which of the following has the lowest density? A. Water B. Air C. Mineral Water D. Salt Water​

Answers

Answer 1

Air has lower density than water, mineral Water, or salt water. (B)​


Related Questions

Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z

Answers

The question is not complete, the value of z is not given.

Assuming the value of z = 4.0m

Answer:

the magnitude of the electric field at any point having z(4.0 m)  =

E = 5.65 N/C

Explanation:

given

σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²

z = 4.0 m

Recall

E =F/q (coulumb's law)

E = kQ/r²

σ = Q/A

A = 4πr²

∴ The electric field at point z =

E = σ/zε₀

E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)

E = 5.65 N/C

Two cannonballs are dropped from a second-floor physics lab at height h above the ground. Ball B has four times the mass of ball A. When the balls pass the bottom of a first-floor window at height above the ground, the relation between their kinetic energies, KA and KB, is

Answers

Answer:

1:4

Explanation:

The formula for calculating kinetic energy is:

[tex]KE=\dfrac{1}{2}mv^2[/tex]

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!

The relation between the kinetic energies of the freely falling balls A and B is obtained as [tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex].

Kinetic Energy

The kinetic energy of an object depends on the mass and velocity with which it moves.

While under free-fall, the mass of an object does not affect the velocity with which it falls.

So, the velocities of both the balls are the same.

Let the mass of ball A is 'm'

So, the mass of ball B is '4m'

The kinetic energy of ball A is given by;

[tex]KE_{A}=\frac{1}{2} mv^2[/tex]

The kinetic energy of ball B is given by;

[tex]KE_{B}=\frac{1}{2} 4mv^2 = 2mv^2[/tex]

Therefore, the ratio of kinetic energies of A and B is,

[tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex]

Learn more about kinetic energy here:

https://brainly.com/question/11580018

Water is boiled at 1 atm pressure in a 20-cm-internal diameter polished copper pan on an electric range. If it is observed that the water level in the pan drops by 8.00 cm in 15 minutes, determine the inner surface temperature of the pan.

Answers

Answer:

11.3298W

Explanation:

The rate of heat transfer is determined from the enthalpy of vaporization at the give pressure obtained and the mass flow rate. The mass flow rate is determined from the volume of the boiled water, the given time interval and the specific volume of the saturated liquid.

Given that

1atm as the atmospheric pressure

Internal diameter = 20cm = 0.2m

Time = 15mins = (15×60)secs

Latent heat of vaporization (hevap) = 2256.6

Q = mh(evap)

= m/∆t . hevap

= V/αliq∆t ×h(evap)

D^2π∆h/4αliq ∆t × hevap

= 0.2^2 ×π×0.8×2256.5/4×0.001043×15×60

=0.04×3.142×0.08×2256.6/2.00256

= 22.68876/2.00256

Q = 11.3298W

A 2.5-kg object falls vertically downward in a viscous medium at a constant speed of 2.5 m/s. How much work is done by the force the viscous medium exerts on the object as it falls 80 cm?

Answers

Answer:

The workdone is [tex]W_v = - 20 \ J[/tex]

Explanation:

From the question we are told that

    The mass of the object is [tex]m = 2.5 \ kg[/tex]

     The speed of fall is [tex]v = 2.5 \ m/s[/tex]

     The depth of fall is  [tex]d = 80\ cm = 0.8 \ m[/tex]

Generally according to the work energy theorem

      [tex]W = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2[/tex]

Now here given the that the velocity is  constant  i.e  [tex]v_1 = v_2 = v[/tex] then

We have that

    [tex]W = \frac{1}{2} mv^2 - \frac{1}{2} mv^2 = 0 \ J[/tex]  

So in terms of workdone by the potential energy of the object and that of the viscous liquid we have

       [tex]W = W_v - W_p[/tex]

Where  [tex]W_v[/tex] is workdone by viscous liquid

             [tex]W_p[/tex] is the workdone by the object which is mathematically represented as

            [tex]W_p = mgd[/tex]

So  

       [tex]0 = W_v + mgd[/tex]

=>    [tex]W_v = - m * g * d[/tex]

substituting values

       [tex]W_v = - (2.5 * 9.8 * 0.8)[/tex]

      [tex]W_v = - 20 \ J[/tex]

1) A net force of 75.5 N is applied horizontally to slide a 225 kg crate across the floor.
a. Compute the acceleration of the crate?

Answers

Answer:

The acceleration of the crate is [tex]0.3356\,\frac{m}{s^2}[/tex]

Explanation:

Recall the formula that relates force,mass and acceleration from newton's second law;

[tex]F=m\,a[/tex]

Then in our case, we know the force applied and we know the mass of the crate, so we can solve for the acceleration as shown below:

[tex]F=m\,a\\75.5\,N=225\,\,kg\,\,a\\a=\frac{75.5}{225} \,\frac{m}{s^2} \\a=0.3356\,\,\frac{m}{s^2}[/tex]

Find the potential energy associated with a 79-kg hiker atop New Hampshire's Mount Washington, 1900 m above sea level. Take the zero of potential energy at sea level.

Answers

Answer:

P = 1470980 J

Explanation:

We have,

Mass of the hiker is 79 kg

It is required to find the potential energy associated with a 79-kg hiker atop New Hampshire's Mount Washington, 1900 m above sea level.

It is given by :

[tex]P=mgh\\\\P=79\times 9.8\times 1900\\\\P=1470980\ J[/tex]

So, the potential energy of 1470980 J is associated with a hiker.

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to:_______

a. one-half.
b. double.
c. reduce to one-fourth.
d. quadruple.

Answers

Answer:

D. quadruple

Explanation:

The stored energy varies with the square of the electric charge stored in the capacitor. If you double the charge, the stored energy in the capacitor will quadruple or increase by a factor of 4.

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to :

D. Quadruple

"Energy"

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to Quadruple.

The stored energy shifts with the square of the electric charge put away within the capacitor.

In case you twofold the charge, the put away vitality within the capacitor will fourfold or increment by a calculate of 4.

Thus, the correct answer is D.

Learn more about "energy":

https://brainly.com/question/1932868?referrer=searchResults

An inquisitive physics student and mountain climber climbs a 47.0-m-high cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.00 s apart, and observes that they cause a single splash. The first stone has an initial speed of 2.12 m/s.

(a) How long after release of the first stone do the two stones hit the water?

(b) What initial velocity must the second stone have if the two stones are to hit the water simultaneously?

magnitude =

(c) What is the speed of each stone at the instant the two stones hit the water?

first stone =

second stone =

Answers

Answer:

a) Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds, b) The initial velocity of the second stone is -16.038 meters per second, c) The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.

Explanation:

a) The time after the release after the release of the first stone can be get from the following kinematic formula for the first rock:

[tex]y_{1} = y_{1,o} + v_{1,o} \cdot t +\frac{1}{2}\cdot g \cdot t^{2}[/tex]

Where:

[tex]y_{1}[/tex] - Final height of the first stone, measured in meters.

[tex]y_{1,o}[/tex] - Initial height of the first stone, measured in meters.

[tex]v_{1,o}[/tex] - Initial speed of the first stone, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

Given that [tex]y_{1,o} = 47\,m[/tex], [tex]y_{1} = 0\,m[/tex], [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following second-order polynomial is built:

[tex]-4.984\cdot t^{2} - 2.12\cdot t + 47 = 0[/tex]

Roots of the polynomial are, respectively:

[tex]t_{1} \approx 2.866\,s[/tex] and [tex]t_{2}\approx -3.291\,s[/tex]

Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds.

b) As the second stone is thrown a second later than first one, its height is represented by the following kinematic expression:

[tex]y_{2} = y_{2,o} + v_{2,o}\cdot (t-t_{o}) + \frac{1}{2}\cdot g \cdot (t-t_{o})^{2}[/tex]

[tex]y_{2}[/tex] - Final height of the second stone, measured in meters.

[tex]y_{2,o}[/tex] - Initial height of the second stone, measured in meters.

[tex]v_{2,o}[/tex] - Initial speed of the second stone, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]t_{o}[/tex] - Initial absolute time, measured in seconds.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

Given that [tex]y_{2,o} = 47\,m[/tex], [tex]y_{2} = 0\,m[/tex], [tex]t_{o} = 1\,s[/tex], [tex]t = 2.866\,s[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following expression is constructed and the initial speed of the second stone is:

[tex]1.866\cdot v_{2,o}+29.926 = 0[/tex]

[tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex]

The initial velocity of the second stone is -16.038 meters per second.

c) The final speed of each stone is determined by the following expressions:

First stone

[tex]v_{1} = v_{1,o} + g \cdot t[/tex]

Second stone

[tex]v_{2} = v_{2,o} + g\cdot (t-t_{o})[/tex]

Where:

[tex]v_{1,o}, v_{1}[/tex] - Initial and final velocities of the first stone, measured in meters per second.

[tex]v_{2,o}, v_{2}[/tex] - Initial and final velocities of the second stone, measured in meters per second.

If [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex], the final speeds of both stones are:

First stone

[tex]v_{1} = -2.12\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (2.866\,s)[/tex]

[tex]v_{1} = -30.227\,\frac{m}{s}[/tex]

Second stone

[tex]v_{2} = -16.038\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (2.866\,s-1\,s)[/tex]

[tex]v_{2} = -34.338\,\frac{m}{s}[/tex]

The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.

5. (10 points) Which of the following statements is(are) correct: A. Resistivity purely depends on internal properties of the conductor; B. Resistance purely depends on internal properties of the conductor; C. Resistivity depends on the size and shape of the conductor; D. Resistance depends on the size and shape of the conductor; E. A and D; F. B and C.

Answers

Answer:

B and D

Explanation:

Because

R= resistivity xlenght/ Area

Where R= resistance

A circle has a radius of 13m Find the length of the arc intercepted by a central angle of .9 radians. Do not round any intermediate computations, and round your answer to the nearest tenth.

Answers

Answer:

11.7 m

Explanation:

The radius of the circle is 13 m.

The central angle of the arc is 0.9 radians

The length of an arc is given as:

L = r θ

where θ = central angle in radians = 0.9

=> L = 0.9 * 13 = 11.7 m

Length of the arc will be 11.7 m ≈ 10 m

What is an arc length?

Arc length refers to the distance between two points along a curve’s section.

Arc length = radius * theta

where

Arc length  = ? to find

given :

radius = 13 m

theta ( central angle) = 0.9 radians

Arc length = 13 m * 0.9 radians

                = 11.7 m ≈ 10 m

length of the arc will be 11.7 m ≈ 10 m

Learn more about Arc length

https://brainly.com/question/16403495?referrer=searchResults

#SPJ2

The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)

Answers

Answer:

Increase of volume (F)  = 8.01%

Explanation:

Given:

Density of fish = 1,080 kg/m³

Density of water = 1,000 kg/m³

density of air = 1.28 kg/m³

Find:

Increase of volume (F)

Computation:

1,080 kg/m³  + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³  

1,080 + 1.28 F =1,000 F + 1,000

80 = 998.72 F

F = 0.0801 (Approx)

F = 8.01%  (Approx)

at the temperature at which we live, earth's core is solid or liquid?

Answers

Explanation:

The Earth has a solid inner core

When a certain capacitor carries charge of magnitude Q on each of its plates, it stores energy Ep. In order to store twice as much energy, how much charge should it have on its plates

Answers

Answer:

2Q

Explanation:

When a capacitor carries some certain charge, the energy stored in the capacitor is its electric potential energy E. The magnitude of this potential energy is given by;

E  = [tex]\frac{1}{2}qV[/tex]            ------------(i)

Where;

q = charge between the plates of the capacitor

V = potential difference between the plates of the capacitor

From the question;

q = Q

E = Ep

Therefore, equation (i) becomes;

Ep = [tex]\frac{1}{2} QV[/tex]              ----------------(ii)

Make V subject of the formula in equation (ii)

V = [tex]\frac{2E_{p}}{Q}[/tex]

Now, when the energy is doubled i.e E = 2Ep, equation (i) becomes;

2Ep = [tex]\frac{1}{2}qV[/tex]

Substitute the value of V into the equation above;

2Ep = [tex]\frac{1}{2}[/tex]([tex]q *\frac{2E_{p}}{Q}[/tex])

Solve for q;

[tex]2E_{p}[/tex] = [tex]\frac{2qE_p}{2Q}[/tex]

[tex]2E_{p}[/tex] = [tex]\frac{qE_p}{Q}[/tex]

[tex]q = 2Q[/tex]

Therefore, the charge, when the energy stored is twice the originally stored energy, is twice the original charge. i.e 2Q

The ball tends to come back to the centerline of the flow when it is pushed by an external disturbance. Explain this phenomenon using the curvature of streamlines.

Answers

Answer is given below

Explanation:

given data

we will consider here

Ping-Pong ball weighs = 3.1 g

diameter =  4.2 cm

solution

Whenever the ball is pushed, the length of the airflow along the outer edge increases and it accelerates. According to Bernoulli's equation. As the speed increases, the pressure decreases, so the pressure at the outer end is reduced. As the pressure at the outer edge is low, the extra air jet pushes it back to the center line.

If 2 balls had the same volume but ball a has twice as much mass as babil which one will have the greater density

Answers

The ball with greater mass has more density

How much work will it take to lift a 2-kg pair of hiking boots 2 meters off the

ground and onto a shelf in your closet?

O A. 2.45 J

OB. 4J

C. 39.2 J

D. 20 J

Answers

Answer:

Option C - 39.2 J

Explanation:

We are given that;

Mass; m = 2 kg.

Distance moved off the floor;d = 10 m.

Acceleration due to gravity;g = 9.8 m/s².

We want to find the work done.

Now, the Formula for work done is given by;

Work = Force × displacement.

In this case, it's force of gravity to lift up the boots, thus;

Formula for this force is;

Force = mass x acceleration due to gravity

Force = 2 × 9.8 = 19.2 N

∴ Work done = 19.6 × 2

Work done = 39.2 J.

Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.

Answer:39.2J

Explanation: I just answered this question and this was the correct answer. 4J is the wrong answer.

An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?

Answers

Answer:

a

 [tex]\theta = 0.0022 rad[/tex]

b

 [tex]I = 0.000304 I_o[/tex]

Explanation:

From the question we are told that  

   The  wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]

    The  distance of the slit separation is  [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]

 

Generally the condition for two slit interference  is  

     [tex]dsin \theta = m \lambda[/tex]

Where m is the order which is given from the question as  m = 2

=>    [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]

 substituting values  

      [tex]\theta = 0.0022 rad[/tex]

Now on the second question  

   The distance of separation of the slit is  

       [tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      [tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]

Where  [tex]\beta[/tex] is mathematically evaluated as

       [tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]

  substituting values

     [tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]

    [tex]\beta = 0.06581[/tex]

So the intensity is  

    [tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]

   [tex]I = 0.000304 I_o[/tex]

How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density

Answers

The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object

How much heat does it take to raise the temperature of 7.0 kg of water from
25-C to 46-C? The specific heat of water is 4.18 kJ/(kg.-C).
Use Q = mcTr-T)
A. 148 kJ
B. 176 kJ
C. 610 kJ
D. 320 kJ​

Answers

Answer:

non of the above

Explanation:

Quantity of heat = mass× specific heat× change in temperature

m= 7kg c= 4.18 temp= 46-25=21°

.......H= 7×4.18×21= 614.46kJ

Answer:610 KJ

Explanation:A P E X answers

A goalie kicks a soccer ball straight vertically into the air. It takes 5.00 s for the ball to reach its maximum height and come back down to the level of the crossbar. Assume the crossbar of a soccer goal is 2.44 m above the ground. (a) How fast was the ball originally moving when it was kicked. (b) How much longer would it take the ball to reach the ground?

Answers

Answer:

(a)    vo = 24.98m/s

(b)    t = 5.09 s

Explanation:

(a) In order to calculate the the initial speed of the ball, you use the following formula:

[tex]y=y_o+v_ot-\frac{1}{2}gt^2[/tex]      (1)

y: vertical position of the ball = 2.44m

yo: initial vertical position = 0m

vo: initial speed of the ball = ?

g: gravitational acceleration = 9.8m/s²

t: time on which the ball is at 2.44m above the ground = 5.00s

You solve the equation (1) for vo and replace the values of the other parameters:

[tex]v_o=\frac{y-y_o+1/2gt^2}{t}[/tex]        

[tex]v_o=\frac{2.44m-0.00m+1/2(9.8m/s^2)(5.00s)^2}{5.00s}\\\\v_o=24.98\frac{m}{s}[/tex]

The initial speed of the ball is 24.98m/s

(b) To find the time the ball takes to arrive to the ground you use the equation (1) for y = 0m (ground) and solve for t:

[tex]0=24.98t-\frac{1}{2}(9.8)t^2\\\\t=5.09s[/tex]

The time that the ball takes to arrive to the ground is 5.09s

We have that for the Question, it can be said that the speed of  ball and How much longer would it take the ball to reach the ground is

u=25.13m/sX=0.095sec

From the question we are told

A goalie kicks a soccer ball straight vertically into the air. It takes 5.00 s for the ball to reach its maximum height and come back down to the level of the crossbar. Assume the crossbar of a soccer goal is 2.44 m above the ground.

(a) How fast was the ball originally moving when it was kicked.

(b) How much longer would it take the ball to reach the ground?

a)

Generally the Newton equation for the Motion  is mathematically given as

[tex]S=ut+1/2at^2\\\\Therefore\\\\2.44=ut+1/2(9.8)(5)^2\\\\u=25.13m/s\\\\[/tex]

b)

Generally the Newton equation for the Motion  is mathematically given as

[tex]S=ut+1/2at^2\\\\Therefore\\\\t=\frac{-24}{a}\\\\t=\frac{-2*25.013}{9.81}\\\\t=5.095sec\\\\[/tex]

Therefore

[tex]X=5.095-5[/tex]

X=0.095sec

For more information on this visit

https://brainly.com/question/23379286

Two people play tug of war. The 100-kg person on the left pulls with 1,000 N, and the 70-kg person on the right pulls with 830 N. Assume that neither person releases their grip on the rope with either hand at any time, assume that the rope is always taut, and assume that the rope does not stretch. What is the magnitude of the tension in the rope in Newtons

Answers

Answer:

The  tension on the rope  is  T  =  900 N

Explanation:

From the question we are told that  

     The mass of the person on the left is  [tex]m_l = 100 \ kg[/tex]

      The force of the person on the left is  [tex]F_l = 1000 \ N[/tex]

       The mass of the person on the right  is  [tex]m_r = 70 \ kg[/tex]

       The force of the person on the right is  [tex]F_r = 830 \ N[/tex]

     

Generally the net force is  mathematically represented as

         [tex]F_{Net} = F_l - F_r[/tex]

substituting  values

        [tex]F_{Net} = 1000-830[/tex]

       [tex]F_{Net} = 170 \ N[/tex]

Now the acceleration net acceleration of the rope is mathematically evaluated as

        [tex]a = \frac{F_{net}}{m_I + m_r }[/tex]

substituting  values

     [tex]a = \frac{170}{100 + 70 }[/tex]

     [tex]a = 1 \ m/s ^2[/tex]

The  force [tex]m_i * a[/tex]) of the person on the left that caused the rope to accelerate by  a  is  mathematically represented as

        [tex]m_l * a = F_r -T[/tex]

Where T  is  the tension on the rope  

      substituting values

        [tex]100 * 1 = 1000 - T[/tex]

=>      T  =  900 N

         

A particle with charge q is to be brought from far away to a point near an electric dipole. Net nonzero work is done if the final position of the particle is on:__________

A) any point on the line through the charges of the dipole, excluding the midpoint between the two charges.

B) any point on a line that is a perpendicular bisector to the line that separates the two charges.

C) a line that makes an angle of 30 ∘ with the dipole moment.

D) a line that makes an angle of 45 ∘with the dipole moment.

Answers

Answer:

Net nonzero work is done if the final position of the particle is on options A, C and D

Explanation:

non zero work is done if following will be the final position of the charges :

A) Any point on the line through the charges of the dipole , excluding the midpoint between the two charges.

C) A line that makes an angle 30° with the dipole moment.

D) A line that makes an angle 45°  with the dipole moment.

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?

Answers

Explanation:

KE = q

½ mv² = mCΔT

ΔT = v² / (2C)

ΔT = (200 m/s)² / (2 × 236 J/kg/°C)

ΔT = 84.7°C

This question involves the concepts of the law of conservation of energy.

The temperature change of the bullet is "84.38°C".

What is the Law of Conservation of Energy?

According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.

[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]

where,

ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/s

Therefore,

[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]

ΔT = 84.38°C

Learn more about the law of conservation of energy here:

https://brainly.com/question/20971995

#SPJ2

A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.

Answers

Answer:

8.7 m/s^2

82.15°

Explanation:

Given:-

- The initial speed of the car, vi = 25 m/s

- The radius of track, r = 129 m

- Car makes a circular " quarter turn "

- The constant tangential acceleration, at = 1.2 m/s^2

Solution:-

- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:

                          [tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]

- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:

                           at = r*α

                           α = ( 1.2 / 129 )

                           α = 0.00930 rad/s^2

- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).

- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:

                            [tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]

- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:

                            [tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]

- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:

                            [tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]

- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:

                             [tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]

- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:

                          [tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex] 

Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .

5) What is the weight of a body in earth. if its weight is 5Newton
in moon?​

Answers

Answer:

8.167

Explanation:

Given a double slit apparatus with slit distance 1 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 400 nm on the slits

Answers

Answer:

The maximum number of bright spot is [tex]n_{max} =5001[/tex]

Explanation:

From the question we are told that

     The  slit distance is [tex]d = 1 \ mm = 0.001 \ m[/tex]

      The  wavelength is  [tex]\lambda = 400 \ nm = 400*10^{-9 } \ m[/tex]

       

Generally the condition for interference is  

        [tex]n * \lambda = d * sin \theta[/tex]

Where n is the number of fringe(bright spots) for the number of bright spots to be maximum  [tex]\theta = 90[/tex]

=>     [tex]sin( 90 )= 1[/tex]

So

     [tex]n = \frac{d }{\lambda }[/tex]

substituting values

     [tex]n = \frac{ 1 *10^{-3} }{ 400 *10^{-9} }[/tex]

     [tex]n = 2500[/tex]

given there are two sides when it comes to the double slit apparatus which implies that the fringe would appear on two sides so the maximum number of bright spots is mathematically evaluated as

        [tex]n_{max} = 2 * n + 1[/tex]

The  1  here represented the central bright spot

So  

      [tex]n_{max} = 2 * 2500 + 1[/tex]

     [tex]n_{max} =5001[/tex]      

       

Consider the Earth and the Moon as a two-particle system.

Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"

Answers

sorry but I don't understand

An experimenter finds that standing waves on a string fixed at both ends occur at 24 Hz and 32 Hz , but at no frequencies in between. Part A What is the fundamental frequency

Answers

Answer:

8 Hz

Explanation:

Given that

Standing wave at one end is 24 Hz

Standing wave at the other end is 32 Hz.

Then the frequency of the standing wave mode of a string having a length, l, is usually given as

f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc

Also, another formula is given as

f(m) = m.f(1), where f(1) is the fundamental frequency..

Thus, we could say that

f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)

And as such,

f(1) = 32 - 24

f(1) = 8 Hz

Then, the fundamental frequency needed is 8 Hz

Two small identical speakers are connected (in phase) to the same source. The speakers are 3 m apart and at ear level. An observer stands at X, 4 m in front of one speaker. If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:

a. 1 m
b. 2 m
c. 3 m
d. 4 m
e. 5 m

Answers

Answer:

b. 2 m

Explanation:

Given that:

the identical speakers are connected in phases ;

Let assume ; we have speaker A and speaker B which are = 3 meter apart

An observer stands at X = 4m in front of one speaker.

If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:                  

From above;  the distance between speaker  A and speaker B can be expressed as:

[tex]\sqrt{3^2 + 4^2 } \\ \\ = \sqrt{9+16 } \\ \\ = \sqrt{25} \\ \\ = 5 \ m[/tex]

The path length difference  will now be:

= 5 m - 4 m

= 1 m

Since , we are to determine the least intense sound; the destructive interference for that path length  will be half the wavelength; which is

= [tex]\dfrac{1}{2}*4 \ m[/tex]

= 2 m

The sound will be heard with least intensity if the wavelength is 2 m. Hence, option (b) is correct.

Given data:

The distance between the speakers is, d = 3 m.

The distance between the observer and speaker is, s = 4 m.

The amplitude of sound wave is the vertical distance from the base to peak of wave. Since sound amplitudes are not changed in the given problem. Then  the distance between speaker  A and speaker B can be expressed as:

[tex]=\sqrt{3^{2}+4^{2}}\\\\=\sqrt{25}\\\\=5\;\rm m[/tex]

And the path length difference is,

= 5 m - 4 m

= 1 m

Since , we are to determine the least intense sound; the destructive

interference for that path length  will be half the wavelength; which is

 [tex]=\dfrac{1}{2} \times s\\\\=\dfrac{1}{2} \times 4[/tex]

= 2 m

Thus, we can conclude that the sound will be heard with least intensity if the wavelength is 2 m.

Learn more about the interference here:

https://brainly.com/question/16098226

A charging bull elephant with a mass of 5500 kg comes directly toward you with a speed of 4.70 m/s . You toss a 0.160-kg rubber ball at the elephant with a speed of 7.50 m/s(a) When the ball bounces back toward you, what is its speed? (b) How do you account for the fact that the ball's kinetic energy has increased?

Answers

Answer:

v2 = - 16.899 m/s

velocity of ball increases so that the kinetic energy of the ball increases.

Explanation:

given data

mass of elephant, m1 = 5500 kg

mass of ball, m2 = 0.160 kg

initial velocity of elephant, u1 = - 4.70 m/s

initial velocity of ball, u2 = 7.50 m/s

solution

we consider here final velocity of ball = v2

so  collision formula is express as for v2

[tex]v_{2}=\left ( \frac{2m_{1}}{m_{1}+m_{2}} \right )u_{1}+\left ( \frac{m_{2}-m_{1}}{m_{1}+m_{2}} \right )u_{2}[/tex]      .................1

put here value and we get

[tex]v_{2}=\left ( \frac{2\times 5500}{5500+0.160} \right )(-4.70)+\left ( \frac{0.16-5500}{5500+0.160} \right )(7.50)[/tex]  

solve it we get

v2 = - 16.899 m/s

here negative sign shows that the ball bounces back towards you

and

here we know the velocity of ball increases so that the kinetic energy of the ball increases.

and due to this effect, it will gain in energy is due to the energy from the elephant mass

Other Questions
Adams Manufacturing allocates overhead to production on the basis of direct labor costs. At the beginning of the year, Adams estimated total overhead of $396,000; materials of $410,000 and direct labor of $220,000. During the year Adams incurred $418,000 in materials costs, $413,200 in overhead costs and $224,000 in direct labor costs. Compute the predetermined overhead rate. A boy is twirling a model airplane on a string 4 feet long. if he twirls the plane at 0.25 revolutions per minute, how far does the plane travel in 4 minutes? round to the nearest tenth. Select the correct answer.Which detail is present in the passage and in the illustration?OATom convincing Ben to let him have his appleB.Ben begging Tom to let him paint the fenceC. Ben bragging to Tom about going swimmingD. Tom using a paintbrush to whitewash the fence How many sharps/flats are in the following i. G major ii. D major iii. B flat major iv. F major Which point is located at (4, -2)?y5432+12 3-5 -4 -3 -2 -11-24 5B-4Db he price of a pair of headphones is $39.99 before tax. Dalton bought the headphones for 30% off. He then paid 6% sales tax on the discounted price. Part A: How much did Dalton pay in sales tax? Show all work and steps in your solution. (5 points) Part B: What is the total amount that Dalton paid for the headphones? Show all work and steps in your solution Jose buys candy that costs $8 per pound. He will spend at least $48 on candy. What are the possible numbers of pounds he will buy? Use p for the number of pounds Jose will buy. Write your answer as an inequality solved for p. At the beginning of the year, Ann and Becky own equally all of the stock of Whitman, Inc., an S corporation. Whitman generates a $120,000 loss for the year. On the 189th day of the year, Ann sells her half of the Whitman stock to her son, Scott. Becky's stock basis is $41,300. How much of the Whitman loss belongs to Ann and Becky Drag each label to the correct location. Match the climate zones to their relative temperature levels. (coldest zonehottest zonemoderate temperature zone) You are the manager of a project that has an operating leverage rating of 2.8 and a required return of 14 percent. Due to the current state of the economy, he expects sales to decrease by 7 percent next year. What change should you expect in operating cash flows next year given your sales forecast? 5: Leon throws a biased coin.The probability of getting tails is 0.4Work out the probability of getting heads. What is the result of subtracting the second equation from the first? 8x-4y=-4 -3x+4y=5 describe briefly one problem caused by the expansion of metals. Solve: 25x2 36 = 0. Place the following statements into the correct categories.Canal constructed to Red SeaThe Old KingdomProsperity and trade increasedGreat Pyramids were constructedKingdom fell to Hyksos invaders The technology environment would include studies of family changes. social engineering. information technology. minimum wage laws. customer service. There are orange, yellow and blue sweets in a box. The ratio of thenumber of orange, yellow and blue sweets in the box is 7:5:4. Whatpercentage of the sweets are blue? *4%25%35%O 16% Use the given information to draw a box-and-whisker plot of the data setMinimum 28Maximum 54Lower Quartile 32Upper Quartile 40 A company has net income of $940,000; its weighted-average common shares outstanding are 188,000. Its dividend per share is $0.85, its market price per share is $96, and its book value per share is $88.00. Its price-earnings ratio equals? Write In (4/9) in terms of In 2 and In 3.A)21n 2 - 21n 3B)4In 2 - 4In 3C) 3(In 2 - In 3)D)In2 2 - 4In 3