A car traveling 85 km/h is 250 m behind a truck
traveling 73 km/h.
Time needed = t = 20.83 s
Further explanationGiven
car speed = 85 km/h
truck speed = 73 km/h
Required
the time it takes for the car to reach the truck
Solution
When the car reaches the truck, the distance between them will be the same
x car - 250 m = x truck
General formula for distance (d) :
d = v.t
So the equation becomes :
85t-250 = 73t
12t=250
t = 20.83 s
A car traveling 85 km/h is 250 m behind a truck
traveling 73 km/h.
Time needed = t = 20.83 s
Further explanationGiven
car speed = 85 km/h
truck speed = 73 km/h
Required
the time it takes for the car to reach the truck
Solution
When the car reaches the truck, the distance between them will be the same
x car - 250 m = x truck
General formula for distance (d) :
d = v.t
So the equation becomes :
85t-250 = 73t
12t=250
t = 20.83 s
A sports car of mass m has the same kinetic energy as an SUV with a mass 3m as each is driven along the same road. Which vehicle, if either, has the larger momentum and what is the difference in their momenta, if any
Answer:
Explanation:
Kinetic energy ( KE ) = 1/2 m v²
= m²v² / 2 m = p² / 2m where p is momentum
KE = p² / 2m
p² = 2m KE
KE is constant
p is proportional to mass
So car having higher mass will have higher momentum .
p₁ = √ ( 2 m x KE )
p₂ = √ ( 6 m x KE )
p₂ - p₁ = √ ( 6 m x KE ) - √ ( 2 m x KE )
= √KE m ( √6 - √2 )
Kinetic energy ( K.E )
[tex]= \frac{1}{2} m v^2\\\\= \frac{m^2 v^2}{2 m} \\\\= \frac{p^2}{2m}[/tex]
where p is momentum
[tex]K.E =\frac{p^2}{2m}\\\\p^2 = 2m. KE[/tex]
KE is constant
p is proportional to mass
So car having higher mass will have higher momentum .
[tex]p_1 =\sqrt{(2m*K.E)}\\\\p_2 = \sqrt{(6m*K.E)} \\\\p_2 - p_1 = \sqrt{(6m*K.E)} -\sqrt{(2M*K.E} \\\\p_2 - p_1 = \sqrt{K.E m(\sqrt{6}-\sqrt{2}) }[/tex]
The difference is shown above.
Learn more:
brainly.com/question/20658056
A particle with a charge of -4.3 μC and a mass of 4.4 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 80 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA, then give the answer as a negative number.
Answer:
ΔV = - 3274 V
Explanation:
For this exercise we can use conservation of energy
starting point.
Em₀ = U = q ΔV
final point
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
q ΔV = ½ m v²
ΔV = [tex]\frac{m \ v^2 }{q}[/tex]
let's calculate
ΔV = [tex]\frac{4.4 \ 10^{-6} \ 80^2 }{ 2 \ 4.3 10^{-6} }[/tex]
ΔV = 3274.4 1 V
since the charge q is negative, the potential at point B must be less than the potential at point A, so the answers
ΔV = - 3274 V
A mass of 10. kg is placed on the end of a 0.50-meter pendulum. What is the period of the pendulum?
Answer:
T = 1.41 seconds
Explanation:
Given that,
The mass placed in the pendulum, m = 10 kg
The length of the pendulum, l = 0.5 m
We need to find the period of the pendulum. The relation for the period of the pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{l}{g}} \\\\T=2\pi \sqrt{\dfrac{0.5}{9.8}} \\\\T=1.41\ s[/tex]
So, the time period of the pendulum is 1.41 seconds.
For anyone that needs the correct answer without POS trolls:
The answer is 1.4 s
Thank me later :)
One reason why it’s often easy to miss an action-reaction pair is because of the ________ of one of the objects.
Answer:
an action-reaction pair is because one of the objects is often much more massive and appears to remain motionless when a force acts on it. It has so much inertia, or tendency to remain at rest, that it hardly
Using the graph, when (in seconds) would you expect the object to have the highest velocity? Explain your answer.
Answer:
blue
Explanation:
nswer the following about two objects, A and B, whose motion produced ihe following ... "A" starts with a greater (t) position. Since they ... since you are moving away from the origin
What is a measure of how much matter an object is made of?
Answer:
grams
Explanation:
A boy throws a rock with an initial horizontal velocity of 17.0 m/s and an initial vertical velocity of 21.0 m/s. How high above the boy's hand is the rock after 2.8 s?
Answer:
53.2
Explanation:
You can use the kinematic equation: displacement of x = (initial velocity + final velocity)*t/2
Subsititing: 17+21 = 38 * 2.8/2 = 53.2
Note: Displacement = distance between the 2 points
What is moral duty?Please tell me the answer of this question.
Explanation:
Moral duties are the duties performed by the people on the basis of humanity and moral values. The following are some of the moral duties :
Respecting elders and loving juniorsHelped the needy , poor and helpless peopleHaving friendly behavior with othersRespecting everyone as human beingBeing obedient and respectful to parents , elderly people and teachers.Living ideal and respectful lifeHope I helped ! ♡
Have a wonderful day / night ! ツ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Marquette King, formerly of the Denver Broncos, is practicingkicking off using a kicking holder with the ball on the ground.For one of the kicks the ball reaches a height of 90.6 m andlands on the ground 53 yds (48.5 m) away. Find the magnitudeof the initial velocity given by his kick to the ball. Treat airresistance as negligible. Hint: Even though the horizontal andvertical motions are independent, there is a quantity that iscommon to both of them.
Answer:
Explanation:
Maximum height reached = 90.6 m . Range = 48.5 m
. Let u be the initial velocity at angle α .
Horizontal range is covered by horizontal component of u .
Vertical height is achieved by vertical component
v² = u² sin² α - 2gh , t is time taken to attain maximum height .
0 = u² sin² α - 2 x 90.6 x 9.8
u² sin² α = 2 x 887.88 -------( 1 )
Range R = u² sin2α / g
48.5 = 2 u² sinα . cos α / 9.8
u² sinα . cos α = 237.65 ----------------------------- ( 2 )
( 1 ) / ( 2 )
Tan α = 2 x 887.88 / 237.65 = 7.47
α = 82⁰
u² sin² α = 2 x 887.88
u² sin² 82 = 2 x 887.88
u² = 1812
u = 42.56 m /s
An ideal monatomic gas initially has a temperature of 300 K and a pressure of 5.79 atm. It is to expand from volume 420 cm3 to volume 1450 cm3. If the expansion is isothermal, what are (a) the final pressure and (b) the work done by the gas
Answer:
a) The final pressure is 1.68 atm.
b) The work done by the gas is 305.3 J.
Explanation:
a) The final pressure of an isothermal expansion is given by:
[tex] T = \frac{PV}{nR} [/tex]
[tex] T_{i} = T_{f} [/tex]
[tex] \frac{P_{i}V_{i}}{nR} = \frac{P_{f}V_{f}}{nR} [/tex]
Where:
[tex]P_{i}[/tex]: is the initial pressure = 5.79 atm
[tex]P_{f}[/tex]: is the final pressure =?
[tex]V_{i}[/tex]: is the initial volume = 420 cm³
[tex]V_{f}[/tex]: is the final volume = 1450 cm³
n: is the number of moles of the gas
R: is the gas constant
[tex] P_{f} = \frac{P_{i}V_{i}}{V_{f}} = \frac{5.79 atm*420 cm^{3}}{1450 cm^{3}} = 1.68 atm [/tex]
Hence, the final pressure is 1.68 atm.
b) The work done by the isothermal expansion is:
[tex] W = P_{i}V_{i}ln(\frac{V_{f}}{V_{i}}) = 5.79 atm*\frac{101325 Pa}{1 atm}*420 cm^{3}*\frac{1 m^{3}}{(100 cm)^{3}}ln(\frac{1450 cm^{3}}{420 cm^{3}}) = 305.3 J [/tex]
Therefore, the work done by the gas is 305.3 J.
I hope it helps you!
calculate the peak voltage of a mains supply of 240Vrms.
what do you call these sound waves whose frequency is above 20000 hertz
Answer:
Untrasound
Explanation:
Your welcome :)
The surface area of a postage
stamp is 0.00600 m^2, and the air
exerts 1.00 atm of pressure on it.
How much force does it exert on
the stamp?
(Hint: The standard unit for
pressure is Pa.)
(Unit = N)
Answer:
Force = 607.95 Newton
Explanation:
Given the following data;
Area = 0.00600 m^2
Pressure = 1 atm to Pascal = 101325 Pa
To find the force;
Pressure = Force/area
Force = pressure * area
Substituting into the equation, we have;
Force = 101325 * 0.00600
Force = 607.95 Newton.
Therefore, the amount of force exerted by the air on the stamp is 607.95 Newton.
Can someone help me answer please
Answer:
4=Conduction by convection by radiation.
Explanation:
Hope it will help you! It may be short but I don't know how to write it in blank aafai milayera lekha Hai blanks ma
1. State the law of conservation of energy and what it means for you as a human considering how energy works.
2. Explain how different forms of energy are related.
PLEASE I NEED HELP!! I NEED IT NOW!! AND PLEASE DO IT IN YOUR OWN WORDS!! THANK YOU!
Answer: 1. The law of consevation of energy sates that energy can neither be created nor destroyed. It can only be transformed or transfered from one form to another. The law of conservation of energy is found everywhere for example, Water falls from the sky, converting potential energy to kinetic energy.
2. Different forms of energy are related because energy cannot be created or destroyed. they can all be transformed into from one form to another.
Explanation:
From the center of the Earth to the moon, what should the orbital radius of such satellite be in order to stay over the same point on the earth’s surface?
In order to have a period that matches the Earth's rotation, a satellite must be in a circular orbit, and 42,164 km from the center of the Earth.
But that's not quite enough to make sure that it always stays over the same point on the Earth's surface (and appears motionless in the sky). For that to happen, the satellite's orbit has to be directly over the Equator.
The Moon has nothing to do with any of this.
A student swings a 0.5kg rubber ball attached to a string over her head in a horizontal, circular
path. The string is 1.5 meters long and in 60 seconds the ball makes 120 complete circles.
What is the velocity of the ball?
What is the ball’s centripetal acceleration?
What is the ball's centripetal force?
Answer:
The balls velocity is 1 divided by 3
The velocity of the ball is 18.85 m/s.
The ball’s centripetal acceleration is 236.87 m/s².
The ball's centripetal force is 118.44 Newton.
What is centripetal acceleration?Centripetal acceleration is a characteristic of an object's motion along a circular path. Centripetal acceleration applies to any item travelling in a circle with an acceleration vector pointing in the direction of the circle's center.
Given parameters:
length of the string: l = 1.5 meters.
Time interval = 60 seconds.
Total number of complete rotation = 120.
Hence, the velocity of the ball = 120×2π×1.5/60 m/s
= 18.85 m/s.
The ball’s centripetal acceleration = (velocity)²/ radius
= (18.85)²/1.5 m/s²
= 236.87 m/s²
The ball's centripetal force = mass × centripetal acceleration
= 0.5 × 236.87 Newton
= 118.44 Newton
Learn centripetal acceleration here:
https://brainly.com/question/14465119
#SPJ2
What is the mass of an object if it is moving at a speed of 10 m/s and has 400 J of kinetic energy?
Answers:
8 kg
Explanation:
Kinetic Energy = (mass × velocity × velocity) ÷ 2
We know that Kinetic Energy = 400 J and velocity = 10 m/s.
KE = (m × v × v) ÷ 2
400 J = (m × 10 m/s × 10 m/s) ÷ 2
400 J = m × 50 m^2/s^2
To find the mass you will divide 400 J and 50 m^2/s^2.
m = 8 kg
You can also check it if it gives you 400 J.
KE = (m × v × v) ÷ 2
KE = (8 kg × 10 m/s × 10 m/s) ÷ 2
KE = 400 J
So this means that the mass is 8 kg. I know that it is a bit confusing, but when you do J (joules) ÷ m^2/s^2 = kg (kilograms). Hope this helps, thank you !!
pls help ;-; this is the question btw
The answer is "Infrared"
Hope this helps
Answer:
x-rays
Explanation:
What is the frequency of highly energetic ul-
traviolet radiation that has a wavelength of
124 nm?
The speed of light is 3 x 108 m/s.
Answer in units of Hz.
Frequency = (speed) / (wavelength)
Frequency = (3 x 10⁸ m/s) / (124 x 10⁻⁹ m)
Frequency = 2.42 x 10¹⁵ Hz
Two insulated wires, each 2.64 m long, are taped together to form a two-wire unit that is 2.64 m long. One wire carries a current of 7.68 A; the other carries a smaller current I in the opposite direction. The two wire unit is placed at an angle of 65.0o relative to a magnetic field whose magnitude is 0.59 T. The magnitude of the net magnetic force experienced by the two-wire unit is 4.11 N. What is the current I
Answer:
[tex]4.77\ \text{A}[/tex]
Explanation:
F = Magnetic force = 4.11 N
[tex]I_n[/tex] = Net current
[tex]I_2[/tex] = Current in one of the wires = 7.68 A
B = Magnetic field = 0.59 T
[tex]\theta[/tex] = Angle between current and magnetic field = [tex]65^{\circ}[/tex]
[tex]l[/tex] = Length of wires = 2.64 m
[tex]I[/tex] = Current in the other wire
Magnetic force is given by
[tex]F=I_nlB\sin\theta\\\Rightarrow I_n=\dfrac{F}{lB\sin\theta}\\\Rightarrow I_n=\dfrac{4.11}{2.64\times 0.59 \sin65^{\circ}}\\\Rightarrow I_n=2.91\ \text{A}[/tex]
Net current is given by
[tex]I_n=I_2-I\\\Rightarrow I=I_2-I_n\\\Rightarrow I=7.68-2.91\\\Rightarrow I=4.77\ \text{A}[/tex]
The current I is [tex]4.77\ \text{A}[/tex].
A train 350 m long is moving on a straight track with a speed of 84.1 km/h. The engineer applies the brakes at a crossing, and later the last car passes the crossing with a speed of 15.8 km/h. Assuming constant acceleration, determine how long the train blocked the crossing. Disregard the width of the crossing.
Answer:
t = 25.0 s
Explanation:
Assuming that the engineer applies the brakes just over the crossing, the train moves exactly 350 m at a constant acceleration, with a final speed (when the last car of the train leaves the crossing) of 15.8km/h.Since we know the initial and final speeds, and the horizontal distance traveled (the length of the train) we can use the following kinematic equation to get the acceleration:[tex]v_{f}^{2} - v_{o}^{2} = 2*a* \Delta x (1)[/tex]
Since we need to find the time in seconds, it is advisable to convert vf and vo to m/s first, as follows:[tex]v_{o} = 84.1 km/h*\frac{1h}{3600s} *\frac{1000m}{1km} = 23.4 m/s (2)[/tex]
[tex]v_{f} = 15.8 km/h*\frac{1h}{3600s} *\frac{1000m}{1km} = 4.4 m/s (3)[/tex]
Replacing (2) and (3) in (1), since Δx =350m, we can solving for a:[tex]a = \frac{(4.4m/s)^{2} - (23.4m/s)^{2}}{2*350m} = -0.76 m/s2 (4)[/tex]
In order to get the time, we can simply use the definition of acceleration, and rearrange terms:[tex]t =\frac{v_{f}-v_{o}}{a} = \frac{(4.4m/s)-(23.4m/s)}{-0.76m/s2} = 25.0 s (5)[/tex]
Points A, B, and C lie along a line from left to right, respectively. Point B is at a lower electric potential than point A. Point C is at a lower electric potential than point B. What would best describes the subsequent motion, if any, of a positively-charged particle released from rest at point B?
Answer:
Please see below as the answer is self-explanatory.
Explanation:
If the potential at B is lower than A, and the potential at C is lower than B, this means that there is an electric field, directed from A to C.If a positively-charged particle is released at rest at point B, it will be accelerated by the electric field (which is a force per unit charge, so it produces an acceleration) in the same direction than the field (because it is a positive charge) towards point C.Using your knowledge on personal care products, how does sunscreen
lotion protect your skin from the damaging effect of ultraviolet rays?
Explain why of x-rays and gamma rays are commonly used in
radiotherapy.
Answer:
Ultraviolet rays from sun are very harmful from skin and can cause sunburn and skin diseases especially ultraviolet B rays. A sunscreen lotion act as a protection barrier on the skin that restrict the direct contact of UV rays with skin and filter the harmful rays to enter the skin.
Radiotherapy is a medical therapy use to treat cancer. Radiotherapy commonly uses x-rays and gamma rays because they are high-energy particles or waves that kills or destroys the cancer cells.
Sunscreen lotion is able to filter this damaging ultraviolet radiation and prevent it from damaging the skin.
The sun reaches us from outer space brings ultraviolet rays to us. Ultraviolet rays are known to have some damaging effects on the skin. One way to protect our skin from this damaging ultraviolet rays is to use sunscreen lotion which is able to filter this damaging ultraviolet radiation and prevent it from damaging the skin.
X-rays and gamma rays are used in radiotherapy because they are light energy rays which are able to penetrate and destroy malignant cells in the body.
Learn more: https://brainly.com/question/13695751
What is the maximum height achieved if a 0.400 kg mass is thrown straight upward with an initial speed of 40.0 m⋅s−1? Ignore the effect of air resistance
The maximum height : 81.63 m
Further explanationGiven
0.4 kg mass
vo = initial speed = 40 m/s
Required
the maximum height
Solution
We can use the law of conservation energy(ME=PE+KE) or use parabolic motion
For parabolic motion :
h max = (vo²sin²θ)/2g
θ = 90°(straight upward)
Input the value :
h max = (40²sin²90°)/2 x 9.8
h max = 81.63 m
What three factors determine the amount of potential energy in a object are ______,______,and ______.
Answer:
It should be Mass, Gravity and Height
Explanation:
A 20-turn coil of area 0.32 m2 is placed in a uniform magnetic field of 0.055 T so that the perpendicular to the plane of the coil makes an angle of 30∘ with respect to the magnetic field.
The flux through the coil is
Answer:
1.5 * 10^-2 Tm^2
Explanation:
Electric Flux = B.A cos(theta)
B = 0.055 T
A = 0.32 m^2
theta = 30
Electric Flux = (0.055 T).(0.32 m^2).Cos(30) = 0.0152 = 1.5 * 10^-2 Tm^2
Carousel conveyors are used for storage and order picking for small parts. The conveyorsrotate clockwise or counterclockwise, as necessary, to position storage bins at the storageand retrieval point. The conveyors are closely spaced, such that the operators travel timebetween conveyors is negligible. The conveyor rotation time for each item equals 1 minute;the time required for the operator to retrieve an item after the conveyor stops rotatingequals 0.25 minute. How many carousel conveyors can one operator tend without creatingidle time on the part of the conveyors
Answer:
the number of carousel conveyors that an operator can operate without any idle time is 5
Explanation:
Given the data in the question;
first we express the equation for number of carousel conveyors that can be operated by an operator;
n' = [tex]\frac{(a + t)}{( a + b)}[/tex]
where a is the concurrent activity time ( 0.25 minute )
b is the independent operator activity time
t is the independent machine activity time( 1 )
Now independent activity time is zero as the operator is not performing any inspection or packaging tasks.
So time taken for the operator to retrieve the finished item at the end of the process is the concurrent activity and independent machine activity time, the conveyor rotation time of each item
so
we substitute
0.25min for a, 1 for t and 0min for b
n' = [tex]\frac{(0.25min + 1min)}{( 0.25min+ 0 min)}[/tex]
n' = 1.25 min / 0.25
n' - 5
Therefore, the number of carousel conveyors that an operator can operate without any idle time is 5