Answer:
Potential energy. Kinetic energy can be stored. ... If we drop the object from the shelf or release the spring, that potential energy is converted back into kinetic energy. Kinetic energy can also be transferred from one body to another in a collision, which can be elastic or inelastic.
this is an example of what process ?
Gizmo Warm-up In a chemical reaction, reactants interact to form products. This process is summarized by a chemical equation. In the Balancing Chemical Equations Gizmo, look at the floating molecules below the initial reaction: H2 O2 ---> H2O. How many atoms are in a hydrogen molecule (H2)
Answer:
There are two atoms in one hydrogen molecule.
Explanation:
Hello!
In this case, when going over chemical reactions, we need to realize about the amount of atoms of each element; thus, according to the given chemical reaction by which water is formed:
[tex]H_2+O_2\rightarrow H_2O[/tex]
It is seen there are two hydrogen atoms in the hydrogen molecule, two in oxygen and two hydrogen atoms and one oxygen atom in water; however, these reactions must be balanced according to the law of conservation of mass:
[tex]2H_2+O_2\rightarrow 2H_2O[/tex]
Which means we have two hydrogen molecules with two atoms each, one oxygen molecule with two atoms and two water molecules with two hydrogen atoms and one oxygen atom each.
Best regards!
Baking soda and vinegar questions
what are the two main products of photosynthesis
Answer:
glucose and oxygen gas
Explanation:
oxygenglucose Photosynthesis produce carbon dioxide and water It recombine them to produce oxygen (O2) and a form of sugar called glucose (C6H12O6).issues guidelines for financial system operated by all commerical banks in India
What is the mass in grams of 1.00 x 10 24 atoms of Mn?
a)91.3 g
b) 123.4 g
c) 1.66 g
d) 166 g
91.2 g Mn
General Formulas and Concepts:Math
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightChemistry
Atomic Structure
Reading a Periodic TableAvogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.Stoichiometry
Using Dimensional AnalysisExplanation:Step 1: Define
[Given] 1.00 × 10²⁴ atoms Mn
Step 2: Identify Conversions
Avogadro's Numer
[PT] Molar Mass of Mn - 54.94 g/mol
Step 3: Convert
[DA] Set up: [tex]\displaystyle 1.00 \cdot 10^{24} \ atoms \ Mn(\frac{1 \ mol \ Mn}{6.022 \cdot 10^{23} \ atoms \ Mn})(\frac{54.94 \ g \ Mn}{1 \ mol \ Mn})[/tex][DA] Multiply/Divide [Cancel out units]: [tex]\displaystyle 91.2321 \ g \ Mn[/tex]Step 4: Check
Follow sig fig rules and round. We are given 3 sig figs.
91.2321 g Mn ≈ 91.2 g Mn
A molten sample of 1.00kg of iron with a specific heat of 0.385J/g.K at 1000.K is immersed in a sample of water. If the water absorbs 270 kJ of heat what is the final temperature of the iron?
I need all the process.
Answer:
298. 7 K.
Explanation:
Hello!
In this case, since equation we use to compute the heat in a cooling or heating process is:
[tex]Q=mC(T_f-T_i)[/tex]
Whereas we are given the heat, mass, specific heat and initial temperature. Thus, we infer that we need to solve for the final temperature just as shown below:
[tex]T_f=T_i+\frac{Q}{mC}\\\\T_f=1000 K+\frac{-270000J}{1000g*0.385\frac{J}{g*K} } \\\\T_f=298.7 K[/tex]
It is important to notice that the iron release heat as water absorbs it, that is why it is taken negative.
Best regards!
For the reaction 2Fe+o2 -->Feo how many grams of iron(ll) oxide are produced from 479.6 grams of iron in an excess of oxygen (Fe=56gmol, O=16g mol)
Mass of iron(ll) oxide= 616.608 g
Further explanationGiven
Reaction
2Fe+O2 -->2FeO
479.6 grams of iron
Required
mass of iron(ll) oxide
Solution
mol of iron :
= mass : Ar Fe
= 479.6 g : 56 g/mol
= 8.564
From the equation, mol FeO :
= 2/2 x mol Fe
= 2/2 x 8.564
= 8.564 moles
Mass of iron(ll) oxide :
= mol x MW
= 8.564 x 72 g/mol
= 616.608 g
If you have 4.72 x 10^24 atoms of Carbon, how many moles of Carbon do you have?
Question 5 options:
2.84 x 10^48 moles of carbon
4.12 x 10^24 moles of carbon
4.72 x 10^24 moles of carbon
7.84 moles of carbon
Answer:
[tex]7.84\ \text{moles}[/tex]
Explanation:
Number of atoms of carbon = [tex]4.72\times 10^{24}[/tex]
Avogadro's number = [tex]6.022\times 10^{23}\ \text{mol}^{-1}[/tex]
Here we have to divide the number of atoms by the Avogadro's number
[tex]\dfrac{4.72\times 10^{24}}{6.022\times 10^{23}}=7.83792\approx 7.84\ \text{moles}[/tex]
The moles of carbon are [tex]7.84\ \text{moles}[/tex].
The reform reaction between steam and gaseous methane (CH4) produces "synthesis gas," a mixture of carbon monoxide gas and dihydrogen gas. Synthesis gas is one of the most widely used industrial chemicals, and is the major industrial source of hydrogen. Suppose a chemical engineer studying a new catalyst for the reform reaction finds that 924. liters per second of methane are consumed when the reaction is run at 261.°C and 0.96atm. Calculate the rate at which dihydrogen is being produced.
Answer:
The answer is "[tex]= 0.078 \ kg \ H_2[/tex]".
Explanation:
calculating the moles in [tex]CH_4 =\frac{PV}{RT}[/tex]
[tex]=\frac{(0.58 \ atm) \times (923 \ L) }{ (0.0821 \frac{L \cdot atm}{K \cdot mol})(232^{\circ} C +273)}\\\\=\frac{(535.34 \ atm \cdot \ L) }{ (0.0821 \frac{L \cdot atm}{K \cdot mol})(505)K}\\\\=\frac{(535.34 \ atm \cdot \ L) }{ (41.4605 \frac{L \cdot atm}{mol})}\\\\= 12.9 \ mol[/tex]
Eqution:
[tex]CH_4 +H_2O \to 3H_2+ CO \ (g)[/tex]
Calculating the amount of [tex]H_2[/tex] produced:
[tex]= 12.9 \ mol CH_4 \times \frac{3 \ mol \ H_2 }{1 \ mol \ CH_4}\times \frac{2.016 g H_2}{1 \ mol \ H_2}\\\\= 78 \ g \ H_2 \\\\= 0.078 \ kg \ H_2[/tex]
So, the amount of dihydrogen produced = [tex]0.078 \frac{kg}{s}[/tex]
A simplified version of photosynthesis can be represented as carbon dioxide
combining with water to form glucose and oxygen: 6CO2 + 6H20 - C6H12O6 +
602. In this reaction, is oxidized.
A) hydrogen
B)
oxygen
C) carbon dioxide
D) carbon
B) oxygen is oxidized.
Further explanationGiven
photosynthesis reaction
6CO2 + 6H20 ⇒ C6H12O6 + 602
Required
the oxidation compound
Solution
Oxidation-reduction reactions or abbreviated as Redox are chemical reactions in which there is a change in oxidation number
Oxidation is an increase in oxidation number, whereas Reduction is a decrease in oxidation number.
In the photosynthetic reaction, oxidation and reduction reactions occur in:
CO2 to C6H12O6 : reduction
Oxidation number of C from +4 to 0
H2O to O2 : oxidation
Oxidation number of O from -2 to 0
Use the atom builder interactive to identify each nucleus. Two protons represented as purple spheres and one neutron represented as a white sphere.Two protons represented as purple spheres and four neutrons represented as white spheres.Four protons represented as purple spheres and three neutrons represented as white spheres. One proton represented as a purple sphere and two neutrons represented as white spheres.Four protons represented as purple spheres and two neutrons represented as white spheres.Three protons represented as purple spheres and four neutrons represented as white spheres. Answer Bank
Answer:
[tex]\frac{3}{2}He[/tex]
[tex]\frac{6}{2} He[/tex]
[tex]\frac{7}{4}Be[/tex]
[tex]\frac{3}{1} H[/tex]
[tex]\frac{6}{4}Be[/tex]
[tex]\frac{7}{3} Li[/tex]
Explanation:
In the first nucleus we are told that there are two protons and one neutron. Let us remember that the mass number = number of protons + number of neutrons.
This implies that, for the first specie the mass number is 3, for the second specie the mass number is 6 and the third specie has a mass number of 7 and so on. The mass number is indicated as a superscript.
The atomic number is the number of protons in the nucleus of the atom and helps us to identify the atom. It is always written as a subscript as shown.
A chemistry student is given 2.00 L of a clear aqueous solution at 43.° C. He is told an unknown amount of a certain compound X is dissolved in the solution. The student allows the solution to cool to 25.° C. At that point, the student sees that a precipitate has formed. He pours off the remaining liquid solution, throws away the precipitate, and evaporates the water from the remaining liquid solution under vacuum. More precipitate forms. The student washes, dries and weighs the additional precipitate. It weighs 0.062 kg1) Using only the information above, can you calculate the solubility of X in water at 25 degrees C?2) If yes calculate it. Round answer to 2 significant digits
Answer:
Follows are the solution to the given points:
Explanation:
In part 1:
As described and in the query, they become precipitated whenever the solutions are refrozen to [tex]25^{\circ} \ C[/tex].
Afterward, certain precipitate becomes replaced as well as the remaining water is evaporated, it implies that certain precipitate remained throughout the solution to just the container when the entire balance is evaporated.
The unrecoverable salt precipitates whenever the solvent is cooled at [tex]25^{\circ} \ C[/tex]and the remaining salt dissolves. It dissolved salt remains whenever the water is evaporated because as dissolved salt value is given that results can be achieved.
In part 2:
They have precipitation weight = [tex]0.063\ g[/tex]. They have a [tex]2 \ L[/tex] the solution, they may disregard the volume increases due to its precipitation. The intensity therefore is [tex]\frac{0.063}{2} = 0.0315 \ \frac{g}{L}[/tex]
Rearrange each jumbled letters
1. EMITNGL IPTNO
2. USLTBIAOMNI
3. RZFENIGE OTPNI
4. ENSODIOTIP
5. ETHA
Answer:
1. MELTING POINT
2. SUBLIMATION
3. FREEZING POINT
4. DEPOSITION
5. HEAT
Explanation:
Which of the following is true of cartilage?
absorbs shock
is relatively stretchy
does not attach to bone
is not considered connective tissue
Answer:
absorbs shock
Explanation:
Answer: absorbs shock
Explanation:
PLEASE HELPPPPPPPPPP
Answer:
Explanation
I am sorry but please give detailed question
Calculate the [H+]
and pH of a 0.000295 M
butanoic acid solution. Keep in mind that the a
of butanoic acid is 1.52×10−5
[H⁺]=6.696 x 10⁻⁵
pH = 4.174
Further explanationGiven
The concentration of 0.000295 M (2.95 x 10⁻⁴ M) butanoic acid solution
Required
the [H+] and pH
Solution
Butanoic acid is the carboxylic acid group. Carboxylic acids are weak acids
For weak acid :
[tex]\tt [H^+]=\sqrt{Ka.M}[/tex]
Input the value :
[H⁺]=√1.52 x 10⁻⁵ x 2.95 x 10⁻⁴
[H⁺]=6.696 x 10⁻⁵
pH = - log [H⁺]
pH = - log 6.696 x 10⁻⁵
pH = 5 - log 6.696
pH = 4.174
A compound has an empirical formula of PO2 and a molar mass of 126 g/mol. What
is the molecular formula of the molecule?
Answer:
P₂O₄
Explanation:
From the question given above, the following data were obtained:
Empirical formula = PO₂
Molar mass of compound = 126 g/mol
Molecular formula =.?
The molecular formula of the compound can be obtained as illustrated below:
Molecular formula = [Empirical]ₙ
= molar mass
[PO₂] × n = 126
[31 + (16× 2)] × n = 126
[31 + 32] × n = 126
63 × n = 126
Divide both side by 63
n = 126 / 63
n = 2
Molecular formula = [PO₂]ₙ
Molecular formula = [PO₂]₂
Molecular formula = P₂O₄
Organic Molecules worksheet
Answer:
ok
Explanation:
How many molecules are in 85g of silver nitrate?
3.0 × 10²³ molecules AgNO₃
General Formulas and Concepts:Math
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightChemistry
Atomic Structure
Reading a Periodic TableWriting CompoundsAvogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.Stoichiometry
Using Dimensional AnalysisExplanation:Step 1: Define
85 g AgNO₃ (silver nitrate)
Step 2: Identify Conversions
Avogadro's Number
[PT] Molar Mass of Ag - 107.87 g/mol
[PT] Molar Mass of N - 14.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
Step 3: Convert
Set up: [tex]\displaystyle 85 \ g \ AgNO_3(\frac{1 \ mol \ AgNO_3}{169.88 \ g \ AgNO_3})(\frac{6.022 \cdot 10^{23} \ molecules \ AgNO_3}{1 \ mol \ AgNO_3})[/tex]Multiply/Divide: [tex]\displaystyle 3.01313 \cdot 10^{23} \ molecules \ AgNO_3[/tex]Step 4: Check
Follow sig fig rules and round. We are given 2 sig figs.
3.01313 × 10²³ molecules AgNO₃ ≈ 3.0 × 10²³ molecules AgNO₃
please help me! This is due by tomorrow!
Answer:d
Explanation:Since the earth would be closer to the sun the ozone layer would not be able to handle the more powerful ultra violet rays making the earth to hot.
Does warm air rise or fall?
rise and cold air
it doesn't fall cause I already fall inlove with levi
What kind of intermolecular forces act between a hydrogen cyanide (HCN) molecule and a carbon monoxide molecule?
Answer:
Dispersion forces
Dipole-Dipole interaction
Explanation:
The London dispersion force refers to the temporary attractive force that acts between the electrons in two adjacent atoms when the atoms develop temporary dipoles. Dispersion forces act between any two molecules even when other intermolecular forces are in operation as long as the molecules are in close proximity to each other.
Now, CO is polar and the HCN is also polar molecule. Hence, dipole - dipole interaction forces are also in operation and acts between the two molecules in close proximity to each other.
Dispersion forces and Dipole-Dipole interaction are intermolecular forces which act between a hydrogen cyanide (HCN) molecule and a carbon monoxide molecule
The transitory attractive force that exists between the electrons in two nearby atoms when the atoms form transient dipoles is known as the London dispersion force. As long as the molecules are close to one another, dispersion forces can exist between any two molecules, even when other intermolecular forces are active.
The HCN molecule and CO are both polar molecules right now. As a result, dipole-dipole interaction forces act between the two molecules when they are close to one another.
Learn more about intermolecular forces, here:
https://brainly.com/question/31797315
#SPJ6
If two reactant molecules collide with each other what two reasons might they not combine ?
6.) The bond between which two atoms is most polar?*
1)C-O
2)OFF
3)он-0
4)Ο N-Η
Answer:
O-H bond
Explanation:
Let us work out the electronegativity difference between the elements in each bond in order to decide which of them is most polar.
For the C-O bond
2.55 - 2.2 =0.35
For the F-F bond
3.98 - 3.98 = 0
For the O-H bond
3.44 - 2.2 = 1.24
For the N-H bond
3.04 - 2.2 = 0.84
The O-H bond has the highest electronegativity difference, hence it is he most polar bond.
What is the boiling point of a solution formed by dissolving 0.75 mol of KCl in 1.00 kg of water?
The boiling point of water generally increases as the amount of impurities (which a solute like KCl technically can be thought of) dissolved increases. This relation can be quantified using the equation,
[tex]\Delta T_b = i \times K_b \times m[/tex]
where [tex]\Delta{T}_{b}[/tex] is the change in the water's boiling point (normally taken to be 100 °C), [tex]i[/tex] is the Van 't Hoff factor (the number of particles a single formula unit of the solute dissociates into in water), [tex]K_b[/tex] is the boiling point elevation constant, and [tex]m[/tex] is the molality (moles of solute/kilogram(s) of solvent) of the solution.
We are forming a solution by dissolving KCl in water. KCl is an electrolyte that, in water, will dissociate into K⁺ and Cl⁻ ions. So, for every formula unit, KCl, we obtain two particles. Thus, the Van 't Hoff factor, or [tex]i[/tex], will be 2.
The molality of the solution can be calculated by dividing the number of moles of KCl by the mass of water in kilograms. Since we have 1.00 kg of water, we would be dividing 0.75 mol KCl by 1, giving us a molality (m) of 0.75 m.
We aren't provided the boiling point elevation constant for water. Several authoritative sources give the value 0.512 °C/m, so we will adopt that as our [tex]K_b[/tex].
Note: m = mol/kg as used in this problem.
Plugging everything in,
[tex]\Delta T_b = i \times K_b \times m \\\Delta T_b = 2 \times 0.512 \text{ } \frac{^oC}{mol/kg} \times 0.75 \text{ } \frac{mol}{kg} \\\Delta T_b = 0.768 \text{ } \mathrm{ ^oC}[/tex]
As you can see, our change in boiling point is positive (the boiling point is elevated), and it is also quite modest. Taking 100 °C to be the boiling point of pure water, the boiling point of our solution would be 100 ⁰C + 0.768 ⁰C, or 100.768 ⁰C.
If we are considering significant figures, then we must give our answer to two significant figures (since 0.75 has two sig figs). We can regard the boiling point of water (100 ⁰C) as a defined value. Since our final answer is a sum, the boiling point of our solution to two significant figures would be 100.77 ⁰C.
Given:
Mol = 0.75Mass = 1.00 kgWe know,
Boiling point constant, Kb = 0.51The molality of the solution will be:
= [tex]\frac{Mole}{Mass}[/tex]
= [tex]\frac{0.75}{1}[/tex]
= [tex]0.75 \ m[/tex]
Now,
→ [tex]T_{solution}-T_{water} = Kb\times m\times i[/tex]
By putting the values, we get
[tex]= 0.51\times 0.75\times 2[/tex]
[tex]= 0.765[/tex]
Boiling point of water = 100°Chence,
Solution's boiling point will be:
→ [tex]T_{solution} = 100+0.765[/tex]
[tex]= 100.765^{\circ} C[/tex]
Thus the above approach is right.
Learn more about boiling point here:
https://brainly.com/question/23549697
Convert 5.802 g/cm^3 to Kg/L
Answer:
5.80200 Kg / L
Explanation:
What is the mass of 2.14 mol CaCl2?
Answer:
237.5 grams CaCl2
Explanation:
Use the periodic table to calculate the mass of CaCl2
40.078+(35.45*2)=110.97800
Convert: 2.14 mol CaCl2 * 110.98g CaCl2/1 mol CaCl2 = 237.4972 g
Consider the following reaction where K. = 9.52 10 2 at 350 K.
CH,(g) + CC14(2)—2CH2Cl2(g)
A reaction mixture was found to contain 2.21*10-2 moles of CH4(E), 3.8710-2 moles of CC1,(g) and 1.06-10-2 moles of CH,C12(2), in
a 1.00 liter container
Is the reaction at equilibrium?
If not, what direction must it run in order to reach equilibrium?
The reaction quotient, Qc equals
The reaction
A. must run in the forward direction to reach equilibrium
B. must run in the reverse direction to reach equilibrium
C. is at equilibrium
Answer:
The correct answer is A :))
Which one of the following statements best describes electronegativity in atoms?
A) Electronegativity is what happens when an atom gains an electron to become an anion.
B) Electronegativity is the attraction an element's nucleus has for the electrons in a chemical bond
C) Electronegativity is the energy lost when an atom gains an electron
D) Electronegativity is the energy absorbed when an atom loses an electron
Answer: B) Electronegativity is the attraction an element's nucleus has for the electrons in a chemical bond
Explanation:
Electronegativity is defined as the property of an element to attract a shared pair of electron towards itself.
When the size of an atom decreases as we move across the period, as the electrons get added to the same shell and the nuclear charge keeps on increasing. Thus the electrons get more tightly held by the nucleus.
As, the size of an element decreases, the valence electrons come near to the nucleus. So, the attraction between the nucleus and the shared pair of electrons increases and thus the electronegativity increases.