Which of the following statements about trapezoids is true?
O A. Opposite angles are equal
B. One pair of opposite sides is paralel.
C. Opposite sides are equal
O D. Both pairs of opposite sides are parallel

Answers

Answer 1

Answer:

B

Step-by-step explanation:

Trapezoids have only one pair of parallel lines.        


Related Questions

2-x=-3(x+4)+6 please help

Answers

Answer:

2-x=-3x-12+6

2-x=-3x-6

8=-3x+x

8=-2x

x=-4

hope it's clear

mark me as brainliest

Answer:

X = -4

Option B is the correct option.

Step by step explanation

2 - x = -3 ( x + 4) +6

Distribute -3 through the paranthesis

2 - x = - 3x - 12 + 6

Calculate

2 - x = - 3x - 6

Move variable to LHS and change its sign

2 - x + 3x = -6

Move constant to R.H.S and change its sign

- x + 3x = -6 - 2

Collect like terms and simplify

2x = -8

Divide both side by 2

2x/2 = -8/2

Calculate

X = -4

Hope this helps....

Good luck on your assignment..

Use the data below, showing a summary of highway gas mileage for several observations, to decide if the average highway gas mileage is the same for midsize cars, SUV’s, and pickup trucks. Test the appropriate hypotheses at the α = 0.01 level.
n Mean Std. Dev.
Midsize 31 25.8 2.56
SUV’s 31 22.68 3.67
Pickups 14 21.29 2.76

Answers

Answer:

Step-by-step explanation:

Hello!

You need to test at 1% if the average highway gas mileage is the same for three types of vehicles (midsize cars, SUV's and pickup trucks) to compare the average values of the three groups altogether, you have to apply an ANOVA.

                n  |  Mean |  Std. Dev.

Midsize  | 31 |  25.8   |  2.56

SUV’s     | 31 |  22.68 |  3.67

Pickups  | 14 |  21.29  |  2.76

Be the study variables :

X₁: highway gas mileage of a midsize car

X₂: highway gas mileage of an SUV

X₃: highway gas mileage of a pickup truck.

Assuming these variables have a normal distribution and are independent.

The hypotheses are:

H₀: μ₁ = μ₂ = μ₃

H₁: At least one of the population means is different.

α: 0.01

The statistic for this test is:

[tex]F= \frac{MS_{Treatment}}{MS_{Error}}[/tex]~[tex]F_{k-1;n-k}[/tex]

Attached you'll find an ANOVA table with all its components. As you see, to manually calculate the statistic you have to determine the Sum of Squares and the degrees of freedom for the treatments and the errors, next you calculate the means square for both and finally the test statistic.

For the treatments:

The degrees of freedom between treatments are k-1 (k represents the amount of treatments): [tex]Df_{Tr}= k - 1= 3 - 1 = 2[/tex]

The sum of squares is:

SSTr: ∑ni(Ÿi - Ÿ..)²

Ÿi= sample mean of sample i ∀ i= 1,2,3

Ÿ..= grand mean, is the mean that results of all the groups together.

So the Sum of squares pf treatments SStr is the sum of the square of difference between the sample mean of each group and the grand mean.

To calculate the grand mean you can sum the means of each group and dive it by the number of groups:

Ÿ..= (Ÿ₁ + Ÿ₂ + Ÿ₃)/ 3 = (25.8+22.68+21.29)/3 = 23.256≅ 23.26

[tex]SS_{Tr}[/tex]= (Ÿ₁ - Ÿ..)² + (Ÿ₂ - Ÿ..)² + (Ÿ₃ - Ÿ..)²= (25.8-23.26)² + (22.68-23.26)² + (21.29-23.26)²= 10.6689

[tex]MS_{Tr}= \frac{SS_{Tr}}{Df_{Tr}}= \frac{10.6689}{2}= 5.33[/tex]

For the errors:

The degrees of freedom for the errors are: [tex]Df_{Errors}= N-k= (31+31+14)-3= 76-3= 73[/tex]

The Mean square are equal to the estimation of the variance of errors, you can calculate them using the following formula:

[tex]MS_{Errors}= S^2_e= \frac{(n_1-1)S^2_1+(n_2-1)S^2_2+(n_3-1)S^2_3}{n_1+n_2+n_3-k}= \frac{(30*2.56^2)+(30*3.67^2)+(13*2.76^2)}{31+31+14-3} = \frac{695.3118}{73}= 9.52[/tex]

Now you can calculate the test statistic

[tex]F_{H_0}= \frac{MS_{Tr}}{MS_{Error}} = \frac{5.33}{9.52}= 0.559= 0.56[/tex]

The rejection region for this test is always one-tailed to the right, meaning that you'll reject the null hypothesis to big values of the statistic:

[tex]F_{k-1;N-k;1-\alpha }= F_{2; 73; 0.99}= 4.07[/tex]

If [tex]F_{H_0}[/tex] ≥ 4.07, reject the null hypothesis.

If [tex]F_{H_0}[/tex] < 4.07, do not reject the null hypothesis.

Since the calculated value is less than the critical value, the decision is to not reject the null hypothesis.

Then at a 1% significance level you can conclude that the average highway mileage is the same for the three types of vehicles (mid size, SUV and pickup trucks)

I hope this helps!

Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?

Answers

Answer:

Sum of 2 digit = 48

Sum of 3 digit = 317

Sum of 4 digit = 3009

Total = 3374

Step-by-step explanation:

Given:

9, 8 and 7

Required

Sum of Multiples

The first step is to list out the multiples of each number

9:- 9,18,....,99,108,117,................,999

,1008

,1017....

8:- 8,16........,96,104,...............,992,1000,1008....

7:- 7,14,........,98,105,.............,994,1001,1008.....

Calculating the sum of smallest 2 digit multiple of 9, 8 and 7

The smallest positive 2 digit multiple of:

- 9 is 18

- 8 is 16

- 7 is 14

Sum = 18 + 16 + 14

Sum = 48

Calculating the sum of smallest 3 digit multiple of 9, 8 and 7

The smallest positive 3 digit multiple of:

- 9 is 108

- 8 is 104

- 7 is 105

Sum = 108 + 104 + 105

Sum = 317

Calculating the sum of smallest 4 digit multiple of 9, 8 and 7

The smallest positive 4 digit multiple of:

- 9 is 1008

- 8 is 1000

- 7 is 1001

Sum = 1008 + 1000 + 1001

Sum = 3009

Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit

Sum of All = 48 + 317 + 3009

Sum of All = 3374

When 440 junior college students were surveyed, 200 said they have a passport. Construct a 95% confidence interval for the proportion of junior college students that have a passport.

Answers

sample proportion: 190/425 = 0.45
ME = 1.96*sqrt[0.45*0.55/425] = 0.047
-----
95% CI: 0.45-0.047 < p < 0.45+0.047

The Confidence Interval is 0.403 < p < 0.497

What is Confidence Interval?

The mean of your estimate plus and minus the range of that estimate constitutes a confidence interval. Within a specific level of confidence, this is the range of values you anticipate your estimate to fall within if you repeat the test. In statistics, confidence is another word for probability.

Given:

Sample proportion =  190/425

                                = 0.45

Now, [tex]\mu[/tex] = 1.96 x √[0.45 x 0.55/425]

          [tex]\mu[/tex] = 0.047

So, 95% CI:

0.45-0.047 < p < 0.45+0.047

0.403 < p < 0.497

Learn more about Confidence Interval here:

https://brainly.com/question/24131141

#SPJ5

The foundation of a building is in the shape of a rectangle, with a length of 20 meters (m) and a width of 18 m. To the nearest meter, what is the distance from the top left corner of the foundation to the bottom right corner?

Answers

Answer:

27m

Step-by-step explanation:

It's the Pythagorean Theorem.

20^2+18^2=c^2

400+324=c^2

724=c^2

take the square root of both sides

26.9m=c

to the nearest meter = 27

Susan decides to take a job as a transcriptionist so that she can work part time from home. To get started, she has to buy a computer, headphones, and some special software. The equipment and software together cost her $1000. The company pays her $0.004 per word, and Susan can type 90 words per minute. How many hours must Susan work to break even, that is, to make enough to cover her $1000 start-up cost? If Susan works 4 hours a day, 3days a week, how much will she earn in a month.

Answers

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

First let's find how much Susan earns per hour.

She earns $0.004 per word, and she does 90 words per minute, so she will earn per minute:

0.004 * 90 = $0.36

Then, per hour, she will earn:

0.36 * 60 = $21.6

Now, to find how many hours she needs to work to earn $1000, we just need to divide this value by the amount she earns per hour:

1000 / 21.6 = 46.3 hours.

She works 4 hours a day and 3 days a week, so she works 4*3 = 12 hours a week.

If a month has 4 weeks, she will work 12*4 = 48 hours a month, so she will earn:

48 * 21.6 = $1036.8

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

The solutions to the inequality y < to -x+1 sre shaded on the graph. Which point is a solution

Answers

Answer:  B.  (3,-2)

There are two ways to confirm this is the answer. The first is to note that (3,-2) is on the boundary, so it is part of the solution set. This only works if the boundary line is a solid line (as opposed to a dashed or dotted line).

The second way is to plug (x,y) = (3,-2) into the given inequality to find that

[tex]y \le -x+1\\\\-2 \le -3+1\\\\-2 \le -2[/tex]

which is a true statement. So this confirms that (3,-2) is in the solution set of the inequality.

Use the Remainder Theorem to determine which of the roots are roots of F(x). Show your work.
Polynomial: F(x)=x^3-x^2-4x+4
Roots: 1, -2, and 2.

Answers

Answer:    x1=1   x2=-2  and x3=2

Step-by-step explanation:

1st   x1=1 is 1 of the roots , so

F(1)=1-1-4+4=0 - true

So lets divide x^3-x^2-4x+4 by (x-x1), i.e  (x^3-x^2-4x+4) /(x-1)=(x^2-4)

x^2-4 can be factorized as (x-2)*(x+2)

So x^3-x^2-4x+4=(x-1)*(x^2-4)=(x-1)(x-2)*(x+2)

So there are 3 dofferent roots:

x1=1   x2=-2  and x3=2

what's the equivalent expression ​

Answers

Answer:

2^52

Step-by-step explanation:

(8^-5/2^-2)^-4 = (2^-15/2^-2)^-4= (2^-13)^-4= 2^((-13*(-4))= 2^52

Kara categorized her spending for this month into four categories: Rent, Food, Fun, and Other. The amounts she spent in each category are pictured here. Rent $433 Food $320 Fun $260 Other $487 What percent of her total spending did she spend on Rent? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Food? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Fun? % (Please enter your answer to the nearest whole percent.)

Answers

Answer: Rent = 29%,  Food = 21%,    Fun = 17%

Step-by-step explanation:

Rent =     $433

Food =    $320

Fun =       $260

Other =   $487  

TOTAL = $1500

[tex]\dfrac{Rent}{Total}=\dfrac{433}{1500}\quad =0.2886\quad =\large\boxed{29\%}\\\\\\\dfrac{Food}{Total}=\dfrac{320}{1500}\quad =0.2133\quad =\large\boxed{21\%}\\\\\\\dfrac{Fun}{Total}=\dfrac{260}{1500}\quad =0.1733\quad =\large\boxed{17\%}[/tex]

Find AC. (Khan Academy-Math)

Answers

Answer:

[tex]\boxed{11.78}[/tex]

Step-by-step explanation:

From observations, we can note that BC is the hypotenuse.

As the length of hypotenuse is not given, we can only use tangent as our trig function.

tan(θ) = opposite/adjacent

tan(67) = x/5

5 tan(67) = x

11.77926182 = x

x ≈ 11.78

Can somebody help me i have to drag the functions on top onto the bottom ones to match their inverse functions.

Answers

Answer:

1. x/5

2. cubed root of 2x

3.x-10

4.(2x/3)-17

Step-by-step explanation:

Answer:

Step-by-step explanation:

1. Lets find the inverse function for function f(x)=2*x/3-17

To do that first express x through f(x):

2*x/3= f(x)+17

2*x=(f(x)+17)*3

x=(f(x)+17)*3/2   done !!!                        (1)

Next : to get the inverse function from (1) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=(x+17)*3/2 or f'(x)=3*(x+17)/2

This is function is No4 in our list. So f(x)=2*x/3-17 should be moved to the box No4  ( on the bottom) of the list.

2.  Lets find the inverse function for function f(x)=x-10

To do that first express x through f(x):

x= f(x)+10

x=f(x)+10   done !!!                        (2)

Next : to get the inverse function from (2) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x+10

This is function is No3 in our list. So f(x)=x-10 should be moved to the box No3  ( from the top) of the list.

3.Lets find the inverse function for function f(x)=sqrt 3 (2x)

To do that first express x through f(x):

2*x= f(x)^3

x=f(x)^3/2   done !!!                        (3)

Next : to get the inverse function from (3) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x^3/2

This is function No2 in our list. So f(x)=sqrt 3 (2x) should be moved to the box No2  ( from the top) of the list.

4.Lets find the inverse function for function f(x)=x/5

To do that first express x through f(x):

x=f(x)*5   done !!!                        (4)

Next : to get the inverse function from (4) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x*5 or f'(x)=5*x

This is function No1 in our list. So f(x)=x/5 should be moved to the box No1  ( on the top) of the list.

The monthly profit for a company that makes decorative picture frames depends on the price per frame. The company determines that the profit is approximated by f(p)= -80p + 3440p -36,000, where p is the price per frame and f(p) is the monthly profit based on that price.

Requried:
a. Find the price that generates the maximum profit.
b. Find the maximum profit.
c. Find the price(s) that would enable the company to break even.

Answers

Answer:

a. $21.50

b. $980

c. $25 and $18

Step-by-step explanation:

a. The price that generates the maximum profit is

In this question we use the vertex formula i.e shown below:

[tex](-\frac{b}{2a}, f(-\frac{b}{2a} ))\\\\[/tex]

where a = -80

b = 3440

c = 36000

hence,

P-coordinate is

[tex](-\frac{b}{2a}, (-\frac{3440}{2\times -80} ))\\\\[/tex]

[tex]= \frac{3440}{160}[/tex]

= $21.5

b. Now The maximum profit could be determined by the following equation

[tex]f(p) = 80p^2 + 3440p - 36000\\\\f($21.5) = -80(21.5)^2 + 3440(21.5) - 36000\\\\[/tex]

= $980

c. The price that would enable the company to break even that is

f(p) = 0

[tex]f(p) = -80p^2 + 3440p - 36000\\\\-80p^2 + 3440p - 36000 = 0\\\\p^2 -43p + 450 = 0\\\\p^2 - 25p - 18p + 450p = 0\\\\p(p - 25) - 18(p-25) = 0\\\\(p - 25) (p - 18) = 0[/tex]

By applying the factoring by -50 and then divided it by -80 and after that we split middle value and at last factors could come

(p - 25) = 0 or (p - 18) = 0

so we can write in this form as well which is

p = 25 or p = 18

Therefore the correct answer is $25 and $18

what is 9 - 4 1/12 ??? im so stupid smh

Answers

Answer:

4 11/12

Step-by-step explanation:

Well 9 - 4 1/12 is 4 11/12

Unit sales for new product ABC has varied in the first seven months of this year as follows: Month Jan Feb Mar Apr May Jun Jul Unit Sales 330 274 492 371 160 283 164 What is the (population) standard deviation of the data

Answers

Answer:

Approximately standard deviation= 108

Step-by-step explanation:

Let's calculate the mean of the data first.

Mean =( 330+ 274+ 492 +371 +160+ 283+ 164)/7

Mean= 2074/7

Mean= 296.3

Calculating the variance.

Variance = ((330-296.3)²+( 274-296.3)²+ (492-296.3)²+( 371-296.3)²+ (160-296.3)² (283-296.3)²+(164-296.3)²)/7

Variance= (1135.69+497.29+38298.49+5580.09+18577.69+176.89+17503.29)/7

Variance= 81769.43/7

Variance= 11681.347

Standard deviation= √variance

Standard deviation= √11681.347

Standard deviation= 108.080

Approximately 108

help please this is important​

Answers

Answer:

D. [tex]3^3 - 4^2[/tex]

Step-by-step explanation:

Well if Alia gets 4 squared less than Kelly who get 3 cubed it’s natural the expression is 3^3 - 4 ^2

What is the simplified form of this expression?
(-3x^2+ 2x - 4) + (4x^2 + 5x+9)

OPTIONS
7x^2 + 7x + 5
x^2 + 7x + 13
x^2 + 11x + 1
x^² + 7x+5

Answers

Answer:

Option 4

Step-by-step explanation:

=> [tex]-3x^2+2x-4 + 4x^2+5x+9[/tex]

Combining like terms

=> [tex]-3x^2+4x^2+2x+5x-4+9[/tex]

=> [tex]x^2+7x+5[/tex]

How do I construct bisectors, angles, & segments?

Answers

Answer:

Step-by-step explanation:

These come directly from my textbook, so I'm not sure if your teacher will accept this kind of work.

1. Angle construction:

Given an angle. construct an angle congruent to the given angle.

Given: Angle ABC

Construct: An angle congruent to angle ABC

Procedure:

1. Draw a ray. Label it ray RY.

2. Using B as center and any radius, draw an arc that intersects ray BA and ray BC. Label the points of intersection D and E, respectively.

3. Using R as center and the same radius as in Step 2, draw an arc intersecting ray RY. Label the arc XS, with S being the point where the arc intersects ray RY.

4. Using S as center and a radius equal to DE, draw an arc that intersects arc XS at a point Q.

5. Draw ray RQ.

Justification (for congruence): If you draw line segment DE and line segment QS, triangle DBE is congruent to triangle QRS (SSS postulate) Then angle QRS is congruent to angle ABC.

You can probably also Google videos if it's hard to imagine this. Sorry, construction is super hard to describe.

The line x + y - 6= 0 is the right bisector
of the segment PQ. If P is the point (4,3),
then the point Q is

Answers

Answer:

Therefore, the coordinates of point Q is (2,3)

Step-by-step explanation:

Let the coordinates of Q be(a,b)

Let R be the midpoint of PQ

Coordinates of R [tex]=(\frac{4+a}{2}, \frac{3+b}{2})[/tex]

R lies on the line x + y - 6= 0, therefore:

[tex]\implies \dfrac{4+a}{2}+ \dfrac{3+b}{2}-6=0\\\implies 4+a+3+b-12=0\\\implies a+b-5=0\\\implies a+b=5[/tex]

Slope of AR X Slope of PQ = -1

[tex]-1 \times \dfrac{b-3}{a-4}=-1\\b-3=a-4\\a-b=-3+4\\a-b=-1[/tex]

Solving simultaneously

a+b=5

a-b=-1

2a=4

a=2

b=3

Therefore, the coordinates of point Q is (2,3)

For the binomial distribution with the given values for n and p, state whether or not it is suitable to use the normal distribution as an approximation. n = 24 and p = 0.6.

Answers

Answer:

Since both np > 5 and np(1-p)>5, it is  suitable to use the normal distribution as an approximation.

Step-by-step explanation:

When the normal approximation is suitable?

If np > 5 and np(1-p)>5

In this question:

[tex]n = 24, p = 0.6[/tex]

So

[tex]np = 24*0.6 = 14.4[/tex]

And

[tex]np(1-p) = 24*0.6*0.4 = 5.76[/tex]

Since both np > 5 and np(1-p)>5, it is  suitable to use the normal distribution as an approximation.

. If α and β are the roots of
2x^2+7x-9=0 then find the equation whose roots are
α/β ,β/α

Answers

Answer:

[tex]18x^2+85x+18 = 0[/tex]

Step-by-step explanation:

Given Equation is

=> [tex]2x^2+7x-9=0[/tex]

Comparing it with [tex]ax^2+bx+c = 0[/tex], we get

=> a = 2, b = 7 and c = -9

So,

Sum of roots = α+β = [tex]-\frac{b}{a}[/tex]

α+β = -7/2

Product of roots = αβ = c/a

αβ = -9/2

Now, Finding the equation whose roots are:

α/β ,β/α

Sum of Roots = [tex]\frac{\alpha }{\beta } + \frac{\beta }{\alpha }[/tex]

Sum of Roots = [tex]\frac{\alpha^2+\beta^2 }{\alpha \beta }[/tex]

Sum of Roots = [tex]\frac{(\alpha+\beta )^2-2\alpha\beta }{\alpha\beta }[/tex]

Sum of roots = [tex](\frac{-7}{2} )^2-2(\frac{-9}{2} ) / \frac{-9}{2}[/tex]

Sum of roots = [tex]\frac{49}{4} + 9 /\frac{-9}{2}[/tex]

Sum of Roots = [tex]\frac{49+36}{4} / \frac{-9}{2}[/tex]

Sum of roots = [tex]\frac{85}{4} * \frac{2}{-9}[/tex]

Sum of roots = S = [tex]-\frac{85}{18}[/tex]

Product of Roots = [tex]\frac{\alpha }{\beta } \frac{\beta }{\alpha }[/tex]

Product of Roots = P = 1

The Quadratic Equation is:

=> [tex]x^2-Sx+P = 0[/tex]

=> [tex]x^2 - (-\frac{85}{18} )x+1 = 0[/tex]

=> [tex]x^2 + \frac{85}{18}x + 1 = 0[/tex]

=> [tex]18x^2+85x+18 = 0[/tex]

This is the required quadratic equation.

Answer:

α/β= -2/9      β/α=-4.5

Step-by-step explanation:

So we have quadratic equation  2x^2+7x-9=0

Lets fin the roots  using the equation's  discriminant:

D=b^2-4*a*c

a=2 (coef at x^2)   b=7(coef at x)  c=-9

D= 49+4*2*9=121

sqrt(D)=11

So x1= (-b+sqrt(D))/(2*a)

x1=(-7+11)/4=1   so   α=1

x2=(-7-11)/4=-4.5    so  β=-4.5

=>α/β= -2/9       => β/α=-4.5

asdasd I don't actually have a question I accidentally typed this
akjkdsk ak


asndansjawjk

Answers

Answer:

that's cool . . .

\is ok everyone makes mistakes

Find the point, Q, along the directed line segment AB that
divides AB into the ratio 2:3. The 2:3 ratio means that the line
should be broken up in to 5 equal sections (2 + 3 = 5). This
means that each of the 5 sections can be represented by the
expression AB/5. Therefore, the point that divides AB into the
ratio 2:3 is the distance (AB/5)(2) from A.

Answers

Answer:

Point Q is at a distance of 4.7 units from A.

Step-by-step explanation:

From the graph, AC = 10 units and BC = 6 units. Applying the Pythagoras theorem,

[tex]AB^{2}[/tex] = [tex]AC^{2}[/tex] + [tex]BC^{2}[/tex]

      = [tex]10^{2}[/tex] + [tex]6^{2}[/tex]

      = 100 + 36

     = 136

AB = [tex]\sqrt{136}[/tex]

AB = 11.6619

AB = 11.66

     ≅ 11.7 units

But point Q divides AB into ratio 2:3. Therefore:

AQ = [tex]\frac{2}{5}[/tex] × AB

     =  [tex]\frac{2}{5}[/tex] × 11.66

     = 4.664

AQ = 4.664

AQ ≅ 4.7 units

QB = [tex]\frac{3}{5}[/tex] × AB

     =  [tex]\frac{3}{5}[/tex] × 11.66

     = 6.996

QB  ≅ 7.0 units

So that point Q is at a distance of 4.7 units from A.

Which of the following functions is graphed below

Answers

Answer:

the answer is C. y=[x-4]-2

Answer:

Step-by-step explanation:

Y=(x+4)-2

What is the equation of a line passes thru the point (4, 2) and is perpendicular to the line whose equation is y = ×/3 - 1 ??

Answers

Answer:

Perpendicular lines have slopes that are opposite and reciprocal. Therefore, the line we are looking for has a -3 slope.

y= -3x+b

Now, we can substitute in the point given to find the intercept.

2= -3(4)+b

2= -12+b

b=14

Finally, put in everything we've found to finish the equation.

y= -3x+14

Answer:

y = -3x + 14

Step-by-step explanation:

First find the reciprocal slope since it is perpendicular.  Slope of the other line is 1/3 so the slope for our new equation is -3.  

Plug information into point-slope equation

(y - y1) = m (x-x1)

y - 2 = -3 (x-4)

Simplify if needed

y - 2 = -3x + 12

y = -3x + 14

A group of 20 people were asked to remember as many items as possible from a list before and after being taught a memory device. Researchers want to see if there is a significant difference in the amount of items that people are able to remember before and after being taught the memory device. They also want to determine whether or not men and women perform differently on the memory test. They choose α = 0.05 level to test their results. Use the provided data to run a Two-way ANOVA with replication.


A B C
Before After
Male 5 7
4 5
7 8
7 8
7 8
7 8
5 6
7 7
6 7
Female 5 8
5 6
8 8
7 7
6 6
8 9
8 8
6 6
7 6
8 8

Answers

Answer:

1. There is no difference in amount of items that people are able to remember before and after being taught the memory device.

2. There is no difference between performance of men and women on memory test.

Step-by-step explanation:

Test 1:

The hypothesis for the two-way ANOVA test can be defined as follows:

H₀: There is no difference in amount of items that people are able to remember before and after being taught the memory device.

Hₐ: There is difference in amount of items that people are able to remember before and after being taught the memory device.

Use MS-Excel to perform the two-way ANOVA text.

Go to > Data > Data Analysis > Anova: Two-way with replication  

A dialog box will open.

Input Range: select all data

Rows per sample= 10

Alpha =0.05

Click OK

The ANOVA output is attaches below.

Consider the Columns data:

The p-value is 0.199.

p-value > 0.05

The null hypothesis will not be rejected.

Conclusion:

There is no difference in amount of items that people are able to remember before and after being taught the memory device.

Test 2:

The hypothesis  to determine whether or not men and women perform differently on the memory test is as follows:

H₀: There is no difference between performance of men and women on memory test.

Hₐ: There is a difference between performance of men and women on memory test.

Consider the Sample data:

The p-value is 0.075.

p-value > 0.05

The null hypothesis will not be rejected.

Conclusion:

There is no difference between performance of men and women on memory test.

Over the past several years, the proportion of one-person households has been increasing. The Census Bureau would like to test the hypothesis that the proportion of one-person households exceeds 0.27. A random sample of 125 households found that 43 consisted of one person. The Census Bureau would like to set α = 0.05. Use the critical value approach to test this hypothesis. Explain.

Answers

Answer:

For this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

Step-by-step explanation:

We have the following dataset given:

[tex] X= 43[/tex] represent the households consisted of one person

[tex]n= 125[/tex] represent the sample size

[tex] \hat p= \frac{43}{125}= 0.344[/tex] estimated proportion of  households consisted of one person

We want to test the following hypothesis:

Null hypothesis: [tex]p \leq 0.27[/tex]

Alternative hypothesis: [tex]p>0.27[/tex]

And for this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

Suppose μ1 and μ2 are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems. Use the two-sample t test at significance level 0.01 to test H0: μ1 − μ2 = −10 versus Ha: μ1 − μ2 < −10 for the following data: m = 8, x = 115.6, s1 = 5.04, n = 8, y = 129.3, and s2 = 5.32.

Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.)

t = ________

P-value = _________

Answers

Answer:

Step-by-step explanation:

This is a test of 2 independent groups. Given that μ1 and μ2 are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems, the hypothesis are

For null,

H0: μ1 − μ2 = - 10

For alternative,

Ha: μ1 − μ2 < - 10

This is a left tailed test.

Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is

(x1 - x2)/√(s1²/n1 + s2²/n2)

From the information given,

x1 = 115.6

x2 = 129.3

s1 = 5.04

s2 = 5.32

n1 = 8

n2 = 8

t = (115.6 - 129.3)/√(5.04²/8 + 5.32²/8)

t = - 2.041

Test statistic = - 2.04

The formula for determining the degree of freedom is

df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²

df = [5.04²/8 + 5.32²/8]²/[(1/8 - 1)(5.04²/8)² + (1/8 - 1)(5.32²/8)²] = 45.064369/3.22827484

df = 14

We would determine the probability value from the t test calculator. It becomes

p value = 0.030

Since alpha, 0.01 < the p value, 0.03, then we would fail to reject the null hypothesis.

If the area of a circular cookie is 28.26 square inches, what is the APPROXIMATE circumference of the cookie? Use 3.14 for π.


75.2 in.
56.4 in.
37.6 in.
18.8 in.

Answers

Answer:

Step-by-step explanation:

c= 2(pi)r

Area = (pi)r^2

28.26 = (pi) r^2

r =[tex]\sqrt{9}[/tex] = 3

circumference = 2 (3.14) (3)

                        = 18.8 in

Answer:  approx 18.8 in

Step-by-step explanation:

The area of the circle is

S=π*R²   (1)   and the circumference of the circle is C= 2*π*R      (2)

So using (1)  R²=S/π=28.26/3.14=9

=> R= sqrt(9)

R=3 in

So using (2) calculate C=2*3.14*3=18.84 in or approx 18.8 in

You can model that you expect a 1.25% raise each year that you work for a certain company. If you currently make $40,000, how many years should go by until you are making $120,000? (Round to the closest year.)

Answers

Answer:

94 years

Step-by-step explanation:

We can approach the solution using the compound interest equation

[tex]A= P(1+r)^t[/tex]

Given data

P= $40,000

A=  $120,000

r=  1.25%= 1.25/100= 0.0125

substituting and solving for t we have

[tex]120000= 40000(1+0.0125)^t \\\120000= 40000(1.0125)^t[/tex]

dividing both sides by 40,000 we have

[tex](1.0125)^t=\frac{120000}{40000} \\\\(1.0125)^t=3\\\ t Log(1.0125)= log(3)\\\ t*0.005= 0.47[/tex]

dividing both sides by 0.005 we have

[tex]t= 0.47/0.005\\t= 94[/tex]

Other Questions
What happens to the citizens of a nation when their government struggles to protect their basic rights, and how do these citizens respond? find the value of k for which the given pair of vectors are not equal2ki +3j and 8i + 4kj I need help with this problem ASAP please i have until tmrw to finish my course entirely so if anyone can help it would be greatly appreciated use the bionomial theorem to write the binomial expansion[tex]( \frac{1}{2}x + 3y) ^{4} [/tex] The compressor of an air conditioner draws an electric current of 16.2 A when it starts up. If the start-up time is 1.45 s long, then how much electric charge passes through the circuit during this period Find the difference in area between the large circle and the small circle. Click on the answer until the correct answer is showing. The summer has ended and its time to drain the swimming pool. 20 minutes after pulling the plug, there is still 45 000L of water in the pool. The pool is empty after 70 minutes. Calculate the rate that the water is draining out of the pool. (Hint: remember this line is sloping down to the right) Can people become reinfected after Coronavirus? And, if so, after how long? what is a carbon foorprint what is the difference between a good conductor and a good insulator? Create an original example for the fallacy type Mistaken Causality that could relate to you as a teen/high school student. The difference between actual hours times the actual pay rate and actual hours times the standard pay rate is the labor _________________ variance. Which one of the following is not a factor that influences a business's control environment? a. personnel policies b. management's philosophy and operating style c. organizational structure d. proofs and security measures Which very young geographic feature will look like Kilauea in the most distant future, a few million years from now?Select one:a. Kauaib. Mauna Keac. Mauid. Mauna Loae. Loihif. Oahu When the pivot point of a balance is not at the center of mass of the balance, how is the net torque on the balance calculated someone please help me!!! Explain how the War of 1812 included examples of national unity as well as examples of division. pleaseee help ill give you ALL my points if you actually help me The functional group for an ester is: RCHO RCOOH RCOOR ROH What is the volume of the cylinder to the nearest whole number? a) 942 cm3 b) 3,534 cm3 c)471 cm3 d) 9,420 cm3 What scientific knowledge about macromolecules is a direct result of Gerardus Johnannes Mulders 1838 discovery? All proteins contain carbon, hydrogen, oxygen, and nitrogen. All carbohydrates contain carbon, hydrogen, and oxygen. Nucleic acids are polymers with nucleotide monomers. The helical structure of DNA is essential for protein production.