Which of the following is the solution to the differential equation dy/dx=e^(y+x) with initial condition y(0) = -ln4
A) y= -x-ln4
B) y=x-ln4
C) y = -ln(-e^x+5)
D) y = -ln(e^x+3)
E) y = ln(e^x+3)

Answers

Answer 1

Answer:

C) y = -ln(-eˣ + 5)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

BracketsParenthesisExponentsMultiplicationDivisionAdditionSubtractionLeft to Right  

Equality Properties

Multiplication Property of EqualityDivision Property of EqualityAddition Property of EqualitySubtraction Property of Equality

Algebra I

Function NotationExponential Rule [Multiplying]:                                                                       [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]Exponential Rule [Rewrite]:                                                                            [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]

Algebra II

Log PropertiesNatural log ln(x) and

Calculus

Antiderivatives - Integrals

Integration Constant C

U-Substitution

Slope Fields

Solving DifferentialsSeparation of Variables

Explanation:

Step 1: Define

[tex]\displaystyle \frac{dy}{dx} = e^{y + x} \\y(0) = -ln4[/tex]

Step 2: Rewrite

Separation of Variables. Get differential equation to a form where we can integrate both sides.

[Differential Equation] Rewrite [Exponential Rule - Multiplying]:                 [tex]\displaystyle \frac{dy}{dx} = e^y \cdot e^x[/tex][Diff Eq] Isolate x terms together [Multiplication Property of Equality]:       [tex]\displaystyle dy = e^y \cdot e^x dx[/tex][Diff Eq] Isolate y terms together [Division Property of Equality]:                [tex]\displaystyle \frac{dy}{e^y} = e^x dx[/tex][Diff Eq] Rewrite:                                                                                              [tex]\displaystyle \frac{1}{e^y} dy = e^x dx[/tex][Diff Eq] Rewrite y [Exponential Rule - Rewrite]:                                           [tex]\displaystyle e^{-y} dy = e^x dx[/tex]

Step 3: Integrate Pt. 1

[Diff Eq] Integrate both sides [Equality Property]:                                        [tex]\displaystyle \int {e^{-y}} \, dy = \int {e^x} \, dx[/tex]

Step 4: Identify Variables for U-Substitution

Set variables for u-sub for y.

u = -y

du = -dy

Step 5: Integrate Pt. 2

[Integrals] Rewrite:                                                                                          [tex]\displaystyle -\int {-e^{-y}} \, dy = \int {e^x} \, dx[/tex][Integrals] U-Substitution:                                                                               [tex]\displaystyle -\int {e^u} \, du = \int {e^x} \, dx[/tex][Integrals] eˣ integration:                                                                             [tex]\displaystyle -e^u = e^x + C[/tex][Integral Expression] Back-substitution:                                                        [tex]\displaystyle -e^{-y} = e^x + C[/tex]

Step 6: Solve Differential Equation Pt. 1

[Int Exp] Divide -1 on both sides [Division Property of Equality]:                 [tex]\displaystyle e^{-y} = -e^x - C[/tex][Int Exp] Natural log both sides (isolate y term) [Equality Property]:           [tex]\displaystyle -y = ln(-e^x - C)[/tex]         [Int Exp] Divide -1 on both sides [Division Property of Equality]:                 [tex]\displaystyle y = -ln(-e^x - C)[/tex]

This is our differential function.

Step 7: Solve Differential Equation Pt. 2

[Diff Function] Substitute in given point:                                                       [tex]\displaystyle -ln4 = -ln(-e^0 - C)[/tex][Diff Function] Evaluate exponent:                                                                [tex]\displaystyle -ln4 = -ln(-1 - C)[/tex][Diff Function] Divide -1 on both sides [Division Property of Equality]:        [tex]\displaystyle ln4 = ln(-1 - C)[/tex][Diff Function] e both sides [Equality Property]:                                            [tex]\displaystyle 4 = -1 - C[/tex][Diff Function] Add 1 on both sides [Addition Property of Equality]:            [tex]\displaystyle 5 = -C[/tex][Diff Function] Divide -1 on both sides [Division Property of Equality]:       [tex]\displaystyle -5 = C[/tex][Diff Function] Rewrite:                                                                                  [tex]\displaystyle C = -5[/tex][Diff Function] Substitute in Integration Constant C:                                  [tex]\displaystyle y = -ln(-e^x - -5)[/tex][Diff Function] Simplify:                                                                                  [tex]\displaystyle y = -ln(-e^x + 5)[/tex]

Topic: Calculus

Unit: Slope Fields

Book: College Calculus 10e


Related Questions

Other Questions
Vocabulary How is a constant term different from a variable term for an expression that represents a real-world situation? Drag the term to complete each sentence. constant term variable term A changes in value whenever the value of the variable changes. ) does not change. __________________t (patinar) mucho en la primavera?Ud. no _____________________(trabajar) en San Francisco, verdad?La profesora Uribe ____________________(ensear) la clase de ciencias.T y Carolina _______________________(necesitar) cuadernos de argollas para la clase de matemticas.________________________(bailar) bien Paco y Mara?Uds. _______________________ (escuchar) msica en la clase de arte.Yo _________________(dibujar) mucho porque (because) a m me gusta dibujar.Justin y yo ______________________ (caminar) a la escuela todos los das (everyday).Los chicos y usted _________________________(nadar) en el verano.En la primavera las chicas ________________________(montar) en bicicleta en el parque (park)._______________________Ud. (pasar) mucho tiempo con la familia?El seor Blanco y yo _________________________(tocar) la guitarra.La chica _________________________(esquiar) en el invierno con los amigos.Nosotras no ___________________(cantar) en la clase de msica.T y Miguel ___________________(usar) la computadora en la clase de tecnologa.______________________(escuchar) t en la clase de ciencias naturales?Yo no __________________(montar) en monopatn porque no me gusta nada.Mis amigas y yo ______________________(necesitar) una calculadora para la clase de matemticas.En el invierno ___________________(esquiar) t y tu familia en las montaas (mountains)?________________________(practicar) Ud. el tenis los domingos?A veces t ______________________ (necesitar) un bolgrafo en la tercera hora verdad?________________________ (tocar) el piano tus amigos?Carlitos y Juanito no _________________________(estudiar) para la clase de espaol.For each sentence, write the correct form of the verb in parentheses so that it agrees with the subject.HELP ME PLEASE!!!!!! Find the value of X in the figure shown. A couple will retire in 50 years; they plan to spend about $22,000 a year in retirement, which should last about 25 years. They believe that they can earn 8% interest on retirement savings. a. If they make annual payments into a savings plan, how much will they need to save each year 24. During the 1950s, Senator Joseph McCarthy became famous for his accusation that communists worked inside the USgovernment. Senator McCarthy lost public support as a result of theA.Korean War armisticeb. Geneva ConventionC. Televised Senate hearingsd. Lawsuit filed against him. Which invention do you think has had the most significant impact on society? A CarB LaptopC Light bulbD Airplane Select the correct answer. Serena is analyzing page layouts to understand their design principles. Which principle of page layout is applied in this image? A. emphasis B. proximity C. balance D. alignment Reset Can someone help me with this questions please?? haw to write 5/17 has a mixed number 3.23 LAB: Seasons Write a program that takes a date as input and outputs the date's season. The input is a string to represent the month and an int to represent the day. Ex: If the input is: April 11 the output is: Spring In addition, check if the string and int are valid (an actual month and day). I need a C Programming language. 2. How old are the oldest fossils? Oldest rocks?During what period were these found?IT HELP ME THE WHOLE PAGE !!!! Someone help please you've learned that authors may have more than one purpose in mind for a text. for "women in aviation"it's clear that the author's main purpose is to inform.what secondary purpose do you think is evident in the text? Which of the following pieces of evidence could be used to argue against Affirmative Action?Abigail Fisher's denial of admittance into the University of TexasHamilton Holmes' denial of admittance into the University of Georgiathe increase of minority students attending colleges that have Affirmative Action admission policiesthe decrease of minority students attending colleges that do not have Affirmative Action policies Helppp me plsss :(:) what was Berners-Lee doing when conceived of the World Wide Web?A. building a cupboardB. brainstorming with friendsC. attempting to get organizedD. trying to make profitable goods What is the center of the circle for this equation:(x + 3) + (y - 2) = 25 9 = 3(w 5) help please! it was here clause or phrase At what city, in January of 1943, did theEnglish and Americans agree that theywould accept nothing less thanunconditional surrender from the Axispowers?a. Cairo, Egyptb. Casablanca, Moroccoc. Istanbul, Turkeyd. Tehran, Iran