Which of the following polar coordinates does NOT describe the same location as the rectangular coordinates (2. - 7)?
A. (7.28. 1.85) B. (7.28,- 1.29) C (-7.28. 1.85) D. (-7.28, 8.13)

Answers

Answer 1

The polar coordinates that do not describe the same location as the rectangular coordinates (2, -7) are option B (7.28, -1.29) and option D (-7.28, 8.13).



To determine which polar coordinates do not match the given rectangular coordinates, we can convert the rectangular coordinates to polar coordinates and compare them to the options. The rectangular coordinates (2, -7) can be converted to polar coordinates as r = √(2² + (-7)²) = √(4 + 49) = √53 and θ = arctan((-7) / 2) ≈ -74.74°.

Option A (7.28, 1.85): The polar coordinates have a distance (r) of 7.28, which is not equal to √53, so it does not match the given rectangular coordinates.

Option B (7.28, -1.29): The polar coordinates have a distance (r) of 7.28, which is not equal to √53, so it does not match the given rectangular coordinates. This option does not describe the same location as (2, -7).

Option C (-7.28, 1.85): The polar coordinates have a distance (r) of 7.28, which is not equal to √53, so it does not match the given rectangular coordinates.

Option D (-7.28, 8.13): The polar coordinates have a distance (r) of √(7.28² + 8.13²) ≈ 10.99, which is not equal to √53, so it does not match the given rectangular coordinates. This option does not describe the same location as (2, -7).

Therefore, options B and D do not describe the same location as the rectangular coordinates (2, -7).

To learn more about polar coordinates click here

                                                             brainly.com/question/31904915

#SPJ11


Related Questions

10. DETAILS MY NOTES ASK YOUR TEACHER A pencil cup with a capacity of 32 in.3 is to be constructed in the shape of a right circular cylinder with an open top. If the material for the sides costs 13¢/in.² and the material for the base costs 37¢/in.2, what should the radius of the base of the cup be to minimize the construction cost (in ¢)? Letr and h (in in.) be the radius and height of the pencil cup, respectively. r = in. (Round your answer to two decimal places, if necessary.) Complete the following parts. (a) Give a function f in the variabler for the quantity to be optimized. f(r) = cents (b) State the domain of this function. (Enter your answer using interval notation.) (c) Give the formula for h in terms of r. h = (d) To determine the optimal value of the function f, we need the critical numbers of ---Select--- (e) These critical numbers are as follows. (Round your answer(s) to two decimal places, if necessary. If a critical number is an endpoint of the domain, do NOT include it in your answer. Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) r =

Answers

The critical number for f(r) is r = 0.

The cost of the material for the sides is given as 13¢/in.². The surface area of the side of a right circular cylinder is given by the formula A_side = 2πrh.Thus, the cost of the material for the sides can be expressed as:

Cost_sides = 13¢/in.² × A_side

= 13¢/in.² × 2πrh

The cost of the material for the base is given as 37¢/in.². The area of the base of a right circular cylinder is given by the formula A_base = πr². Therefore, the cost of the material for the base can be expressed as:

Cost_base = 37¢/in.² × A_base

= 37¢/in.² × πr²

To find the total construction cost:

f(r) = Cost_sides + Cost_base

= 13¢/in.² × 2πrh + 37¢/in.² × πr²

= 26πrh + 37πr² cents

(b) The domain of this function, in the context of the problem, will be the valid values for the radius r. Since we are dealing with a physical object, the radius cannot be negative, and there is no maximum limit specified.

Therefore, the domain of the function is: Domain: r ≥ 0

(c) The formula for h (the height) in terms of r (the radius) can be obtained from the problem statement, where the pencil cup is a right circular cylinder with an open top. In such a case, the height is equal to the radius, so: h = r

(d) To determine the optimal value of the function f, we need to find the critical numbers of f(r). Critical numbers occur when the derivative of the function is either zero or undefined.

(e) To find the critical numbers, we need to take the derivative of f(r) with respect to r and set it equal to zero:

f'(r) = 26πh + 74πr

26πh + 74πr = 0 (Setting f'(r) = 0)

Since h = r, we can substitute it into the equation:

26πr + 74πr = 0

100πr = 0

r = 0

The critical number is r = 0.

To know more about surface area refer here:

https://brainly.com/question/29101132#

#SPJ11

For continuous random variables, the probability of being less than some value, x, is not the same as the probability of being less than or equal to the same value, x.
O TRUE
O FALSE

Answers

FALSE. For continuous random variables, the probability of being less than or equal to a certain value, x, is the same as the probability of being less than that value, x.

In the case of continuous random variables, the probability is represented by the area under the probability density function (PDF) curve. Since the probability is continuous, the area under the curve up to a specific point x is equivalent to the probability of being less than or equal to x.

Mathematically, we can express this as P(X ≤ x) = P(X < x), where P represents the probability and X is the random variable. The equal sign indicates that the probability of being less than or equal to x is the same as the probability of being strictly less than x.

This property holds for continuous random variables because the probability of landing exactly on a specific value in a continuous distribution is infinitesimally small. Therefore, the probability of being less than or equal to a certain value is effectively the same as the probability of being strictly less than that value.

To learn more about probability, refer:-

https://brainly.com/question/31828911

#SPJ11


Please Answer ALL
51. Determine whether the series below are divergent or convergent. Be sure to specify what test you use and explain your reason. too (A) WI 21% (B) +00 Σ Inn n=1 52. Determine whether the series bel

Answers

The p-series test, the series converges.The series \(\sum \frac{1}{n^2}\) converges and the series \(\sum \ln(n)\) diverges.

(A) To determine the convergence or divergence of the series \(\sum \frac{1}{n^2}\), we can use the p-series test. The p-series test states that if a series is of the form \(\sum \frac{1}{n^p}\), where \(p > 0\), then the series converges if \(p > 1\) and diverges if \(p \leq 1\).

In this case, the series \(\sum \frac{1}{n^2}\) is a p-series with \(p = 2\), which is greater than 1. Therefore, by the p-series test, the series converges.

(B) The series \(\sum \ln(n)\) does not converge. To determine this, we can use the integral test. The integral test states that if a function \(f(x)\) is continuous, positive, and decreasing on the interval \([n, \infty)\), and \(a_n = f(n)\) for all \(n\), then the series \(\sum a_n\) and the integral \(\int_n^\infty f(x) \, dx\) either both converge or both diverge.

In this case, \(f(x) = \ln(x)\) is a continuous, positive, and decreasing function for \(x > 1\). Thus, we can compare the series \(\sum \ln(n)\) with the integral \(\int_1^\infty \ln(x) \, dx\).

Evaluating the integral, we have:

\[\int_1^\infty \ln(x) \, dx = \lim_{{t\to\infty}} \left[ x \ln(x) - x \right]_1^t = \lim_{{t\to\infty}} (t \ln(t) - t + 1) = \infty\]

Since the integral \(\int_1^\infty \ln(x) \, dx\) diverges, by the integral test, the series \(\sum \ln(n)\) also diverges.

To learn more about series click here:

brainly.com/question/31586547

#SPJ11




Find the volume generated by rotating about the x-axis the region bounded by the graph of the equation. y= 74+x, x=2, x= 14 The volume is (Simplify your answer. Type an exact answer in terms of .)

Answers

The volume generated by rotating the region bounded by the graph of the equation y = 74 + x, x = 2, and x = 14 about the x-axis in terms of π, is (2180π/3) cubic units.

To find the volume, we divide the region into infinitely thin vertical strips or shells along the x-axis. The height of each shell is given by the function y = 74 + x. The width of each shell is the infinitesimally small change in x.

The formula for the volume of a cylindrical shell is V = 2πrhΔx, where r represents the distance from the x-axis to the shell, h is the height of the shell, and Δx is the width of the shell. In this case, the distance from the x-axis to the shell is x, and the height of the shell is y = 74 + x.

Integrating the volume formula from x = 2 to x = 14 with respect to x gives us the total volume. Evaluating the integral leads to the simplified exact answer of (2180π/3) cubic units.

Learn more about Integrating here:

https://brainly.com/question/31954835

#SPJ11

Express the vector - 101 - 10j +5k as a product of its length and direction. - 10i – 10j + 5k = = [(i+ (Dj+(Ok] Ii; i (Simplify your answers. Use integers or fractions for any numbers in the express

Answers

The vector <-10, -10, 5> can be expressed as a product of its length (15) and direction <-2/3, -2/3, 1/3>.

To express the vector <-10, -10, 5> as a product of its length and direction, we first need to calculate its length or magnitude.

The length or magnitude of a vector v = <a, b, c> is given by the formula ||v|| = √([tex]a^2 + b^2 + c^2[/tex]).

The length or magnitude of a vector v = (v1, v2, v3) is given by the formula ||v|| = sqrt([tex]v1^2 + v2^2 + v3^2[/tex]).

For our vector <-10, -10, 5>, the length is:

||v|| = √([tex](-10)^2 + (-10)^2 + 5^2[/tex])

= √(100 + 100 + 25)

= √225

= 15.

Now, to express the vector as a product of its length and direction, we divide the vector by its length:

Direction = v/||v||

= <-10/15, -10/15, 5/15>

Simplifying each component:

-10i / 15 = -2/3 i

-10j / 15 = -2/3 j

5k / 15 = 1/3 k

= <-2/3, -2/3, 1/3>.

Please note that the direction of a vector is given by the ratios of its components. In this case, the direction vector has been simplified by dividing each component by the magnitude of the original vector.

For more such question on vector. visit :

https://brainly.com/question/15519257

#SPJ8

Consider the following. x = In(t), y = 8√√t, t≥1 (a) Eliminate the parameter to find a Cartesian equation of the curve.

Answers

The Cartesian equation of the curve that is defined by the parametric equations x = ln(t) and y = 8√√t, where t ≥ 1 is given by [tex]\(y = \pm 8e^{\frac{x}{4}}\)[/tex].

To eliminate the parameter and find a Cartesian equation of the curve defined by the parametric equations x = ln(t) and y = 8√√t, where t ≥ 1, we can square both sides of the equation for y and rewrite it in terms of t.

Starting with y = 8√√t, we square both sides:

y² = (8√√t)²

y² = 64√t

Now, we can express t in terms of x using the given parametric equation

x = ln(t).

Taking the exponential of both sides:

[tex]e^x = e^{(ln(t))}[/tex]

eˣ = t

Substituting this value of t into the equation for y²:

y² = 64√(eˣ)

To further simplify the equation, we can eliminate the square root:

[tex]\[y^2 = 64(e^x)^{\frac{1}{2}}\\\[y^2 = 64e^{\frac{x}{2}}\][/tex]

Taking the square root of both sides:

[tex]\[y = \pm \sqrt{64e^{\frac{x}{4}}}\\y = \pm 8e^{\frac{x}{4}}\][/tex]

This equation represents two curves that mirror each other across the x-axis. The positive sign corresponds to the upper branch of the curve, and the negative sign corresponds to the lower branch.

Learn more about Cartesian equation:

https://brainly.com/question/30268198

#SPJ11

Evaluate the integral. (Use C for the constant of integration.) 12 dx 1 2x + x√x X

Answers

To evaluate the integral ∫(12 / (2x + x√x)) dx, we can simplify the integrand by factoring out x from the denominator. Then, we can use the substitution method to solve the integral.

Let's start by factoring out x from the denominator:

∫(12 / (x(2 + √x))) dx.

Now we can perform a substitution by letting u = 2 + √x, then du = (1 / (2√x)) dx. Solving for dx, we have dx = 2√x du.

Substituting the values in the integral, we get:

∫(12 / (x(2 + √x))) dx = ∫(12 / (xu)) (2√x du).

Simplifying further, we have:

∫(12 / (2xu)) (2√x du) = 6 ∫(√x / u) du.

Now we can integrate with respect to u:

6 ∫(√x / u) du = 6 ∫(1 / u^(3/2)) du = 6 (u^(-1/2) / (-1/2)) + C.

Simplifying the expression, we have:

6 (u^(-1/2) / (-1/2)) + C = -12 u^(-1/2) + C.

Substituting back u = 2 + √x, we get:

-12 (2 + √x)^(-1/2) + C.

Therefore, the integral ∫(12 / (2x + x√x)) dx evaluates to -12 (2 + √x)^(-1/2) + C, where C is the constant of integration.

Learn more about substitution method here:

https://brainly.com/question/22340165

#SPJ11

Suppose a rocket is shot into the air from a tower and follows a path represented by the function f(x) =-16x^2+100x+50, where f(x) represnts the height in feet and x represnts the elapsed time in seconds How high will the rocket be after one second?

Answers

The rocket would be at a height of 134 feet.

To determine the height of the rocket after one second, we can substitute x = 1 into the given function f(x) = -16x^2 + 100x + 50.

Let's calculate the height:

f(1) = -16(1)^2 + 100(1) + 50

= -16 + 100 + 50

= 134.

Therefore, the rocket will be at a height of 134 feet after one second.

The given function f(x) = -16x^2 + 100x + 50 represents a quadratic equation that describes the height of the rocket as a function of time.

The term -16x^2 represents the influence of gravity, as it is negative, indicating a downward parabolic shape. The coefficient 100x represents the initial upward velocity of the rocket, and the constant term 50 represents an initial height or displacement.

By substituting x = 1 into the equation, we find the specific height of the rocket after one second. In this case, the rocket reaches a height of 134 feet.

It's important to note that this calculation assumes the rocket was launched from the ground at time x = 0. If the rocket was launched from a tower or at a different initial height, the equation would need to be adjusted accordingly to incorporate the starting point. However, based on the given equation and the specified time of one second.

For more such question on height. visit :

https://brainly.com/question/73194

#SPJ8

A region, in the first quadrant, is enclosed by the equations below. 2= = бу, Find the volume of the solid obtained by rotating the region about the y-axis.

Answers

To find the volume of the solid obtained by rotating the region about the y-axis, we can use the method of cylindrical shells.

The given region is enclosed by the equations:

2x = y² (equation 1)

x = y (equation 2)

First, let's solve equation 2 for x:

x = y

Now, let's substitute this value of x into equation 1:

2(y) = y²

y² - 2y = 0

Factoring out y, we get:

y(y - 2) = 0

So, y = 0 or y = 2.

The region is bounded by the y-axis (x = 0), x = y, and the curve y = 2.

To find the volume of the solid, we integrate the area of each cylindrical shell over the interval from y = 0 to y = 2.

The radius of each cylindrical shell is given by r = x = y.

The height of each cylindrical shell is given by h = 2 - 0 = 2.

The differential volume of each cylindrical shell is given by dV = 2πrh dy.

Thus, the volume V of the solid is obtained by integrating the differential volume over the interval from y = 0 to y = 2:

[tex]V = \int\limits^2_0 {2\pi (y)(2) dy} V = 4\pi \int\limits^2_0 { y dy} \\V = 4\pi [y^2/2] \limits^2_0 \\V = 4\pi [(2^2/2) - (0^2/2)]\\V = 4\pi (2)\\V= 8\pi[/tex]

Therefore, the volume of the solid obtained by rotating the region about the y-axis is 8π cubic units.

To learn more about volume of the solid visit:

brainly.com/question/30785714

#SPJ11

The Laplace Transform of 2t f(t) = 6e3+ + 4e is = Select one: 10s F(S) $2+ s-6 2s - 24 F(s) = S2 + S s-6 = O None of these. 10s F(S) S2-S- - 6 2s + 24 F(s) = 2– s S-6 =

Answers

The Laplace transform of the given function f(t) = 6e^(3t) + 4e^t is F(s) = 10s / (s^2 - s - 6).

To find the Laplace transform, we substitute the expression for f(t) into the integral definition of the Laplace transform and evaluate it. The Laplace transform of e^(at) is 1 / (s - a), and the Laplace transform of a constant multiple of a function is equal to the constant multiplied by the Laplace transform of the function.

Therefore, applying these rules, we have F(s) = 6 * 1 / (s - 3) + 4 * 1 / (s - 1) = (6 / (s - 3)) + (4 / (s - 1)).

Simplifying further, we can rewrite F(s) as 10s / (s^2 - s - 6), which matches the first option provided. Hence, the correct answer is F(s) = 10s / (s^2 - s - 6).

Learn more about Laplace Transform here: brainly.in/question/20463187
#SPJ11

use the differential to approximate the changes in demand for
the following changes in p.
part a. $2.00 to $2.11
part b. $6.00 to $6.25
The demand for grass seed (in thousands of pounds) at price p dollars is given by the following function. D(p) = -3p³ -2p² + 1483 Use the differential to approximate the changes in demand for the fo

Answers

The approximate changes in demand for the given price changes are a decrease of $4.40 (from $2.00 to $2.11) and a decrease of $81 (from $6.00 to $6.25).

To approximate the changes in demand for the given changes in price, we can use differentials.

Part a: When the price changes from $2.00 to $2.11, the differential in price (∆p) is ∆p = $2.11 - $2.00 = $0.11. To estimate the change in demand (∆D), we can use the derivative of the demand function with respect to price (∆D/∆p = D'(p)).

Taking the derivative of the demand function D(p) = -3p³ - 2p² + 1483, we get D'(p) = -9p² - 4p. Plugging in the initial price p = $2.00, we find D'(2) = -9(2)² - 4(2) = -40.

Now, we can calculate the change in demand (∆D) using the formula: ∆D = D'(p) * ∆p. Substituting the values, ∆D = -40 * $0.11 = -$4.40. Therefore, the approximate change in demand is a decrease of $4.40.

Part b: When the price changes from $6.00 to $6.25, ∆p = $6.25 - $6.00 = $0.25. Using the same derivative D'(p) = -9p² - 4p, and plugging in p = $6.00, we find D'(6) = -9(6)² - 4(6) = -324.

Applying the formula ∆D = D'(p) * ∆p, we get ∆D = -324 * $0.25 = -$81. Therefore, the approximate change in demand is a decrease of $81.

In summary, the approximate changes in demand for the given price changes are a decrease of $4.40 (from $2.00 to $2.11) and a decrease of $81 (from $6.00 to $6.25).

To learn more about Differential equations, visit:

https://brainly.com/question/25731911

#SPJ11

Use the Trapezoidal Rule to approximate the value of the definite integral for the given value of n. Round your answer to four decimal places and compare the result with the exact value of the definite integral. 1 x x x3 dx, n = 4 Trapezoidal Exact

Answers

Using the Trapezoidal Rule with n = 4, the approximate value of the definite integral of x^3 dx over the interval [1, x] is calculated. The exact value of the definite integral is compared with the approximation is off by about 0.09375.

To approximate the value of the definite integral of f(x) = x^3 from x=0 to x=1 using the Trapezoidal Rule with n=4, we first need to calculate the width of each subinterval, which is given by Δx = (b-a)/n = (1-0)/4 = 0.25. Then, we evaluate the function at the endpoints of each subinterval: f(0) = 0^3 = 0, f(0.25) = 0.25^3 ≈ 0.015625, f(0.5) = 0.5^3 = 0.125, f(0.75) = 0.75^3 ≈ 0.421875, and f(1) = 1^3 = 1.

Using the formula for the Trapezoidal Rule, we have:

T_4 = Δx/2 * [f(0) + 2*f(0.25) + 2*f(0.5) + 2*f(0.75) + f(1)] T_4 ≈ 0.25/2 * [0 + 2*0.015625 + 2*0.125 + 2*0.421875 + 1] T_4 ≈ 0.34375

So, using the Trapezoidal Rule with n=4, we get an approximate value of 0.34375 for the definite integral.

The exact value of the definite integral can be calculated using the Fundamental Theorem of Calculus, which gives us:

∫[from x=0 to x=1] x^3 dx = [x^4/4]_[from x=0 to x=1] = (1^4/4 - 0^4/4) = (1/4 - 0) = 1/4 = 0.25

So, the exact value of the definite integral is 0.25. Comparing this with our approximation using the Trapezoidal Rule, we can see that our approximation is off by about 0.09375.

Learn more about Trapezoidal Rule here:

https://brainly.com/question/30401353

#SPJ11

Find and simplify each of the following for f(x) = 6x-3. (A) f(x + h) (B) f(x+h)-f(x) (C) f(x+h)-f(x) h (A) f(x+h) = (Do not factor.) Help me

Answers

According to the given functions, the solutions are :

(A) f(x + h) = 6x + 6h - 3

(B) f(x + h) - f(x) = 6h

(C) f(x + h) - f(x) / h = 6

To find and simplify each of the following expressions for the function f(x) = 6x - 3:

(A) f(x + h):

To find f(x + h), we substitute (x + h) into the function f(x):

f(x + h) = 6(x + h) - 3

Simplifying this expression, we distribute the 6:

f(x + h) = 6x + 6h - 3

(B) f(x + h) - f(x):

To find f(x + h) - f(x), we substitute the expressions for f(x + h) and f(x) into the equation:

f(x + h) - f(x) = (6x + 6h - 3) - (6x - 3)

Simplifying, we remove the parentheses and combine like terms:

f(x + h) - f(x) = 6x + 6h - 3 - 6x + 3

f(x + h) - f(x) = 6h

(C) f(x + h) - f(x) / h:

To find f(x + h) - f(x) / h, we divide the expression f(x + h) - f(x) by h:

f(x + h) - f(x) / h = 6h / h

Simplifying, the h in the numerator and denominator cancels out:

f(x + h) - f(x) / h = 6

In summary:

(A) f(x + h) = 6x + 6h - 3

(B) f(x + h) - f(x) = 6h

(C) f(x + h) - f(x) / h = 6

To learn more about functions visit : https://brainly.com/question/7954282

#SPJ11

Find and approximo four decimal places) the value of where the gran off has a horrortin 0.164*.0.625.-20.02 roo-

Answers

When the result of the calculation 0.164 * 0.625 - 20.02 is rounded to four decimal places from its initial value, the value that is obtained is about -20.8868.

It is possible for us to identify the value of the expression by carrying out the necessary computations in a manner that is step-by-step in nature. In order to get started, we need to discover the solution to 0.1025, which can be found by multiplying 0.164 by 0.625. Following that, we take the outcome of the prior step, which was 0.1025, and deduct 20.02 from it. This brings us to a total of -19.9175. Following the completion of this very last step, we arrive at an estimate of -20.8868 by bringing this value to four decimal places and rounding it off.

It is possible to reduce the complexity of the expression 0.164 multiplied by 0.625 as follows, in more depth: 0.164 multiplied by 0.625 = 0.102

After that, we take the result from the prior step and subtract 20.02 from it:

0.1025 - 20.02 = -19.9175

In conclusion, after taking this amount and rounding it to four decimal places, we arrive at an answer of around -20.8868 for the formula 0.164 * 0.625 - 20.02. This is the response we get when we plug those numbers into the formula.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

A salesperson is selling eight types of genie lamps, made of gold, silver, brass or iron and purportedly containing male or female genies. It turns out that out of each lot of 972 genie lamps of a given type, the numbers of lamps actually containing a genie are observed as follows: Gold: female- 121 Male-110 Silver: Female-60 Male-45 Brass: Female-22 Male-35 Iron: Female-80 Male-95 A king wishes to construct a palace and is looking for divine help. In search of such help, he bought three genie lamps: one female gold genie lamp, one male silver genie lamp, and one female iron lamp. A) What is the probability that a genie will appear from all three lamps? B) What is the probability exactly one genie will appear? C) assume we know that exactly one genie appears, but we do not know from which lamp. What is the conditional probability that a female genie appears?

Answers

A) The probability that a genie will appear from all three lamps is 0.00016.

B) The probability that exactly one genie will appear is 0.175.

C) The conditional probability that a female genie appears, given that exactly one genie appears, is approximately 0.699 or 69.9%.

What is the probability?

A) Probability of a female genie appearing from a gold lamp: 121/972

Probability of a male genie appearing from a silver lamp: 45/972

Probability of a female genie appearing from an iron lamp: 80/972

The probability that a genie will appear from all three lamps will be:

(121/972) * (45/972) * (80/972) ≈ 0.00016

B) Probability of one genie appearing from the gold lamp: (121/972) * (927/972) * (927/972)

Probability of one genie appearing from the silver lamp: (927/972) * (45/972) * (927/972)

Probability of one genie appearing from the iron lamp: (927/972) * (927/972) * (80/972)

The probability exactly one genie will appear = [(121/972) * (927/972) * (927/972)] + [(927/972) * (45/972) * (927/972)] + [(927/972) * (927/972) * (80/972)]

The probability exactly one genie will appear ≈ 0.175

C) Probability of a female genie appearing from a gold lamp: (121/972) / 0.175

Probability of a female genie appearing from a silver lamp: (60/972) / 0.175

Probability of a female genie appearing from an iron lamp: (80/972) / 0.175

The conditional probability = [(121/972) / 0.175] + [(60/972) / 0.175] + [(80/972) / 0.175]

The conditional probability ≈ 0.699

Learn more about probability at: https://brainly.com/question/23417919

#SPJ4

6. Find the points on the curve where the tangent line is horizontal: a) f(x) = x?(4 – x?); b) f(x) = x+ 1 + c) f(x) = x2 – x+1 7. Find dy/dx if a) y2 = x-3; b) y sin x = x3 + cos y; c) x2 + xy =

Answers

Answer:

The function f(x) = x^2 – x + 1, the tangent line is horizontal at x = 1/2.

Derivatives dy/dx for the given functions y' = (3x^2 - y cos(x))/(sin(x) + sin(y)).

Step-by-step explanation:

To find the points on the curve where the tangent line is horizontal, we need to find the values of x where the derivative dy/dx is equal to zero.

a) For the function f(x) = x^(4 – x^2):

To find the points where the tangent line is horizontal, we find dy/dx and set it equal to zero:

f(x) = x^(4 – x^2)

Using the power rule and chain rule, we find the derivative:

f'(x) = (4 – x^2)x^(4 – x^2 - 1) - x^(4 – x^2) * 2x * ln(x)

Setting f'(x) = 0:

(4 – x^2)x^(4 – x^2 - 1) - x^(4 – x^2) * 2x * ln(x) = 0

Simplifying and factoring:

(4 – x^2)x^(3 – x^2) - 2x^(2 – x^2)ln(x) = 0

From here, we can solve for x numerically using numerical methods or a graphing calculator.

b) For the function f(x) = x^2 – x + 1:

To find the points where the tangent line is horizontal, we find dy/dx and set it equal to zero:

f(x) = x^2 – x + 1

Taking the derivative:

f'(x) = 2x - 1

Setting f'(x) = 0:

2x - 1 = 0

Solving for x:

2x = 1

x = 1/2

Therefore, for the function f(x) = x^2 – x + 1, the tangent line is horizontal at x = 1/2.

7. Finding dy/dx for the given functions:

a) For y^2 = x - 3:

To find dy/dx, we implicitly differentiate both sides of the equation with respect to x:

2yy' = 1

Dividing both sides by 2y:

y' = 1/(2y)

b) For y sin(x) = x^3 + cos(y):

Again, we implicitly differentiate both sides of the equation:

y' sin(x) + y cos(x) = 3x^2 - sin(y) * y'

Rearranging and solving for y':

y' (sin(x) + sin(y)) = 3x^2 - y cos(x)

y' = (3x^2 - y cos(x))/(sin(x) + sin(y))

These are the derivatives dy/dx for the given functions.

Learn more about implicit differentiation:https://brainly.com/question/11887805

#SPJ11

Given the function f(x) - 2kx - 4 and g(x) 설 설 Find a) value of k if fo=3

Answers

To find the value of k if f(0) = 3, substitute x = 0 into the equation f(x) = 2kx - 4 and solve for k. The value of k is -2.

Given the function f(x) = 2kx - 4, we are asked to find the value of k if f(0) = 3. To find this, we substitute x = 0 into the equation and solve for k.

Plugging in x = 0, we have f(0) = 2k(0) - 4 = -4. Since we know that f(0) = 3, we set -4 equal to 3 and solve for k. -4 = 3 implies 2k = 7, and dividing by 2 gives k = -7/2 = -3.5. Therefore, the value of k that satisfies f(0) = 3 is -3.5.


To learn more about function click here: brainly.com/question/30721594

#SPJ11

1-5 Equations of Lines and Planes: Problem 3 Previous Problem Problem List Next Problem (1 point) Find an equation of a plane containing the three points (-5, 2, 2), (0, 6, 0), (0, 7, 2) in which the

Answers

Normal vector is perpendicular to the line given by the parametric equations x = 2 - t, y = 3 + 2t, z = 4t.

To find an equation of the plane, we first need to determine the normal vector. Since the plane is perpendicular to the line, the direction vector of the line will be parallel to the normal vector of the plane.

The direction vector of the line is given by <dx/dt, dy/dt, dz/dt> = <-1, 2, 4>.

To find a normal vector, we can take the cross product of two vectors in the plane. We can choose two vectors by considering two pairs of points on the plane.

Let's consider the vectors formed by the points (-5, 2, 2) and (0, 6, 0), and the points (-5, 2, 2) and (0, 7, 2).

Vector 1 = <0 - (-5), 6 - 2, 0 - 2> = <5, 4, -2>

Vector 2 = <0 - (-5), 7 - 2, 2 - 2> = <5, 5, 0>

Taking the cross product of Vector 1 and Vector 2, we have:

<5, 4, -2> x <5, 5, 0> = <-10, 10, 5>

This resulting vector, <-10, 10, 5>, is perpendicular to the plane.

Now we can use the normal vector and one of the given points, such as (-5, 2, 2), to write the equation of the plane in the form ax + by + cz = d.

Plugging in the values, we have:

-10(x - (-5)) + 10(y - 2) + 5(z - 2) = 0

Simplifying, we get:

-10x + 50 + 10y - 20 + 5z - 10 = 0

Combining like terms, we have:

-10x + 10y + 5z + 20 = 0

Dividing both sides by 5, we obtain the equation of the plane:

-2x + 2y + z + 4 = 0

Therefore, an equation of the plane containing the three given points and with a normal vector perpendicular to the line is -2x + 2y + z + 4 = 0.

To learn more about equation of the plane visit:

brainly.com/question/27190150

#SPJ11

The water level (in feet) of Boston Harbor during a certain 24-hour period is approximated by the formula H= = 4.8 sin [(t – 10)] +76 Osts 24 - where t = 0 corresponds to 12 midnight. When is the water level rising and when is it falling? Find the relative extrema of H, and interpret your results.

Answers

The water level in Boston Harbor is rising when the derivative of the function H is positive, and it is falling when the derivative is negative. The relative extrema of H can be found by finding the critical points of the function, where the derivative is zero or undefined.

To determine when the water level is rising or falling, we need to find the derivative of the function H with respect to t. Taking the derivative of H=4.8sin[(t-10)]+76, we get dH/dt = 4.8cos[(t-10)].

When the derivative dH/dt is positive, it indicates that the water level is rising, and when it is negative, the water level is falling. The sign of the cosine function determines the sign of the derivative.

To find the relative extrema of H, we set dH/dt = 0 and solve for t. In this case, 4.8cos[(t-10)] = 0. Solving this equation gives us cos[(t-10)] = 0.

The cosine function equals zero at specific angles, such as π/2, 3π/2, etc. Therefore, we can find the critical points by solving (t-10) = π/2 + nπ, where n is an integer.

Interpreting the results, the critical points correspond to the times when the water level changes direction. At these points, the water level reaches a maximum or minimum value.

Learn more about cosine function here:

https://brainly.com/question/3876065

#SPJ11

Principal Montoya's school is making time capsules. Each class adds relics to a cube-shaped container that has a volume of one cubic foot. The school packs the containers into a metal trunk and bury the trunk under the playground. The trunk is shaped like a rectangular prism, and 48 containers fill it entirely. If the floor of the trunk is completely covered with a layer of 16 containers, how tall is the trunk

Answers

If the trunk is shaped like a rectangular prism, and 48 containers fill it entirely, the height of the trunk is 2 feet.

We know that there are a total of 48 containers, and the floor layer consists of 16 containers. Therefore, the remaining containers stacked on top of the floor layer is:

Remaining containers = Total containers - Floor layer

Remaining containers = 48 - 16

Remaining containers = 32

Since each container has a volume of one cubic foot, the remaining containers will occupy a volume of 32 cubic feet.

The trunk is shaped like a rectangular prism, and we can find its height by dividing the volume of the remaining containers by the area of the floor layer.

Height of trunk = Volume of remaining containers / Area of floor layer

Since the floor layer consists of 16 containers, its volume is 16 cubic feet. Therefore:

Height of trunk = 32 cubic feet / 16 square feet

Height of trunk = 2 feet

Learn more about rectangular prism here:

https://brainly.com/question/30095130

#SPJ11

Find the length of the curve defined by 2 y = 3 In (3)" 1) from x = 8 to x = 10.

Answers

The resulting value of L will give us the length of the curve defined by the equation 2y = 3ln(3x) + 1) from x = 8 to x = 10.

To find the length of the curve defined by the equation 2y = 3ln(3x) + 1) from x = 8 to x = 10, we can use the arc length formula for a curve defined by a parametric equation.

The parametric equation of the curve can be written as:

x = t

y = (3/2)ln(3t) + 1/2

To find the length of the curve, we need to evaluate the integral of the square root of the sum of the squares of the derivatives of x and y with respect to t, and then integrate it over the given interval.

Let's start by finding the derivatives of x and y with respect to t:

dx/dt = 1

dy/dt = (3/2)(1/t) = 3/(2t)

The square of the derivatives is:

(dx/dt)² = 1

(dy/dt)² = (3/(2t))² = 9/(4t²)

Now, we can calculate the integrand for the arc length formula:

√((dx/dt)² + (dy/dt)²) = √(1 + 9/(4t²)) = √((4t² + 9)/(4t²)) = √((4t² + 9))/(2t)

The arc length formula over the interval [8, 10] becomes:

L = ∫[8,10] √((4t² + 9))/(2t) dt

To solve this integral, we can use various integration techniques, such as substitution or integration by parts. In this case, a suitable substitution would be u = 4t² + 9, which gives du = 8t dt.

Applying the substitution, the integral becomes:

L = (1/2)∫[8,10] √(u)/t du

Now, the integral can be simplified and evaluated:

L = (1/2)∫[8,10] (u^(1/2))/t du

= (1/2)∫[8,10] (1/t)(4t² + 9)^(1/2) du

= (1/2)∫[8,10] (1/t)√(4t² + 9) du

At this point, we can evaluate the integral numerically using numerical integration techniques or software tools.

Learn more about parametric equation at: brainly.com/question/30748687

#SPJ11

Please help!
In the diagram, line g is parallel to line h.

Which statements are true? Select all that apply.

Answers

The true statements are:

∠4 ≅ ∠8 because they are corresponding angles.

∠6 ≅ ∠7 because they are vertical angles.

m∠4 +  m∠6 = 180.

Here, we have,

from the given figure, we get,

There are two parallel lines and a transversal .

now, we know that,

Corresponding Angles Formed by Parallel Lines and Transversals. If a line or a transversal crosses any two given parallel lines, then the corresponding angles formed have equal measure. When the lines are parallel, the corresponding angles are congruent .

and, we know,

Vertical angles are formed when two lines meet each other at a point. They are always equal to each other. In other words, whenever two lines cross or intersect each other, 4 angles are formed. We can observe that two angles that are opposite to each other are equal and they are called vertical angles.

so, we get,

∠4 ≅ ∠8 because they are corresponding angles.

∠6 ≅ ∠7 because they are vertical angles.

m∠4 +  m∠6 = 180,

these statements are true.

To learn more on angle click:

brainly.com/question/28451077

#SPJ1

The manager of the local computer store estimates the demand for hard drives for the next months to be 100, 100, 50, 50, and 210. To place an order for the hard drives costs $50 regardless of the order size, and
he estimates that holding one hard drive per month will cost him $0.50. a. Apply Least Unit Cost method to order the correct quantity each period. What is the total cost of holding
and ordering?
b. Apply Part period balancing method to order the correct quantity each period. What is the total cost of
holding and ordering?

Answers

To apply the Least Unit Cost method and Part Period Balancing method, we need to calculate the Economic Order Quantity (EOQ) for each period.

a) Least Unit Cost Method:To determine the order quantity using the Least Unit Cost method, we need to calculate the EOQ for each period.

EOQ formula is given by:

EOQ = √(2DS/H)Where:

D = Demand for the periodS = Cost of placing an order

H = Holding cost per unit per period

Using the given values:D1 = 100, S = $50, H = $0.50

D2 = 100, S = $50, H = $0.50D3 = 50, S = $50, H = $0.50

D4 = 50, S = $50, H = $0.50D5 = 210, S = $50, H = $0.50

Calculate EOQ for each period:

EOQ1 = √(2 * 100 * $50 / $0.50) = √(10000) = 100EOQ2 = √(2 * 100 * $50 / $0.50) = √(10000) = 100

EOQ3 = √(2 * 50 * $50 / $0.50) = √(5000) ≈ 70.71EOQ4 = √(2 * 50 * $50 / $0.50) = √(5000) ≈ 70.71

EOQ5 = √(2 * 210 * $50 / $0.50) = √(42000) ≈ 204.12

Order quantity for each period:Period 1: Order 100 hard drives

Period 2: Order 100 hard drivesPeriod 3: Order 71 hard drives

Period 4: Order 71 hard drivesPeriod 5: Order 204 hard drives

Total cost of holding and ordering:

Total cost = (D * S) + (H * Q/2)Total cost = (100 * $50) + ($0.50 * 100/2) + (100 * $50) + ($0.50 * 100/2) + (50 * $50) + ($0.50 * 71/2) + (50 * $50) + ($0.50 * 71/2) + (210 * $50) + ($0.50 * 204/2)

Total cost ≈ $10,900

b) Part Period Balancing Method:To determine the order quantity using the Part Period Balancing method, we need to calculate the EOQ for the total demand over all periods.

Total Demand = D1 + D2 + D3 + D4 + D5 = 100 + 100 + 50 + 50 + 210 = 510

EOQ = √(2 * Total Demand * S / H) = √(2 * 510 * $50 / $0.50) = √(102000) ≈ 319.15

Order quantity for each period:Period 1: Order 64 hard drives (510 / 8)

Period 2: Order 64 hard drives (510 / 8)Period 3: Order 64 hard drives (510 / 8)

Period 4: Order 64 hard drives (510 / 8)Period 5: Order 128 hard drives (510 / 4)

Learn more about Period here:

 https://brainly.com/question/11131191

#SPJ11

Find functions fand g so that h(x) = f(g(x)). h(x) = √5x² + 4 (4 (g(x), f(t)) = ( al

Answers

So, the functions f and g that satisfy h(x) = f(g(x)) = √(5x² + 4) are f(t) = √t and g(x) = 5x² + 4.

To find function f and g such that h(x) = f(g(x)) = √(5x² + 4), we need to express h(x) as a composition of two functions.

Let's start by considering the inner function g(x).

want g(x) to be the expression inside the square root, which is 5x² + 4. So, we can define g(x) = 5x² + 4.

Next, we need to determine the outer function f(t) that will take the result of g(x) and produce the final output. In this case, the desired output is √(5x² + 4). So, we can define f(t) = √t.

Now, we have g(x) = 5x² + 4 and f(t) = √t. Substituting these functions into the composition, we get:

h(x) = f(g(x)) = f(5x² + 4) = √(5x² + 4)

Please note that "al" was mentioned at the end of the question, but its meaning is not clear. If there was a typographical error or if you need further assistance, please provide the correct information or clarify your request.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

HELP ASAP

With Zelda’s bank account, a credit, a deposit, and any interest earned all represent adding money to her account balance. A debit, a withdrawal, and any fees for financial services all represent money subtracted from her account balance. The following transactions occurred with her bank account over the last two weeks:

02/05/18: deposit of $523. 76

02/08/18: debit of $58. 03

02/10/18: withdrawal of $347. 99

02/13/18: credit of $15. 31

02/15/18: $25 fee for financial services

02/16/18: $8. 42 interest earned on her account

Answers

Zelda's bank account has the following transactions for the last two weeks:02/05/18: Deposit of $523.7602/08/18: Debit of $58.0302/10/18: Withdrawal of $347.9902/13/18: Credit of $15.3102/15/18: $25 fee for financial services02/16/18: $8.42 interest earned on her account, the current balance of Zelda's bank account is $116.47.

Current balance is equal to the sum of all transactions. Using the following transactions, compute the total balance of Zelda’s bank account:

Deposit = + $523.76

Debit = - $58.03

Withdrawal = - $347.99

Credit = + $15.31

Fee for financial services = - $25

Interest earned = + $8.42

We will compute the current balance of her bank account:

$$523.76 - $58.03 - $347.99 + $15.31 - $25 + $8.42 = $116.47

You can learn more about transactions at: brainly.com/question/24730931

#SPJ11

Consider the following. y - 3x2 + 5x + 3 Find the relative maxima, relative minima, and points of infection. (If an answer does not exist, enter DNE.) relative maxima (XY)= relative minima (X,Y) - points of inflection (X,Y)= Sketch the graph of the function у 5 - 10 - X 10 -5 5 10 - 10 -5 o X 10 - 10 5 -5 5 - 10 10

Answers

The given function is y = -3x^2 + 5x + 3. To find the relative maxima and minima, we can use calculus. Plugging this value back into the original function, we find y = -3(5/6)^2 + 5(5/6) + 3 = 25/12. So the relative minimum is at (5/6, 25/12).

To determine the points of inflection, we need to find the second derivative. Taking the derivative of y', we get y'' = -6. Setting y'' equal to zero gives no solutions, which means there are no points of inflection in this case.  To find the relative maxima and minima, we can use calculus. Taking the derivative of the function, we get y' = -6x + 5. To find the critical points, we set y' equal to zero and solve for x. In this case, -6x + 5 = 0 gives x = 5/6.

In summary, the function has a relative minimum at (5/6, 25/12), and there are no relative maxima or points of inflection.

To find the relative maxima and minima, we used the first derivative test. By setting the derivative equal to zero and solving for x, we found the critical point (x = 5/6). We then plugged this value into the original function to obtain the corresponding y-value. This gave us the relative minimum at (5/6, 25/12). To determine the points of inflection, we looked at the second derivative. However, since the second derivative was constant (-6), there were no solutions to y'' = 0, indicating no points of inflection. The graph of the function would be a downward-facing parabola with the vertex at the relative minimum point and no points of inflection.

Learn more about derivative here:

https://brainly.com/question/29020856

#SPJ11

3(e+4)–2(2e+3)<-4

Solve for e

Answers

Answer:

6 - e < -4

Step-by-step explanation:

3(e+4) – 2(2e+3) < -4

3e + 12 - 4e - 6 < -4

6 - e < -4

So, the answer is 6 - e < -4

Consider the following. S2x?y da, where D is the top half of the disk with center the origin and radius 2 Change the given integral to polar coordinates. dr de JO AE B- Evaluate the integral.

Answers

The value of the given integral is 4π. In polar coordinates, the given integral, ∬S2x²+y²dA, where D is the top half of the disk with center at the origin and radius 2, can be rewritten as ∬D(r²) rdrdθ. Now, let's evaluate the integral.

To evaluate the integral, we need to express the domain of integration in polar coordinates. The top half of the disk can be represented in polar coordinates as D: 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π.

Now, substituting the variables and domain of integration, the integral becomes:

∫(θ=0 to π) ∫(r=0 to 2) r³dr dθ.

First, we integrate with respect to r, treating θ as a constant:

∫(θ=0 to π) [(1/4)r⁴] evaluated from r=0 to r=2 dθ.

Simplifying the inner integral, we get:

∫(θ=0 to π) (1/4)(2⁴) dθ.

Further simplifying, we have:

∫(θ=0 to π) 4 dθ.

Integrating with respect to θ, we obtain:

[4θ] evaluated from θ=0 to θ=π.

Finally, substituting the limits, we get:

[4π] - [0] = 4π.

Therefore, the value of the given integral is 4π.

Learn more about integral here: https://brainly.com/question/31059545

#SPJ11

6. (-/1 Points] DETAILS LARAPCALC10 5.3.022. M Use the Log Rule to find the indefinite integral. (Use C for the constant of integration. Remember to use absolute values where ar dx

Answers

The indefinite integral of ∫ (x² - 6)/(6x) dx is (1/6) * (x³ - 6x²) + C, where C is the constant of integration.

We have the integral:

∫ (x² - 6)/(6x) dx.

We can simplify the integrand by factoring out (1/6x):

∫ (x - 6/x) dx.

To solve this integral, we can first simplify the integrand by factoring out (1/6x):

∫ (x² - 6)/(6x) dx = (1/6) * ∫ (x - 6/x) dx.

Now, we can split the integral into two separate integrals:

∫ x dx - (1/6) * ∫ (6/x) dx.

Integrating each term separately, we get:

(1/6) * (x²/2) - (1/6) * (6 * ln|x|) + C.

Simplifying further, we have:

(1/6) * (x³/2) - ln|x| + C.

Finally, we can rewrite the expression as:

(1/6) * (x³ - 6x²) + C.

learn more about Indefinite integral here:

https://brainly.com/question/29845193

#SPJ4

The complete question is:

Find the indefinite integral of (x² - 6)/(6x) dx using the Log Rule. Use C as the constant of integration and remember to include absolute values where necessary.

im
confused how you get 2x+0+0 can you explain how to solve the
laplacian
Determine the Laplacian of the scalar function 1/3a³-9y+5 at the point (3, 2, 7). (A) 0 (B) 1 (C) 6 (D) 9
Solution The Laplacian of the function is 7² = ²(³-9y+5)= + = 2x+0+0 = 2x At (3, 2, 7), 2

Answers

The Laplacian of a scalar function is a mathematical operator that represents the divergence of the gradient of the function. In simpler terms, it measures the rate at which the function's value changes in space.

To determine the Laplacian of the given function, 1/3a³ - 9y + 5, at the point (3, 2, 7), we need to find the second partial derivatives with respect to each variable (x, y, z) and evaluate them at the given point.

In the given solution, the expression 2x + 0 + 0 is mentioned. However, it seems to be an incorrect representation of the Laplacian of the function. The Laplacian should involve the second partial derivatives of the function.

Unfortunately, without the correct information or expression for the Laplacian, it is not possible to determine the value or compare it to the answer choices (A) 0, (B) 1, (C) 6, or (D) 9.

If you can provide the correct expression or any additional information, I would be happy to assist you further in solving the problem.

Learn more about Laplacian here:

https://brainly.com/question/30782267

#SPJ11

Other Questions
true or false? the health insurance portability and accountability act (hipaa) applies to the past, present, or future health of an individual. What type of organism is least likely to be represented in the fossil record of the Cambrian period?Multiple ChoiceA large, rare species of lobsterA medium-sized, common shark speciesA large, common marine bony fishA small, common jellyfish Georgina is playing a lottery game where she selects a marble out of a bag and then replaces it after each pick. There are 7 green marbles and 9 blue marbles. With replacement, what is the probabilitythat Georgina will draw two blue marbles in two tries to win the lottery? what is a Paddie A. long grain riceB short grain riceC rice saddlingD rice field48 POINTS Find the intervals on which f(x) is increasing, the intervals on which f(x) is decreasing, and the local extrema. f(x) = (x - 5) e - 5x Which statement most accurately describes substance addiction?a. It is a lack of control over use. Tolerance, craving, and withdrawal symptoms occur when intake is reduced or stopped.b. It occurs when psychoactive drug use interferes with the action of competing neurotransmitters.c. Symptoms occur when two or more drugs that affect the central nervous system (CNS) have additive effects.d. It involves using a combination of substances to weaken or inhibit the effect of another drug. The anser for this question is on the below. Why do we use ln todifferentiate? why can't we just use chain rule?Differentiate f(x) = (1 + x2)V. = = y= (1 + r) In y = ln ((1+x2) v7) = Vi In(1+x2) ' y ln(1 + r) 2xvx (x2 2vx 1 + x2 In(1+22) 2xVC 2vx 1 + x2 + Y y = ( y' = : nom + 2011) (1 +22) V+ 5 CWhy does sexual reproduction require both meiosis and syngamy?A. The process of meiosis results in the production of gametes in which the number of chromosomes is doubled. During syngamy, gametes are reduced by half, and the number of chromosomes is restored to the full amount. Therefore, by coupling meiosis and syngamy, the organism ensures that the proper number of chromosomes will be maintained.B. The process of meiosis results in the production of gametes in which the number of chromosomes is reduced by half. During syngamy, two gametes fuse to form a new cell, and the number of chromosomes is restored to the full amount. Therefore, by coupling meiosis and syngamy, the organism ensures that the proper number of chromosomes will be maintained.C. The process of meiosis results in the production of gametes in which the number of chromosomes remains the same. During syngamy, two gametes fuse to form a new cell, and the number of chromosomes is restored to the full amount. Therefore, by coupling meiosis and syngamy, the organism ensures that the proper number of chromosomes will be maintained. In the United States, people drive on the right side of the road, whereas in Great Britain people drive on the left. This is an example of a difference inA. cultural normsB. cultural valuesC. cultural symbolsD. mental maps of reality why is the perennial system of irrigation preferred by farmers over the basin system of irrigation near the nile river in modern times? question 14 options: the basin system only allows the planting of one main crop and is dependent on the annual flooding of the nile river. the perennial system is older. the perennial system requires too much effort on the part of the farmer. the basin system can feed more people. Use the alternative curvature formula = Jaxv 3 to find the curvature of the following parameterized curve. wo PU) = (3 +213,0,0) KE a calf that weighed w0 pounds at birth gains weight at the rate dw/dt = 1250 w, where w is weight (in pounds) and t is time (in years). solve the differential equation. (1 point) Given x=et and y=te9t, find the following derivativesas functions of t .dy/dx=d2y/dx2= Use polar coordinates to find the volume of the solid regionbounded above by the hemisphere z = root (25x2y2) and below bythe circular region x2 + y2 9 Without using a calculator, find the limit. Make sure you show each step. x+5x-24 lim x-3x-8x+15 5) Use the 3 aspects of the definition of continuity to show whether or not the function is continuous at the given parameter. Show how you apply all 3 aspects. Make sure to state whether or not the function is continuous 1) f(a) exists 2) lim/(x) exists Definition of Continuity: 1-0 3) f(a) - lim/(x x3 (x-31-1: x>3 The Wave Speed On A String Is 155 M/S When The Tension Is 68.0 N . Part A What Tension Will Give A Speed Of 181 M/S ? a car's engine is turning the crankshaft at 5200 rev/min . part a what is the rotational speed ? which three statements best describes strategic market research A pilot is planning his flight to an airport which is 400km southeast of his starting location. His plane flies at 250km/h but a wind of 20km/h is blowing from 30 West of South. What heading should he choose for the plane? What is his resultant velocity? forecasts are most useful when the __________ will look radically different from the __________.A. past; futureB. future; pastC. present; futureD. present; pastE. future; present Steam Workshop Downloader