Bases dissolve many metals.
A student dissolves 9.6g of styrene in of a solvent with a density of . The student notices that the volume of the solvent does not change when the styrene dissolves in it. Calculate the molarity and molality of the student's solution. Round both of your answers to significant digits.
Answer:
Molarity = 0.06 mol/L
Molality = 0.063
Explanation:
Complete question
A student dissolves 1.5g of styrene C8H8 in 225.mL of a solvent with a density of 1.02/gmL . The student notices that the volume of the solvent does not change when the styrene dissolves in it. Calculate the molarity and molality of the student's solution. Round both of your answers to 2 significant digits
Solution
We must to know:
Molarity is equal to no. of moles divided by volume of solution
No. of moles = Mass/Molecular Mass
No. of moles of C8H8 = 1.5/104 = 0.0144
Molarity = 0.0144/225 = 0.06 mol/L
Molality = no. of moles / mass of solvent
Substituting the given values, we get -
Density = mass / V
Mass = density x V
1.02 * 225
= 229.5 g
Molality = 0.0144 / 229.5
0.063
What is the mole ratio of O2 to NH3?
1.00 x 10-7 moles to grams
Which of the following statements about the pH of 0.010 M HClO4 is correct?
pH=2.00, because [H+]=1.0×10−2M.
A: p H equals 2.00 , because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar .
pH=2.00, because [H+]=2.0×10−2M.
B: p H equals 2.00 , because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar .
pH>2.00, because HClO4 is a strong acid.
C: p H is greater than 2.00 , because H C l O 4 is a strong acid.
pH<2.00, because HClO4 is a weak acid.
Answer:
Option B: p H equals 2.00 , because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar .
pH = 2 because [H⁺] = 1×10¯² M
Explanation:
To know which option is correct, we shall determine the pH of the 0.010 M HClO₄ solution. This can be obtained as follow:
We'll begin by calculating the concentration of the hydrogen ion [H⁺] in the solution. This is illustrated below:
HClO₄ is a strong acid and will dessociates as follow:
HClO₄ (aq) —> H⁺ (aq) + ClO₄¯ (aq)
From the balanced equation above,
1 mole of HClO₄ produced 1 mole H⁺.
Therefore, 0.010 M HClO₄ will also produce 0.010 M H⁺.
Finally we shall determine the pH of the solution. This can be obtained as follow:
Concentration of the hydrogen ion [H⁺] = 0.010 = 1×10¯² M
pH =?
pH = –Log [H⁺]
pH = –Log 1×10¯²
pH = 2
Thus,
The pH = 2
because,
[H⁺] = 1×10¯² M
Thus, option B gives the correct answer to the question.
Based on the definition of pH, pH of 0.010 M solution of HClO4 equals 2.00, because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar.
What is pH?The pH of a solution is the negative logarithm of the hydrogen ion concentration of a solution.
pH of a solution is a measure of the acidity of the solution.
pH = - log[H+]where
[H+] is hydrogen ion concentrationFor the 0.010 M solution of HClO4, [H+} = 0.01 M
pH = -log(0.01)
pH = 2.00
Therefore, pH of 0.010 M solution of HClO4 equals 2.00, because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar.
Learn more about pH at: https://brainly.com/question/172153
What is the molar mass of 4.23 g of an elemental gas in a 2.5L container at 282K and 1.4 atm?
Answer:
27.98g/mol
Explanation:
Using ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
T = temperature (K)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
According to the information given:
V = 2.5L
P = 1.4 atm
T = 282K
n = ?
Using PV = nRT
n = PV/RT
n = 1.4 × 2.5/0.0821 × 282
n = 3.5/23.1522
n = 0.151mol
Using the formula to calculate molar mass of the elemental gas:
mole = mass/molar mass
Molar mass = mass/mole
Molar mass = 4.23g ÷ 0.151mol
Molar mass = 27.98g/mol
How many grams of the bromide salt of the conjugate acid must be combined with how many grams of the weak base, to produce 1.00 L of a buffer that is
Answer:
79.1g of weak base must be combined with 56.0g of conjugate acid
Explanation:
that is 1.00 M in the weak base?
The weak base is C5H5N with a pKa of 5.17 (Ka=6.7×10-6)and a desire pH of 5.63
The equilibrium of the weak base is with the bromide salt of the conjugate acid is:
C5H5N(aq) + H2O(l) + Br- ⇄ C5H5NHBr(aq) + OH-(aq)
Where Kb = Kw / Ka = 1x10⁻¹⁴ / 6.7x10⁻⁶
Kb = 1.49x10⁻⁹ is defined as:
Kb = 1.49x10⁻⁹ = [C5H5NHBr] [OH-] / [C5H5N]
Where [OH-] = 10^-(14- pH) = 10^-(14- 5.63) = 4.255x10⁻⁹M
[C5H5N] = 1.00M
Replacing:
1.49x10⁻⁹ = [C5H5NHBr] [OH-] / [C5H5N]
1.49x10⁻⁹ = [C5H5NHBr] [4.255x10⁻⁹M] / [1.00M]
[C5H5NHBr] = 0.35M
In 1L the moles of C5H5NHBr are 0.35 moles
Mass C5H5NHBr: 160.0118g/mol
0.35 moles * (160.0118g / mol) =
56.0g of C5H5NHBr are necessaries
The mass of C5H5N is -79.1g/mol-:
1.00moles * (79.1g/mol) =
79.1g of C5H5N are necessariesIt is well-known that carbon dioxide, CO2, has a much greater density than air. In fact,
CO2 gas can displace air, which is why there are regulations in place that limit the
amount of dry ice allowed in elevators. In other words, do not get trapped in an
elevator, or any enclosed space, with someone who is transporting dry ice. Calculate
the pressure exerted by the CO2 gas, in atm, if the density was measured to be 1.983
g/L on a day where the temperature is 22.165 °C.
Answer: The pressure exerted by the [tex]CO_2[/tex] gas, in atm is 1.092
Explanation:
According to the ideal gas equation:'
[tex]PV=nRT[/tex]
P = Pressure of the gas = ?
V= Volume of the gas
T= Temperature of the gas = [tex]22.165^0C=(273+22.165)K=295.165K[/tex] (0°C = 273 K)
n= moles of gas = [tex]\frac{\text {given mass}}{\text {Molar mass}}[/tex]
R= Value of gas constant = 0.0821 Latm/K mol
[tex]P=\frac{mRT}{MV}[/tex] as [tex]Density=\frac{mass}{Volume}[/tex]
[tex]P=\frac{dRT}{M}[/tex] where d is density
[tex]P=\frac{1.983g/L\times 0.0821Latm/Kmol\times 295.165K}{44g/mol}=1.092atm[/tex]
Thus pressure exerted by the [tex]CO_2[/tex] gas, in atm is 1.092
What is the present Ba in Ba(NO3)2?
Answer:
Percentage of Ba = 52.5%
Explanation:
We'll begin by calculating the molar mass of Ba(NO3)₂. This can be obtained as follow:
Molar mass of Ba(NO3)₂ = 137 + 2[14 +(16×3)]
= 137 + 2[14 + 48]
= 137 + 2[62]
= 137 + 124
= 261 g/mol
Next, we shall determine the mass of Ba in Ba(NO3)₂. This can be obtained as follow:
Mass of Ba in Ba(NO3)₂ = 137 g/mol
Finally, we shall determine the percentage of Ba in Ba(NO3)₂. This can be obtained as follow:
Percentage of Ba = mass of Ba / mass of Ba(NO3)₂ × 100
Percentage of Ba = 137 / 261 × 100
Percentage of Ba = 13700 / 261
Percentage of Ba = 52.5%
Thus, the percentage of Ba in Ba(NO3)₂ is 52.5%
PLEASE HELP AND DO NOT SEND A LINK IF YOU DO YOU WILL BE REPORTED
I need help with this I don't know if I'm getting this right please help and give explanations as well and if you don't know both of the question please answer one
1.Three glasses A, B, C contain the liquids: deionized water in A, sulfuric acid solution in B and sodium hydroxide solution in C. Arrange the liquids of the three glasses in order of increasing pH
2.What values can the pH of a base solution at 25 o C take?
Which of the following has the greatest mass for one mole of the compound?
A. SIHA
B. CO
C. CH3OH
D. C2H6
The concept molar mass is used here to determine the compound which has the greatest mass for its one mole. The correct option is C.
What is molar mass?The molar mass also defined as the molecular weight of a compound is generally the sum of the atomic masses of each atoms present in the given compound. Its unit is g mol⁻¹.
The mass of 1 mole of any substance is also called the molar mass. Evidently molar mass is equal to the atomic mass or the molecular mass denoted in grams depending upon whether the substance contains atoms or molecules.
Here (SiHA) is known as the most important bioceramic which is used in the field of bioactive bone implants. The compound CO is carbon monoxide, CH₃OH is methanol and C₂H₆ is ethane.
The molar mass of the given compounds are obtained by adding their atomic masses :
CO = (12.011 g/mol+ 15.999 g/mol) = 28.01 g/mol
CH₃OH = (12.011 g/mol + 3 × 1.007 g/mol + 15.999 g/mol + 1.007 g/mol) = 32.04 g/mol
C₂H₆ = (2 × 12.011 g/mol + 6 × 1.007 g/mol) = 30.07 g/mol
Here among the given compounds CH₃OH has the greatest mass for one mole of the compound.
Thus the correct option is C - CH₃OH.
To know more about the molar mass, visit;
https://brainly.com/question/30123778
#SPJ6
The steps of preparing 2M solution of NaOH
Answer:
And 500 mL of 2M NaOH solution contains 80.02g NaOH=40.0 g of NaOH .
Explanation:
So, If we mix 40.0 g of NaOH with enough distilled water to make 500 mL, we will get a 2.00 M NaOH solution.
I hope this answers help you! :>How many of the planets have an orbital period of less than one Earth year?
Since orbital period depends on how far you are from the sun, planets closer to the sun have a orbital period less than one earth year.
These planets are Mercury and Venus
If 5.0 liters of hydrogen react with excess oxygen, what mass of water would be produced?
Answer:
our equation specifies that
32
⋅
g
of dioxygen and
4
⋅
g
of dihydrogen give
36
⋅
g
of water upon reaction, so..........
Explanation:
2
H
2
(
g
)
+
O
2
(
g
)
→
2
H
2
O
(
g
)
We started with
5.0
⋅
g
32.00
⋅
g
⋅
m
o
l
−
1
=
0.156
⋅
m
o
l
dioxygen
.
Given excess dihydrogen, this molar quantity thus gives
2
×
0.156
⋅
m
o
l
water.
And thus,
2
×
0.156
⋅
m
o
l
×
18.01
⋅
g
⋅
m
o
l
−
1
≅
6
⋅
g
water are evolved. Is this reaction exothermic or endothermic?
Hypothetical element A has three stable isotopes. The first isotope has a mass of 35.01 amu and an abundance of 35.00%. The second isotope has a mass of 36.01 amu and an abundance of 15.00%. The third isotope has a mass of 37.02 amu and an abundance of 50.00%. What is the atomic mass of element A
Answer:
36.16 amu
Explanation:
From the question given above, the following data were obtained:
1st Isotope:
Mass of 1st isotope = 35.01 amu
Abundance of 1st isotope = 35%
2nd isotope:
Mass of 2nd isotope = 36.01 amu
Abundance of 2nd isotope = 15%
3rd isotope:
Mass of 3rd isotope = 37.02 amu
Abundance of 3rd isotope = 50%
Atomic mass of element A =?
The atomic mass of element A can be obtained as follow:
Atomic mass = [(mass of 1st × Abundance)/100] + [(mass of 2nd × Abundance)/100] + [(mass of 3rd × Abundance)/100]
= [(35.01 × 35)/100] + [(36.01 × 15)/100] + [(37.02 × 50)/100]
= 12.25 + 5.40 + 18.51
= 36.16 amu
Thus, the atomic mass of element A is 36.16 amu
Which of the following statements describes a double displacement reactions?
Answer:
D
Explanation:
hope this helped and sorry if it didn't but I wish you luck:D
Select three forms of non-renewable energy.
Biomass
Peat
Nuclear
Gas
Answer: Biomass, Nuclear and Gas are the three forms of non- renewable energy.
Explanation:
The picture below shows a NASA image of the Oort cloud, a sphere of objects that are thought to surround Earth's solar system at a distance of up to one light-year from the Sun.
If the Oort cloud does exist, which of the following could explain why the objects in it may have formed this spherical shape?
A
They are held in orbits by the Sun's gravitational force.
B
They are held in Earth's solar system by Neptune's magnetic field.
C
They float freely in space because the Sun's gravitational force is too weak to hold them in orbit.
D
They are held in stationary positions around Earth's solar system by other stars in space.
The gravitational pull of the Sun keeps them in their orbits. The gravitational pull of the Sun and surrounding stars combined is most likely what gives the Oort cloud its spherical shape.
What does NASA's Oort Cloud mean?The Oort Cloud is a spherical layer of ice objects that is thought to be located between 2,000 and 100,000 astronomical units (AU) from our Sun, a star.
What makes it the Oort Cloud?The Oort cloud, so named after the Dutch astronomer Jan Oort who first confirmed its existence, is a collection of objects with a combined mass estimated to be 10-100 times that of Earth that are less than 100 km (60 miles) across and maybe trillions in number.
To know more about Oort cloud visit:-
https://brainly.com/question/23368033
#SPJ1
How many moles are in 150g of Li2O?
Answer:
moles= w/mm
moles=150/30
moles=5
g a 144 g metal bar requires 2500 J to change its temperature from 23.5 to 100 degree C what is the specific heat of the metal
Answer:
226.9 J·kg⁻¹·°C⁻¹
Explanation:
The specific heat of a substance can be defined as the amount is heat that has to be added in order for a given mass of the substance to increase its temperature:
c = ΔQ/(m*ΔT)In this case:
ΔQ = 2500 Jm = 144 g ⇒ 144 g / 1000 = 0.144 kgΔT = 100 - 23.5 = 76.5 °CWe input the data:
c = 2500 J / (0.144 kg * 76.5 °C)And calculate c:
c = 226.9 J·kg⁻¹·°C⁻¹In the titration, 15 mL of CsOH solution is neutralized by 38.2 mL of 0.250 M HBr solution. What is the molarity of the CsOH solution?
Answer: 0.637M
10.2M
1.36M
0.0982M
Explanation: the answer is 1.36M
The molarity of the CsOH solution is 0.636 M.
What is molarity?Molarity is the concentration of any substance in a place.
The reaction is
HBr + CsOH —> CsBr + H₂O
The formula of molarity
[tex]M = \dfrac{n}{V}[/tex]
[tex]\dfrac{0.25 \times 38.2 }{15} = 0.6366[/tex]
Thus, the molarity of the CsOH solution is 0.636 M.
Learn more about molarity
https://brainly.com/question/2817451
#SPJ2
When the pressure and number of particles of a gas are constant, which of the following is also constant
orbital hauny dump bell shape is...
a Sorbital il p-orbital 1 ild-orbital pulf orbital
Answer: the orbital with a hauny dump bell shape is the p- orbital.
Explanation:
An orbital can be defined as part of the nucleus of an atom that consists of an electron of maximum given energy. The shape of this part gives the shape of the orbitals. There are different types of orbitals which include:
--> s-orbitals: This is the type of orbital in which the probability of finding electron is the same in all directions usually at a given distance form the nucleus. Therefore the s-orbitals are SPHERICAL in shape about the nucleus and are non- directional.
--> d-orbitals: This is said to have a clover shape. This is because the electron is pushed out four times during the rotation when an opposite spin proton aligns gluons with three spin-aligned protons.
--> p-orbitals: This is said to have a DUMP-BELL shape. This is because there are three similar p-orbitals which are arranged mutually at right angles to each other along x,y, and z axes. All the three p-orbitals are of the same energy level.
HELP HELP HELP
NH3 + NO + N2 + H2O
5. Given 8.25 x 1025molecules of ammonia, determine the number of grams of
nitrogen produced.
Answer:
4NH3+6NO+5N2+6H20
Explanation:
How many moles of RbNO2 are present in a sample with 3.4 x 1024 particles?
Answer:
5.6 mol
Explanation:
n = N/NA
n: number of moles
N: number of particles
NA: Avogadro's constant
n = 3.4×10²⁴/6.02×10²³ mol^-1 = 5.6 mol
Air movement and weather conditions are influenced by
A The Moon
B. Altitude
C. Thermal Energy
Answer:
The moon
Explanation:
The answer is A; Sorry i put the wrong answer by accident. I was trying to get to another question.
Give the answer below brainliest!!!
A. The moon influences the air movement
What is a metal oxide + acid
Metal oxide + acid —> __+__
Answer:
Metal oxide + acid —> salt + water
Explanation:
Helpppp pleaseee ill give brainliest
Answer:
The answers are in the explanation.
Explanation:
The energy required to convert 10g of ice at -10°C to water vapor at 120°C is obtained per stages as follows:
Increasing temperature of ice from -10°C - 0°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 2.06J/g°C, ΔT is change in temperature = 0°C - -10°C = 10°C and m is mass of ice = 10g
Q = 2.06J/g°C*10°C*10g
Q = 206J
Change from solid to liquid:
The heat of fusion of water is 333.55J/g. That means 1g of ice requires 333.55J to be converted in liquid. 10g requires:
Q = 333.55J/g*10g
Q = 3335.5J
Increasing temperature of liquid water from 0°C - 100°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 4.18J/g°C, ΔT is change in temperature = 100°C - 0°C = 100°C and m is mass of water = 10g
Q = 4.18J/g°C*100°C*10g
Q = 4180J
Change from liquid to gas:
The heat of vaporization of water is 2260J/g. That means 1g of liquid water requires 2260J to be converted in gas. 10g requires:
Q = 2260J/g*10g
Q = 22600J
Increasing temperature of gas water from 100°C - 120°C:
Q = S*ΔT*m
Q is energy, S specific heat of gaseous water = 1.87J/g°C, ΔT is change in temperature = 20°C and m is mass of water = 10g
Q = 1.87J/g°C*20°C*10g
Q = 374J
Total Energy:
206J + 3335.5 J + 4180J + 22600J + 374J =
30695.5J =
30.7kJ
In the reaction below does water acts as the acid or as the base?
H2S + H20 - HS1- + H30+ *
O a. Neither, water is neutral
O b. Acid
O C. Base
Answer:
C. Base.
Explanation:
Hello there!
In this case, according to the given information, it turns out convenient for us to realize that the concept acid and base we should use here is based off the Bronsted-Lowry one, which says that an acid is a hydrogen donor. In such a way, since water accepts one H ion as it goes to H3O⁺, we infer it is C. Base and the H2S the acid.
Also, we can tell HS⁻ is the conjugate base and H3O⁺ the conjugate acid.
Regards!
Assume a substance X has a body centered cubic lattice. The edge length is 379.0 pm. The atomic mass of X is 195.0 amu What is the density of Xin g/cc
Answer:
[tex]\rho=12g/cm^3[/tex]
Explanation:
From the question we are told that:
Length[tex]l=379.0pm=>379*10^{-10}cm[/tex]
Atomic mass of X [tex]M= 195.0 amu=>gmol^{-1}[/tex]
Where
[tex]Avogadro\ constant = 6.023 * 10^{23} mol-1[/tex]
Let
The Number of units in BCC unit cell [tex]n= 2[/tex]
Generally the equation for Density is mathematically given by
[tex]\rho= \frac{M x n}{l^3*Avogadro constant}[/tex]
[tex]\rho=\frac{197 x 2}{(379*10^{-10})^3*6.023 x 10^{23}}[/tex]
[tex]\rho=12g/cm^3[/tex]
Therefore he density of Xin g/cc
[tex]\rho=12g/cm^3[/tex]
The gases in a hair spray can are at a temperature of 26.0 °C and a pressure of 25.0 lbs/in2. If the gases in the can reach a pressure of
90.0 Ibs/in?, the can will explode. To what temperature in Celsius must the gases be raised in order for the can to explode?
Answer:
The gases in a hair spray can are at a temperature of 26.0 °C and a pressure of 25.0 lbs/in2.
If the pressure becomes [tex]90.0lbs/in^{2}[/tex], what is the temperature of the gases?
Explanation:
According to Gay lussac's law:
the pressure of a gas is directly proportional to its absolute temperature.
[tex]P\alpha T[/tex]
[tex]\frac{P{1} }{T{1} }=\frac{P{2} }{T{2} }[/tex]
Given,
[tex]P1=25.0lbs/in^{2} \\P2=90.0lbs/in^{2} \\T1=26^{o} C=(26+273)K=299K\\T2=?[/tex]
Substitute these values in the above formula:
[tex]\frac{P{1} }{T{1} }=\frac{P{2} }{T{2} }\\\\\frac{25lbs/in^{2} }{299K} }=\frac{90.0lbs/in^{2} }{T{2} }\\\\\\On simplification \\T2=1076.4K\\T2=(1076.4-273)^{o} C=803.4^{o} C[/tex]
Answer:
The gases will be raised to a temperature of 803.4[tex]^{o} C[/tex].