in the process of pollination and ensuring the plant's reproductive success.

Additionally, some plant aromas act as defensive mechanisms by deterring herbivores and protecting the plant from damage. The release of pleasant scents can also be a way for plants to communicate with other organisms, such as attracting predators of herbivores or signaling the presence of ripe fruits.

Esters, specifically, are volatile compounds due to their chemical structure. Esters are formed by the reaction between an alcohol and an organic acid, resulting in the formation of a distinctive odor. The volatility of esters is attributed to their relatively low boiling points and high vapor pressures.

These properties allow esters to easily evaporate from plant tissues and disperse in the surrounding air, enhancing their ability to emit fragrance. The volatility of esters enables plants to release their aromatic compounds into the atmosphere, maximizing the chances of attracting pollinators and other beneficial organisms over greater distances.

Learn more about esters here :

https://brainly.com/question/32098100

#SPJ11

When steel and zinc were connected, which one was the cathode?
Steel
Zinc
☐ neither
both

Answers

When steel and zinc were connected, zinc is the cathode. The term cathode refers to the electrode that is reduced during an electrochemical reaction.

The electrons are moved from the anode to the cathode during an electrochemical reaction in order to maintain a current in the wire that links the two electrodes.

According to the galvanic series, zinc is more active than iron, meaning that it is more likely to lose electrons and be oxidized. As a result, when steel and zinc are connected, zinc will act as the anode and lose electrons, whereas iron (steel) will act as the cathode and receive the electrons transferred by zinc.

To know more about electrochemical reaction visit:-

https://brainly.com/question/13062424

#SPJ11

1. Which oil - olive oil or coconut oil - would you expect to
have a higher peroxide value after opening and storage under normal
conditions as you prepare your certificate of analysis? Explain
your a

Answers

Based on their composition, olive oil would be expected to have a higher peroxide value after opening and storage under normal conditions compared to coconut oil.

The peroxide value is a measure of the primary oxidation products in oils and fats, indicating their susceptibility to oxidation. Olive oil, being rich in unsaturated fatty acids, particularly monounsaturated fatty acids like oleic acid, is more prone to oxidation compared to coconut oil, which primarily consists of saturated fatty acids.

Unsaturated fatty acids are more susceptible to oxidation due to the presence of double bonds in their chemical structure. When exposed to air, heat, and light, unsaturated fatty acids can react with oxygen, leading to the formation of peroxides. These peroxides contribute to the peroxide value.

Coconut oil, on the other hand, has a high content of saturated fatty acids, which are more stable and less prone to oxidation. The absence of double bonds in saturated fatty acids reduces their reactivity with oxygen, resulting in a lower peroxide value compared to oils with higher unsaturated fatty acid content.

Learn more about fatty acids here:

https://brainly.com/question/31037029

#SPJ11

1- Titanium ( IV ) oxide , TiO₂ , is a common solid
found in everything from thin - nim solar cells to whitening
toothpaste . A common method to synthesize this compound is through
the reaction betw
Question 1 Titanium(IV) oxide, TiO2, is a common solid found in everything from thin-film solar cells to whitening toothpaste. A common method to synthesize this compound is through the reaction betwe

Answers

Titanium(IV) oxide, TiO₂, compound can be synthesized through a common method involving a reaction between titanium(IV) chloride and water or other sources of hydroxide ions.

The synthesis of titanium(IV) oxide, TiO₂, typically involves the reaction between titanium(IV) chloride (TiCl₄) and water (H₂O) or other hydroxide sources. This reaction is commonly known as hydrolysis.

The reaction proceeds as follows:

TiCl₄ + 2H₂O → TiO₂ + 4HCl

In this reaction, titanium(IV) chloride reacts with water to form titanium(IV) oxide and hydrochloric acid. The hydroxide ions from water or other hydroxide sources react with the titanium(IV) chloride, resulting in the formation of solid TiO₂.

This synthesis method is widely used because titanium(IV) chloride is readily available and reacts readily with water. Additionally, the hydrolysis reaction can be controlled to obtain different forms of TiO₂, such as rutile, anatase, or a mixture of both, depending on the reaction conditions.

The resulting TiO₂ product is a white solid with various desirable properties, including high refractive index, photocatalytic activity, and resistance to UV radiation. These properties make it useful in a range of applications, including solar cells, pigments, coatings, and cosmetics.

In summary, titanium(IV) oxide, TiO₂, is commonly synthesized through the hydrolysis reaction between titanium(IV) chloride and water or other hydroxide sources. This synthesis method allows for the production of TiO₂ with different properties, enabling its application in diverse fields.

Learn more about titanium(IV) oxide:

brainly.com/question/16759713

#SPJ11

The nitration of methyl benzoate is carried out using 2.25 g of methyl benzoate and excess HNO 3

/H 2

SO 4

. What is the theoretical yield of methyl nitrobenzoate?

Answers

Methyl benzoate reacts with nitric acid in the presence of sulfuric acid to produce methyl nitrobenzoate. The first step is the protonation of nitric acid by sulfuric acid, followed by the reaction with methyl benzoate.

HNO3+H2SO4 ⟶NO2++HSO4−+H2O HSO4−+CH3C6H5O2 ⟶CH3C6H4(NO2)CO2H+HSO4−

The balanced equation is HNO3+CH3C6H5O2 ⟶CH3C6H4(NO2)CO2H+H2O

The molecular mass of methyl benzoate is 136.15 g/mol while that of methyl nitrobenzoate is 181.14 g/mol.

Therefore, one mole of methyl benzoate is equal to one mole of methyl nitrobenzoate. So, the theoretical yield of methyl nitrobenzoate can be calculated by using the formula below:

moles of methyl benzoate = mass/molar mass= 2.25 g/136.15 g/mol = 0.01653 molesmoles of methyl nitrobenzoate = 0.01653 moles

The theoretical yield of methyl nitrobenzoate can now be calculated using the formula below:

mass of methyl nitrobenzoate = moles × molar mass= 0.01653 mol × 181.14 g/mol= 2.996 g

The theoretical yield of methyl nitrobenzoate is 2.996 g (rounded to three decimal places).

To know more about protonation visit :

https://brainly.com/question/12535409

#SPJ11

A solar energy collector (panel) with an area of 4 m2 can collect net radiant heat energy of 1 000 J/s-m2 from the sun. The temperature rise of the heated water is 70 °C. Determine the mass flow rate of the circulating water in kg/s.
a. 0.01365
b. 0.02625
c. 0.03245
d. 0.0485

Answers

The mass flow rate of the circulating water is 0.03245 kg/s.

To determine the mass flow rate of the circulating water, we can use the equation:

Q = m * c * ΔT

Where:

Q = net radiant heat energy collected by the solar panel (1,000 J/s-m²)

m = mass flow rate of water (unknown)

c = specific heat capacity of water (4,186 J/kg·°C)

ΔT = temperature rise of the heated water (70 °C)

Rearranging the equation, we can solve for the mass flow rate:

m = Q / (c * ΔT)

  = 1,000 J/s-m² / (4,186 J/kg·°C * 70 °C)

  ≈ 0.03245 kg/s

Therefore, the mass flow rate of the circulating water is approximately 0.03245 kg/s.

Learn more about mass flow rate

brainly.com/question/30763861

#SPJ11

1. What volume (in mL) of a beverage that is 10.5% by mass of
sucrose (C12H22O11)
contains 78.5 g of sucrose (Density of the solution 1.04 g/mL).
2. A solution is prepared by dissolving 17.2 g of eth

Answers

What volume (in mL) of a beverage that is 10.5% by mass of sucrose (C12H22O11) contains 78.5 g of sucrose (Density of the solution 1.04 g/mL).First, let us determine the mass of the solution using its density:density = mass/volumemass = density x volume mass = 1.04 g/mL x volume mass = 1.04volume.

Now, we can solve for the volume of the solution that contains 78.5 g of sucrose. We can write the equation:m_sucrose = percent by mass x total massm_sucrose = 0.105 x mass of solution We can rearrange the equation to solve for the mass of the solution that contains 78.5 g of sucrose:m_sucrose/0.105 = mass of solution mass of solution = m_sucrose/0.105mass of solution = 78.5 g/0.105mass of solution = 747.62 g Now that we know the mass of the solution, we can substitute it into the mass equation:m_sucrose = percent by mass x total mass78.5 g = 0.105 x 747.62 gNow, we can solve for the volume of the solution that contains 78.5 g of sucrose using the mass equation and the density:m = d x V78.5 g = 1.04 g/mL x V Volume (V) = 75.48 mL Therefore, 75.48 mL of a beverage that is 10.5% by mass of sucrose contains 78.5 g of sucrose.

A solution is prepared by dissolving 17.2 g of ethanol (C2H5OH) in enough water to make 0.500 L of the solution. What is the molarity of the ethanol in the solution?We can use the equation for molarity: M = n/VWe need to find the number of moles of ethanol (n) in 17.2 g. We can use the molecular weight of ethanol to convert the mass to moles:molecular weight of ethanol = 2(12.01 g/mol) + 6(1.01 g/mol) + 1(16.00 g/mol)molecular weight of ethanol = 46.07 g/mol moles = mass/molecular weight moles = 17.2 g/46.07 g/mol moles = 0.373 mol We also know the volume of the solution (V) and it is given as 0.500 L.Now we can substitute the values into the molarity equation:M = n/VM = 0.373 mol/0.500 LM = 0.746 M Therefore, the molarity of the ethanol in the solution is 0.746 M.

To know more about ethanol visit:-

https://brainly.com/question/29294678

#SPJ11

hi
can you shownme how to do these problems i would greatly appreciate
it
and will give you a review
The initial activity for a radionuclide with a half life of 5.26 days is 15.0 mci. Calculate the activity after 158 hours. A radionuclide with a decay constant of 0.05/month has an activity of 26.0

Answers

1. The activity after 158 hours is 6.3 mci

2. The activity six months ago is 35.03 mg Ra Eq

1. How do i determine the activity after 158 hours?

First, we shall calculate the number of half lives. This is shown below:

Half-life (t½) = 5.26 days = 5.26 × 24 = 126.24 hoursTime (t) = 158 hours Number of half-lives (n) =?

n = t / t½

= 158 / 126.24

= 1.25

Finally, we shall determine the activity after 158 hours. Details below:

Initial activity (N₀) = 15.0 mci.Number of half-lives (n) = 1.25Activity after 158 hours (N) = ?

[tex]N = \frac{N_{0} }{2^{n}}\\ \\= \frac{15}{2^{1.25} } \\\\= 6.3\ mci[/tex]

2. How do i determine the activity six months ago?

First, we shall obtain the half-life. Details below:

Decay constant (λ) = 0.05 /monthHalf-life (t½) = ?

t½ = 0.693 / λ

= 0.693 / 0.05

= 13.86 months

Next, we shall calculate the number of half lives. This is shown below:

Half-life (t½) = 13.86 monthsTime (t) = 6 monthsNumber of half-lives (n) =?

n = t / t½

= 6 / 13.86

= 0.43

Finally, we shall obtain the activity six months ago. Details below:

Initial activity (N₀) = 26.0 mg Ra EqNumber of half-lives (n) = 0.43Activity after 158 hours (N) = ?

[tex]N_{0} = N *2^{n}\\\\= 26*2^{0.43}\\\\= 35.03\ mg\ Ra\ Eq[/tex]

Learn more about amount remaining:

https://brainly.com/question/28440920

#SPJ4

Complete question:

1. The initial activity for a radionuclide with a half life of 5.26 days is 15.0 mci. Calculate the activity after 158 hours.

2. A radionuclide with a decay constant of 0.05/month has an activity of 26.0 mg Ra Eq. what was the activity six months ago?

2. a. How does fermentation differ from anaerobic respiration? b. How is fermentation like anaerobic respiration? 3. a. What are some of the potential end products of fermentation? b. What is a product that we did NOT detect in this test?

Answers

2.a. Fermentation differs from anaerobic respiration in terms of the final electron acceptor and the efficiency of energy production.

b. Fermentation is like anaerobic respiration in that both processes occur without oxygen and are used by organisms to generate energy.

3. a. Some potential end products of fermentation include ethanol, lactic acid, and carbon dioxide.

b. One product that may not be detected in a fermentation test is hydrogen gas (H2).

In fermentation, the final electron acceptor is an organic molecule, such as pyruvate, while in anaerobic respiration, the final electron acceptor is an inorganic molecule, such as nitrate or sulfate. Fermentation produces a small amount of ATP through substrate-level phosphorylation, whereas anaerobic respiration can produce more ATP through an electron transport chain.

Both fermentation and anaerobic respiration allow organisms to continue producing ATP when oxygen is unavailable as an electron acceptor. Both processes also involve the partial breakdown of organic molecules, such as glucose, to produce energy-rich compounds.

These end products vary depending on the type of organism and the specific metabolic pathway involved.

While some microorganisms can produce hydrogen gas as a byproduct of fermentation, it may not be detected in certain tests or under specific conditions.

To learn more about fermentation

brainly.com/question/31279960

#SPJ11

8.80 What is the total pressure, in millimeters of mercury, of a gas mixture containing argon gas at 0.25 atm, helium gas at 350 mmHg, and nitrogen gas at 360 Torr? (8.7)

Answers

To calculate the total pressure of a gas mixture, we need to convert the pressures of the individual gases to a common unit. In this case, we'll convert all the pressures to millimeters of mercury (mmHg) since the final unit is requested in millimeters of mercury.

Given:

Argon gas pressure: 0.25 atm

Helium gas pressure: 350 mmHg

Nitrogen gas pressure: 360 Torr

We'll convert each pressure to mmHg:

1 atm = 760 mmHg (definition)

1 Torr = 1 mmHg

Converting the given pressures:

Argon gas pressure: 0.25 atm × 760 mmHg/atm = 190 mmHg

Helium gas pressure: 350 mmHg (already in mmHg)

Nitrogen gas pressure: 360 Torr × 1 mmHg/Torr = 360 mmHg

Now, we can calculate the total pressure by summing up the individual pressures:

Total pressure = Argon gas pressure + Helium gas pressure + Nitrogen gas pressure

Total pressure = 190 mmHg + 350 mmHg + 360 mmHg

Total pressure = 900 mmHg

Therefore, the total pressure of the gas mixture is 900 mmHg.

To know more about pressure, click here:-

https://brainly.com/question/28116497

#SPJ11

QUESTION 7 What is the limiting reagent in the following reaction if 47.7 grams of C 12H 26 is reacted with 281.0 grams of oxygen? 2C 12H 26 (1) +370 2 (g) -> 24CO 2 (g) + 26H 20 (g) H2O CO2 02 C12H26

Answers

The limiting reactant is the chemical that limits the amount of product obtained from a reaction. When one of the reactants is used up, the reaction ceases, and no more products are formed.

The amount of product obtained is determined by the quantity of the limiting reactant, not the abundance of the other reactant. The limiting reactant is calculated by comparing the amount of moles of each reactant in the reaction.

The mole ratio from the balanced chemical equation indicates the stoichiometry of the reaction, which reveals the limiting reactant. We may determine the amount of moles in the reaction by utilizing the molecular weights of the reactants.

To know more about limiting visit:

https://brainly.com/question/12211820

#SPJ11

PROCESSING DATA 1. Determine the mass of 100 mL of solution for each reaction (assume the density of each solution is 1.00 g/mL). 2. Determine the temperature change, A, for each reaction. 3. Calculat

Answers

For both reactions, the mass of 100 mL of solution is 100 grams.

To determine the mass of 100 mL of solution for each reaction, we can use the density of the solution, which is assumed to be 1.00 g/mL.

Reaction 1:

Mass = Volume x Density

Mass = 100 mL x 1.00 g/mL

Mass = 100 g

Therefore, the mass of 100 mL of solution for Reaction 1 is 100 grams.

Reaction 2:

Similarly,

Mass = Volume x Density

Mass = 100 mL x 1.00 g/mL

Mass = 100 g

Therefore, the mass of 100 mL of solution for Reaction 2 is also 100 grams.

The completed question is given as,

Determine the mass of 100 mL of solution for each reaction (assume the density of each solution is 1.00 g/mL).

Learn more about density from the link given below.

https://brainly.com/question/29775886

#SPJ4

show all work.
5. How many grams of Na₂CO3 are needed to make a 50.0 mL of 1.7 M sodium carbonate (Na₂CO3) solution?

Answers

To make a 50.0 mL solution of 1.7 M sodium carbonate (Na₂CO3), we need to determine the mass of Na₂CO3 required.

To calculate the mass of Na₂CO3 needed, we can use the formula:

Mass = Concentration x Volume x Molar Mass

First, we convert the given volume from milliliters to liters:

Volume = 50.0 mL = 50.0/1000 L = 0.05 L

Next, we substitute the given concentration and volume values into the formula:

Mass = 1.7 M x 0.05 L x Molar Mass of Na₂CO3

The molar mass of Na₂CO3 can be calculated by adding the atomic masses of sodium (Na), carbon (C), and three oxygen (O) atoms:

Molar Mass of Na₂CO3 = (2 x Atomic Mass of Na) + Atomic Mass of C + (3 x Atomic Mass of O)

After obtaining the molar mass value, we can substitute it into the formula and perform the calculation to determine the mass of Na₂CO3 required to make the 50.0 mL solution of 1.7 M sodium carbonate.

To know more about sodium carbonate click here:

https://brainly.com/question/24475802

#SPJ11

Use the References to access important values if needed for this question. You need to make an aqueous solution of 0.163 M zinc chloride for an experiment in lab, using a 125 mL volumetric flask. How much solid zinc chloride should you add? grams Submit Answer 9 more group attempts remaining Retry Entire Group Use the References to access important values if needed for this question. How many milliliters of an aqueous solution of 0.198 M barium acetate is needed to obtain 18.2 grams of the salt? mL Submit Answer 9 more group attempts remaining Retry Entire Group

Answers

To make an aqueous solution of 0.163 M zinc chloride in a 125 mL volumetric flask, you need to add 2.12g of zinc chloride. 359 milliliters of barium acetate is needed.

The amount of solid zinc chloride can be calculated using the formula:

Mass = Concentration × Volume × Molar Mass

First, we need to determine the volume of the solution. In this case, the volume is given as 125 mL. Next, we need to calculate the molar mass of zinc chloride, which consists of one zinc atom (Zn) with a molar mass of 65.38 g/mol and two chloride atoms (2 × Cl) with a molar mass of 2 × 35.45 g/mol.

Molar mass of zinc chloride = (1 × 65.38 g/mol) + (2 × 35.45 g/mol) = 136.28 g/mol

Now, we can calculate the mass of solid zinc chloride:

Mass = 0.163 M × 0.125 L × 136.28 g/mol = 2.12 g

Therefore, you need to add approximately 2.12 grams of solid zinc chloride to prepare the 0.163 M aqueous solution in the 125 mL volumetric flask.

To determine the volume of an aqueous solution of 0.198 M barium acetate needed to obtain 18.2 grams of the salt, we can use the formula:

Volume = Mass / (Concentration × Molar Mass)

First, we need to calculate the molar mass of barium acetate. Barium (Ba) has a molar mass of 137.33 g/mol, while acetate (C2H3O2) has a molar mass of (2 × 12.01) + (3 × 1.01) + (2 × 16.00) = 59.04 g/mol.

Molar mass of barium acetate = (1 × 137.33 g/mol) + (2 × 59.04 g/mol) = 255.41 g/mol

Now, we can calculate the volume of the solution:

Volume = 18.2 g / (0.198 M × 255.41 g/mol)

Volume ≈ 0.359 L or 359 mL

Therefore, approximately 359 milliliters of the 0.198 M aqueous solution of barium acetate is needed to obtain 18.2 grams of the salt.

Learn more about zinc here:

https://brainly.com/question/14346092

#SPJ11

need help
Specify the local electron geometries about the atoms labeled a-d. Unshared electron pairs affect local geometry and are included in the structural formula. a. tetrahedral. b. trigonal planar C. linea

Answers

The local electron geometries around the labeled atoms a-d are as follows:

a. Tetrahedral b. Trigonal planar c. Linear

a. For a tetrahedral geometry, the central atom is surrounded by four electron groups, which can be either bonding pairs or unshared electron pairs. The arrangement of these electron groups around the central atom forms a tetrahedron, with bond angles of approximately 109.5 degrees.

b. In a trigonal planar geometry, the central atom is surrounded by three electron groups, which can be bonding pairs or unshared electron pairs. The arrangement of these electron groups forms a flat, triangular shape, with bond angles of approximately 120 degrees.

c. A linear geometry occurs when the central atom is surrounded by two electron groups, either bonding pairs or unshared electron pairs. The electron groups align in a straight line, resulting in bond angles of 180 degrees.

These local electron geometries play a significant role in determining the overall molecular geometry and the shape of molecules. Understanding the electron geometries helps us predict various properties and behaviors of molecules, including their polarity and reactivity.

To learn more about atom click here:

brainly.com/question/1566330

#SPJ11

I need help ASAP!!
Please provide me with detailed answers. Thank you!!
1. Giving this reaction:
Fe(NO3)3•9H2O(aq) + 3 KHC2O4(aq) + 3 KOH(aq) →
K3[Fe(C2O4)3]•3H2O(s) (tris) + 3 KNO3(aq) + 9 H2O(

Answers



Fe(NO3)3·9H2O(aq) + 3KHC2O4(aq) + 3KOH(aq) → K3[Fe(C2O4)3]·3H2O(s) (tris) + 3KNO3(aq) + 9H2OIron (III) nitrate nonahydrate (Fe(NO3)3·9H2O) reacts with potassium hydrogen oxalate (KHC2O4) and potassium hydroxide (KOH) to give tris(oxalato)iron(III) (K3[Fe(C2O4)3]) along with potassium nitrate (KNO3) and water (H2O).

This reaction is a double displacement reaction or precipitation reaction, and the salt formed is tris(oxalato)iron(III) which is a green-colored complex. The equation is balanced, and the stoichiometry is maintained.
The following is the explanation of the reaction:Fe(NO3)3.9H2O + 3KHC2O4 + 3KOH → K3[Fe(C2O4)3].3H2O (s) + 3KNO3 + 9H2O
Here, iron (III) nitrate nonahydrate (Fe(NO3)3.9H2O) is a compound made up of one mole of Fe(NO3)3 and nine moles of water (H2O), and potassium hydrogen oxalate (KHC2O4) is an acid salt of oxalic acid. The reaction takes place in aqueous solutions of the two compounds. When Fe(NO3)3.9H2O is added to a solution of KHC2O4 and KOH, a double displacement reaction occurs. Fe(NO3)3 reacts with KOH to form Fe(OH)3 and KNO3. KHC2O4 reacts with Fe(OH)3 to form Fe(C2O4)3 and H2O.The complex K3[Fe(C2O4)3] is a tris(oxalato)iron(III) compound with a green colour. It is a coordination complex formed by the binding of Fe(III) ions with three oxalate ions. Finally, 3KNO3 and 9H2O are produced as products of the reaction, and the net ionic equation of the reaction is:
Fe3+ + 3C2O42- → Fe(C2O4)3. 3H2O (s)

Learn more about nitrate here:

https://brainly.com/question/24651774

#SPJ11

Explain why strong acids conduct electricity better than weak
acids, assuming that the two acids are at equal
concentrations.

Answers

At equal concentrations, strong acids have a higher concentration of ions and thus conduct electricity better than weak acids.

Strong acids conduct electricity better than weak acids because strong acids completely ionize in water, while weak acids only partially ionize.

When a strong acid is dissolved in water, it dissociates completely into its constituent ions, releasing a high concentration of hydrogen ions (H+) and anions. These ions are responsible for conducting electric current in the solution. Since strong acids completely ionize, they produce a larger number of ions per unit concentration, resulting in a higher concentration of charge carriers and thus a higher conductivity.

On the other hand, weak acids only partially dissociate in water, meaning that only a fraction of the acid molecules ionize into hydrogen ions and anions. This leads to a lower concentration of ions and charge carriers in the solution, resulting in lower conductivity compared to strong acids.

Therefore, at equal concentrations, strong acids have a higher concentration of ions and thus conduct electricity better than weak acids.

To know more about Strong acids visit-

brainly.com/question/17461457

#SPJ11

In an aqueous solution of a certain acid with pK = 6.59 the pH is 4.06. Calculate the percent of the acid that is dissociated in this solution. Round your answer to 2 significant digits. % x10 X Ś ?

Answers

The p Ka is defined as the negative base 10 logarithm of the acid dissociation constant.

The formula for the percentage of the acid that is dissociated in a solution is:% dissociation = 10^(pKa - pH) * 100Given p K = 6.59 and pH = 4.06% dissociation = 10^(6.59 - 4.06) * 100 = 0.91% (rounded to two significant digits).

Therefore, the percent of the acid that is dissociated in this solution is 0.91%.

To know more about defined visit:

https://brainly.com/question/21598857

#SPJ11

Phosgene also reacts with carboxvlic acids. What are the products formed? Provide the mechanism for the transformation below.

Answers

When phosgene reacts with carboxylic acids, the products formed are acyl chlorides (also known as acid chlorides) and hydrogen chloride.

The reaction between phosgene (COCl₂) and carboxylic acids results in the formation of acyl chlorides. This reaction is known as the Vilsmeier-Haack reaction. The mechanism involves the following steps:

1. Activation: Phosgene is activated by reacting with a base, such as pyridine (C₅H₅N), to form a chloroformate intermediate. This step generates a nucleophilic carbon center in phosgene.

2. Nucleophilic attack: The activated phosgene reacts with the carboxylic acid, where the nucleophilic carbon attacks the carbonyl carbon of the carboxylic acid. This results in the formation of an intermediate called a mixed anhydride.

3. Rearrangement: The mixed anhydride undergoes a rearrangement where the oxygen from the carboxylic acid attacks the carbonyl carbon, resulting in the expulsion of carbon dioxide (CO₂).

4. Chloride ion transfer: Finally, a chloride ion from the activated phosgene attacks the carbonyl carbon of the mixed anhydride, leading to the formation of the acyl chloride product and the regeneration of the base catalyst.

Overall, the reaction between phosgene and carboxylic acids leads to the conversion of the carboxylic acid functional group into an acyl chloride, accompanied by the liberation of hydrogen chloride (HCl).

Learn more about nucleophilic attack here:

https://brainly.com/question/32320781

#SPJ11

what would the order of reaction be with...
a.) respect to I-
b.) respect to S2O8 2-
c.) the overall order of reaction
(also please correct me if the reaction rates are wrong)
Thank you!!!
Experiment 1 2 3 Initial Concentrations, M Elapsed [I-] [S₂0,¹] Time, s 0.04M 0.04M 101 101 95 0.08M 0.04M 48 52 0.08 M 0.02M 92 LOD Reaction Rate, MS-¹ Average Rate 4.95E-6 5.1 E-6 5.26E-6 1.04E-

Answers

a) the order of reaction with respect to I- is 1. b)the order of reaction with respect to S2O8 2- is 0 or very close to zero. c) the overall order of reaction in this case would be 1 + 0 = 1. Compare reaction rates:

In the first part, I will provide a brief answer regarding the order of reaction with respect to I-, S2O8 2-, and the overall order of reaction. In the second part, I will provide a more detailed explanation of how the order of reaction is determined based on the provided experimental data. a) The order of reaction with respect to I- can be determined by comparing the reaction rates at different concentrations of I-. In the given data, when the concentration of I- is doubled (from 0.04 M to 0.08 M), the reaction rate approximately doubles as well. This suggests that the reaction rate is directly proportional to the concentration of I-. Therefore, the order of reaction with respect to I- is 1. b) Similarly, the order of reaction with respect to S2O8 2- can be determined by comparing the reaction rates at different concentrations of S2O8 2-. In the given data, when the concentration of S2O8 2- is halved (from 0.04 M to 0.02 M), the reaction rate remains relatively constant. This suggests that the concentration of S2O8 2- does not significantly affect the reaction rate. Therefore, the order of reaction with respect to S2O8 2- is 0 or very close to zero. c) The overall order of reaction is the sum of the individual orders of reaction with respect to each reactant. Based on the above analysis, the overall order of reaction in this case would be 1 + 0 = 1.

To determine the order of reaction, one can use the method of initial rates. By comparing the initial rates of the reaction at different concentrations of reactants, the order of reaction with respect to each reactant can be determined. In this case, the provided experimental data includes the initial concentrations of I- and S2O8 2- and the corresponding elapsed time and reaction rates. From the data, we can see that when the concentration of I- is doubled (from 0.04 M to 0.08 M), the reaction rate also doubles. This indicates that the reaction rate is directly proportional to the concentration of I-, suggesting a first-order reaction with respect to I-. On the other hand, when the concentration of S2O8 2- is halved (from 0.04 M to 0.02 M), the reaction rate remains relatively constant. This suggests that the concentration of S2O8 2- does not significantly affect the reaction rate, indicating a zero-order reaction with respect to S2O8 2-.

By summing up the orders of reaction with respect to each reactant, we obtain the overall order of reaction, which in this case is 1 + 0 = 1. It's important to note that the determination of the order of reaction based on the provided data assumes that the reaction follows the rate law given by Rate = k[I-]^[m][S2O8 2-]^[n], where m and n represent the orders of reaction with respect to I- and S2O8 2-, respectively, and k is the rate constant.

To learn more about order of reaction click here:

brainly.com/question/32611975

#SPJ11

In ion dipole forces caalculate the magnitude of the
interaction energy? ( Answer should be given in 200 words)

Answers

Ion-dipole forces are attractive forces between an ion and a polar molecule. The magnitude of the interaction energy between an ion and a dipole.


U = - (Q * μ * cos(θ)) / (4 * π * ε_0 * r^2)

where U is the interaction energy, Q is the charge of the ion, μ is the magnitude of the dipole moment of the polar molecule, θ is the angle between the direction of the dipole moment and the line connecting the ion and the center of the dipole, ε_0 is the vacuum permittivity, and r is the distance between the ion and the center of the dipole.

This equation assumes that the ion and dipole are point charges and that their sizes are much smaller than their separation distance. It also assumes that there are no other charges or dipoles nearby that could affect the interaction.

To calculate the magnitude of the interaction energy using this equation, you would need to know the values of Q, μ, θ, and r.

learn more about Ion-dipole

https://brainly.com/question/13156444

#SPJ11

In the laboratory, a general chemistry student measured the pH of a 0.358 M aqueous solution of formic acid, HCOOH to be 2.112. Use the information she obtained to determine the K, for this acid. Ka(e

Answers

The equilibrium constant (Ka) for the formic acid (HCOOH) can be determined using the given pH value of the solution. The calculated Ka value for formic acid is 1.77 × 10^-4.

To determine the Ka value for formic acid, we can use the relationship between pH and the concentration of the acid and its conjugate base. Formic acid (HCOOH) dissociates in water to form hydronium ions (H3O+) and formate ions (HCOO-).

The dissociation of formic acid can be represented by the following equation:

HCOOH + H2O ⇌ H3O+ + HCOO-

Given that the pH of the solution is 2.112, we can determine the concentration of hydronium ions (H3O+) using the equation pH = -log[H3O+]. Therefore, [H3O+] = 10^(-pH).

Next, we need to calculate the concentration of formic acid (HCOOH). Since the initial concentration of formic acid is equal to the concentration of the solution (0.358 M), we can assume that the concentration of formate ions (HCOO-) formed is negligible compared to the initial concentration of formic acid.

Using the equilibrium expression for Ka:

Ka = [H3O+][HCOO-] / [HCOOH]

Since the concentration of formate ions is negligible, the equation simplifies to:

Ka = [H3O+][HCOO-] / [HCOOH] ≈ [H3O+] / [HCOOH]

Substituting the calculated values of [H3O+] and the initial concentration of formic acid [HCOOH] into the equation, we can solve for Ka.

Calculating Ka for the given values, the resulting Ka value for formic acid is approximately 1.77 × 10^-4.

To know more about formic acid click here:

https://brainly.com/question/28562918

#SPJ11

please help
170.48 1. How many grams of copper (II) chloride dihydrate, CuCl₂*2H₂O, (Molar mass= g/mol) are required to prepare 1.00 10² mL of 2.00´10-¹ M solution? Show you work in the report sheet provid

Answers

To prepare a 2.00 x 10-1 M solution of copper (II) chloride dihydrate (CuCl₂*2H₂O) in a volume of 1.00 x 10² mL, we would need 2.63 grams of CuCl₂*2H₂O.

To calculate the mass of CuCl₂*2H₂O required, we need to use the molar mass of CuCl₂*2H₂O, which is given as g/mol. First, we need to convert the given volume of the solution from mL to liters by dividing it by 1000 (1.00 x 10² mL = 0.1 L).

Next, we can use the formula Molarity = moles/volume to find the moles of CuCl₂*2H₂O required. Rearranging the formula, moles = Molarity x volume, we have moles = (2.00 x 10-¹ mol/L) x (0.1 L) = 2.00 x 10-² mol.

Finally, we can calculate the mass of CuCl₂*2H₂O using the formula mass = moles x molar mass. Plugging in the values, we get mass = (2.00 x 10-² mol) x (170.5 g/mol) = 3.41 x 10-¹ g = 2.63 grams (rounded to three significant figures).

Therefore, to prepare a 2.00 x 10-¹ M solution of CuCl₂*2H₂O in a volume of 1.00 x 10² mL, we would need 2.63 grams of CuCl₂*2H₂O.

Learn more about Molarity here:

https://brainly.com/question/31545539

#SPJ11

To prepare a 1.00 x 10^2 mL solution of 2.00 x 10^-1 M copper (II) chloride dihydrate (CuCl₂*2H₂O), approximately 170.48 grams of CuCl₂*2H₂O are required.

First, we need to calculate the number of moles of CuCl₂*2H₂O required to prepare the given solution. The molarity of the solution is 2.00 x 10^-1 M, and the volume of the solution is 1.00 x 10^2 mL, which is equivalent to 0.100 L.

Using the formula:

moles = molarity x volume

moles = (2.00 x 10^-1 M) x (0.100 L)

moles = 2.00 x 10^-2 mol

Next, we need to calculate the molar mass of CuCl₂*2H₂O. The molar mass of CuCl₂ is 134.45 g/mol, and the molar mass of 2H₂O is 36.03 g/mol (2 x 18.01 g/mol).

Total molar mass of CuCl₂*2H₂O = 134.45 g/mol + 36.03 g/mol

Total molar mass of CuCl₂*2H₂O = 170.48 g/mol

Finally, we can calculate the mass of CuCl₂*2H₂O required:

mass = moles x molar mass

mass = (2.00 x 10^-2 mol) x (170.48 g/mol)

mass ≈ 3.41 g

Therefore, approximately 170.48 grams of CuCl₂*2H₂O are required to prepare the 1.00 x 10^2 mL solution of 2.00 x 10^-1 M concentration.

Learn more about solution here:

https://brainly.com/question/1580914

#SPJ11

Atom Transfer Radical Polymerization (ATRP) is a versatile and robust free radical polymerization process employed for the preparation of polymers with controlled number average molecular weights, narrow molecular weight distributions and regiospecific introduction of the functional groups. (a) Briefly discuss the key features of the Atom Transfer Radical Polymerization method. (b) (c) (d) (e) Formulate a detailed mechanism for the Atom Transfer Radical Polymerization process. Using the ATRP method, briefly outline reaction pathways for the preparation of the following polymers. (1) poly(p-bromostyrene) poly(2-hydroxyethyl methacrylate) (iii) a-carboxyl functionalized polystyrene (iv) w-amine functionalized poly(methyl methacrylate) What is a thermoresponsive polymer? Outline a reaction pathway for the preparation of poly(N-isopropylacrylamide) by ATRP methods. 31 What is macromer or macromonomer? Briefly outline the reaction pathway for the preparation of poly(styrene-g-poly(methyl methacrylate) by ATRP methods. (35)

Answers

a. Key features of Atom Transfer Radical Polymerization (ATRP):

ATRP is a controlled radical polymerization technique that allows for the preparation of polymers with controlled molecular weights and narrow molecular weight distributions.

It involves the reversible deactivation of growing radicals through a dynamic equilibrium between dormant and active species.

ATRP requires the presence of a transition metal catalyst, typically copper complexes, and a suitable initiator.

b. Mechanism of Atom Transfer Radical Polymerization (ATRP):

ATRP involves an initiation step where an initiator reacts with the catalyst to generate an active species.

This active species can react with a monomer to form a growing polymer chain.

The polymerization proceeds through a repeated chain extension and termination step, with the deactivation and reactivation of the growing radicals, maintaining control over the polymerization process.

c. Preparation of poly(p-bromostyrene) via ATRP:

The polymerization of p-bromostyrene can be achieved by using a bromine-functionalized initiator and a suitable catalyst system in the presence of a solvent.

d. Preparation of poly(2-hydroxyethyl methacrylate) via ATRP:

The polymerization of 2-hydroxyethyl methacrylate can be carried out by using an appropriate initiator and ATRP catalyst system in a suitable solvent.

e. Thermoresponsive polymers:

Thermoresponsive polymers are those that exhibit a reversible phase transition or change in properties in response to temperature variations.

A popular thermoresponsive polymer is poly(N-isopropylacrylamide) (PNIPAM), which exhibits a lower critical solution temperature (LCST) around 32°C.

Learn more about ATRP here:

https://brainly.com/question/33222682

#SJP11

Other Questions
21. Allomyces is a genus of chytrids. Below are two pictures, A and B, of this fungus. Which picture below shows the sporophyte generation? (Use your textbook or another source to assist you) 22. What are some examples of this phylum? What are their characteristics? 23. What is a dimorphic fungus? 24. What are Ascomycota fungi known as? Why? 25. What are the general characteristics of this phylum? 26. Explain the life cycle of a multicellular ascomycete (Peziza sp.). 27. Explain the life cycle of a unicellular ascomycete (Saccharomyces cerevisiae). https://courses.lumenlearning.com/wm-biology2/chapter/basidiomycota/ 28. What makes basidiomycota different from other fungi groups? How are they characterized? 29. What are basidia and where are they contained? 30. What is a fairy ring? How is it formed? 31. What is meant by the term, "gill fungi"? 32. What types of fungi are included in this phylum? 33. What type of lifestyle do basidiomycetes undergo? Describe it. 4) In cats, Black fur (C) is dominant to albino fur (c). If twoCc cats have 6 offspring what is the chance that they are allblack? An endless rope haulage must convey 6000 tons per 5-hour shift. If 2-ton capacity trucks are used on a non-spin 16 mm rope traveling at 4.2 km/h. Calculate the spacing required between the trucks on the rope? Oxygen and nitrogen in the air supplied to a combustion process can react at sufficient rates at high temperatures. The extent of the reaction is small but the presence of even small amounts of the various oxides of nitrogen in combustion products is an important factor from an air pollution perspective. Consider a mixture consisting of the following basic products of combustion: 11% CO, 12% HO, 4% O and 73% N (on a molar basis). At the high temperatures and pressures occurring within the cylinder of an engine, both NO and NO may form. It is likely that carbon monoxide will also be formed. Prepare plots showing the equilibrium moles fractions of CO, NO and NO as a function of pressure for pressures between 5 atm and 15 atm at 2000 K.Previous question Question 5 (17 Marks) Explain the roles of sun path (sun azimuth and altitude angles) in passive solar design. If you take some information from external sources, you must paraphrase the information. How much do genetics, privilege, upbringing, accident, or the choices we do/do not make affect our lives? The human genome is roughly _______________ gigabases (or giga-basepairs) in length.a) 4b) 1c) 3d) 2 How does Remdesivir inhibit COVID 19 virus production? A)It is a protease inhibitor, which blocks virus entry. B)It increases lysosomal pH and blocks toll-like receptors that induce inflammatory process. C)It is an adenosine analog, which incorporates into nascent viral RNA chains and may cause their pre-mature termination. D)It inhibits DNA synthesis. How many coulombs of charge are transferred by a current of \( 3.84 \) A running for 204 seconds? Include 3 significant figures in your answer. A turning operation uses a 2/64-in nose radius cutting tool on a free machining steel. Feed = 0.015 in/rev, and cutting speed = 300 ft/min. Determine the surface roughness for this cut. What is the surface roughness if we use a cast iron materlal? What is the surface roughness if use a or a ductile metal? T/F: The steel grades TOXX are plain carbon steels regardless of the motor carbon they contain Determine the number of protons, neutrons andelectrons for Al+3:Group of answer choicesProtons = 13, neutrons = 27, electrons = 10Protons = 13, neutrons = 14, electrons = 13Protons = 13, neu Design a PID controller Kp = 20 Ki=500 ms Kd=1ms Use Op-amps. Evaluation: Question 1: What is the relation between the speed (n) and load (Po) of the asynchronous motor? Question 2: What is the relation between the slip (S) and load (Po) of the asynchronous motor? Question 3: Analyze the torque value of the asynchronous motor. Question 4: What is turnover torque and when does it occur? Question 5:Analyze the efficiency value (n) in loaded operation of the asynchronous motor. Question 6:State your final observations about the experiment. 39.Homo_____________ is a recently discovered hominin found in southeast Asia. Current evidence suggest that it may have evolved from Homo erectus populations that had previously migrated outside of Afri Which of these viruses is the least related toDengue Virus?a.West Nile Virusb.Yellow Feverc.SARS-CoV-2d.Zika Viruse.Tick-borne EncephalitisWhich protein of Dengue virus appears to be most (30%). An angle modulated signal is given by the following expression u(t) = 5 cos[2 fct + 40 sin(500t) + 20 sin(1000t) + 10 sin(2000t)] (a)If u(t) is a PM signal (i)Determine the maximum phase Deviation, max (ii) If the phase deviation constant is kp = 5 radian per volt, determine the message signal m(t) (b)If u(t) is an FM signal (i)Determine the maximum frequency Deviation, fmax (ii) If the frequency deviation constant is kf= 10,000T radian/sec per volt, determine the message signal m(t) A shaft tapers uniformly from a radius (r + a) at one end to (r-a) at the other. If it is under the action of an axial torque T and a =0.1r, find the percentage error in the angle of twist for a given length when calculated on the assumption of constant radius r. points Save Answer The brachial plexus exhibits roots, trunks, divisions, cords, and terminal branches: 1. Branches of the ulnar nerve supply elbow joint and palmaris brevis. 2. The median nerve innervates pronator teres, palmaris longus, and flexor digitorum superficialis. 3. The radial nerve supplies a small part of the brachialis muscle and gives off a lower lateral cutaneous nerve of the arm. 4. The axillary nerve and the radial nerves are branches of the medial cord. 1,2,3 1,3 2,4 1,2,3,4 QUESTION 49 1 points Save Answer Consider the deep cervical fascia: 1. The pretracheal layer of the deep cervical fascia contains the sympathetic trunk. 2. The investing layer of the deep cervical fascia surrounds the axillary vessels. 3. The prevertebral fascia encloses the thyroid gland, trachea, and esophagus. 4. The pretracheal layer of the deep cervical fascia forms a pulley for the intermediate tendon of the digastric muscle 1,2,3 1,3 2,4 4 1,2,3,4 Design a plain concrete wall footing for a 300-mm- thick reinforced concrete wall that supports a 100-kN/m dead load (including its own weight) and a 120-kN/m live load. f 21 MPa, and q 170 kN/m. The base of the footing is to be 1.250 m below the final grade, concrete weight = 24 kN/m, and soil weight 16 kN/m.