Which of the following best describes the relationship between the two variables?​

Answers

Answer 1

Answer:

correlation is defined as the statistical association between two variables

Explanation:

a correction exits between two variables when one of them is related to the other in some way


Related Questions

According to this graph, the acceleration
is approximately:
A. 12 m/s²
C. 4 m/s²
Velocity (m/s)
14
12
10
12 2 3 4
Time t (s)
B. 1.5 m/s2
D. 3 m/s2

Help please

Answers

Answer:

Explanation:

Because you have velocity along the y axis and time along the x axis, this is a velocity v time graph which is an acceleration graph. The slope of the line in this graph IS the acceleration. We can use 2 points and the slope formula to solve for the acceleration:

(0, 0) and (1, 3):

[tex]m=\frac{3-0}{1-0}=3[/tex] m/s squared, choice D.

A 25 kg child plays on a swing having support ropes that are 2.20 m long. A friend pulls her back until the ropes are ăÿÿfrom the vertical and releases her from rest. (a) What is the potential energy for the child just as she is released compared with the potential energy at the bottom of the swing? (b) How fast will she be moving at the bottom of the swing? (c) How much work does the tension in the ropes do as the child swings from the initial position to the bottom?

Answers

Answer:

A) P.E = 138.44 J

B) The velocity of swing at bottom, v = 3.33 m/s

C) The work done, W = -138.44 J

Explanation:

Given,

The mass of the child, m = 25 Kg

The length of the swing rope, L = 2.2 m

The angle of the swing to the vertical position, ∅ = 42°

A) The potential energy at the initial position ∅ = 42° is given by the relation

                               P.E = mgh joule

Considering h  = 0 for the vertical position

The h at ∅ = 42° is  h = L (1 - cos∅)

                              P.E = mgL (1 - cos∅)

Substituting the given values in the above equation

                              P.E = 25 x 9.8 x 2.2 (1 - cos42°)

                                     = 138.44 J

The potential energy for the child just as she is released, compared to the potential energy at the bottom of the swing is, P.E = 138.44 J

B) The velocity of the swing at the bottom.

At bottom of the swing the P.E is completely transformed into the K.E

                 ∴                 K.E = P.E

                                    1/2 mv² = 138.44

                                    1/2 x 25 x v² 138.44

                                           v² = 11.0752

                                            v = 3.33 m/s

The velocity of the swing at the bottom is, v = 3.33 m/s

C) The work done by the tension in the rope from initial position to the bottom

            Tension on string, T = Force acting on the swing, F

                     

                           

                           =

                           = - 2.2 x 25 x 9.8 [cos0 - cos 42°]

                           = - 138.44 J

The negative sign in the in energy is that the work done is towards the gravitational force of attraction.

The work done by the tension in the ropes as the child swings from the initial position to the bottom of the swing, W = - 138.44 J

We can use conservation of energy to solve this problem. At the initial position, the child has no kinetic energy and all her energy is potential energy due to her height above the lowest point of the swing. At the bottom of the swing, the child has no potential energy and all her energy is kinetic energy due to her speed.

(a) The potential energy of the child just as she is released can be calculated as:
PE = mgh
where m is the mass of the child, g is the acceleration due to gravity, and h is the height of the child above the lowest point of the swing. At the initial position, h = 2.20 m, so the potential energy is:
PE_initial = mgh = (25 kg)(9.81 m/s^2)(2.20 m) = 544 J

At the bottom of the swing, h = 0, so the potential energy is zero:
PE_bottom = 0 J

The potential energy at the initial position is greater than the potential energy at the bottom of the swing, since the child loses potential energy as she swings down.

(b) We can use conservation of energy to find the speed of the child at the bottom of the swing. At the initial position, all the energy is potential energy. At the bottom of the swing, all the energy is kinetic energy. Therefore, the potential energy at the initial position is equal to the kinetic energy at the bottom of the swing:
PE_initial = KE_bottom
mgh = (1/2)mv^2
where v is the speed of the child at the bottom of the swing. Solving for v, we get:
v = sqrt(2gh)
where sqrt means square root. Substituting the values, we get:
v = sqrt(2(9.81 m/s^2)(2.20 m)) = 6.26 m/s

Therefore, the child will be moving at a speed of 6.26 m/s at the bottom of the swing.

(c) The work done by the tension in the ropes as the child swings from the initial position to the bottom can be found as the change in the total mechanical energy of the child:
W = ΔE = KE_bottom - PE_initial
Substituting the values, we get:
W = (1/2)mv^2 - mgh
W = (1/2)(25 kg)(6.26 m/s)^2 - (25 kg)(9.81 m/s^2)(2

As a 5.00-kg sample of liquid mercury is cooled into a solid, it liberates 157 kJ of energy. What is the original temperature of the mercury? For mercury, the melting point is 234 K, the heat of fusion is 11.3 kJ/kg,
and the specific heat is 140 J/kg . K.

378 K
690 K
157 K
410 K

Answers

The original temperature of the mercury is 260.6K

Here is how to arrive at temperature of the mercury

To solve this problem, we can use the formula for the heat released during the solidification of a substance:

Q = m * Lf

where Q is the heat released, m is the mass of the substance, and Lf is the heat of fusion of the substance.

In this case, Q = 157 kJ, m = 5.00 kg, and Lf = 11.3 kJ/kg.

We also need to use the formula for the heat absorbed or released during a temperature change:

Q = m * c * ΔT

where Q is the heat absorbed or released, m is the mass of the substance, c is the specific heat of the substance, and ΔT is the change in temperature.

We can use this formula to calculate the heat released as the mercury cools from its original temperature to its melting point, and then use the formula for solidification to calculate the heat released as the mercury solidifies.

Let T be the original temperature of the mercury.

The heat released as the mercury cools from its original temperature to its melting point is:

Q1 = m * c * (T - 234)

The heat released as the mercury solidifies is:

Q2 = m * Lf

The total heat released is:

Q = Q1 + Q2 = m * c * (T - 234) + m * Lf

Substituting the values given in the problem, we get:

157 kJ = 5.00 kg * 140 J/kg . K * (T - 234) + 5.00 kg * 11.3 kJ/kg

Simplifying and solving for T, we get:

T = 260.6 K

Therefore, the original temperature of the mercury was 260.6 K.

Learn more about Energy here:

https://brainly.com/question/13881533

#SPJ1

A light ray passing through air strikes the surface of a glass block (n=1.5) and makes 30° angle of incidence. How many degrees will the light ray deviate from its original path after refraction?​

Answers

The light ray will deviate from its original path with 19.5° after refraction.

How do we calculate?

Applying Snell's law to calculate the angle of refraction:

n1 sin θ1 = n2 sin θ2

where n1 and θ1 =  the refractive index and the angle of incidence in the first medium (air),

n2 and θ2 =  the refractive index and the angle of refraction in the second medium (glass).

In this example,

n1 = 1.00 (refractive index of air), θ1 = 30°, and

n2 = 1.5 (refractive index of glass).

We then calculate for  θ2:

n1 sin θ1 = n2 sin θ2

1.00 * sin 30° = 1.5 * sin θ2

0.5 = 1.5 * sin θ2

sin θ2 = 0.5 / 1.5 = 1/3

θ2 = sin^-1(1/3)

θ2 = 19.5°

Learn more about Snell's law at:

https://brainly.com/question/2273464

#SPJ1

How can you determine the number of neutrons in an atom?

A. Mass number plus number of electrons
B. Atomic number minus mass number
C. Mass number minus atomic number
D. Atomic number plus mass number

Answers

Answer:

B. Atomic number minus mass number

Explanation:

can you please tell me where does 1-14 i really need help thanks :) god bless you all

Answers

The above has to do with the study of the earth's lithospheric plates. See the attached image and the explanation below.

What are the processes of the movement of lithospheric plates?

The movement of lithospheric plates is a geological process that occurs due to the motion of hot, molten material in the Earth's mantle. The lithosphere, which is the rigid outer layer of the Earth's surface, is divided into several large plates that move relative to each other.

These movements are caused by the convection of material in the mantle and the forces that arise at the boundaries between the plates.

There are three main types of plate boundaries: divergent, convergent, and transform. Divergent boundaries occur where plates move apart from each other, creating new oceanic crust. Convergent boundaries arise where plates collide, leading to subduction, volcanic activity, and the formation of mountains. Transform boundaries occur where plates slide past each other.

The movement of lithospheric plates gives rise to various geological phenomena, such as earthquakes, volcanic activity, and the formation of mountain ranges and ocean basins.

Learn more about movement of lithospheric plates:
https://brainly.com/question/2722711
#SPJ1

How long does it take for radiation from a cesuim-133 atom to complete 1.5 million cycles

Answers

A cesium-133 atom's radiation goes through 1.5 million cycles in around 0.1633 microseconds (or 163.3 nanoseconds).

What frequency does one kind of radiation that cesium-133 emits have?

9,192,631,770 hertz (cycles per second) is the frequency of the microwave spectral line that the isotope cesium-133 emits. The basic unit of time is provided by this. Cesium clocks have an accuracy and stability of 1 second in 1.4 million years.

The radiation emitted by cesium-133 has a frequency of 9,192,631,770 cycles per second, or 9.192631770 109 Hz.

The following formula may be used to determine how long 1.5 million radiation cycles take to complete:

Time is equal to the frequency of cycles.

Plugging in the numbers, we get:

time = 1.5 million / 9.192631770 × 10^9 Hz

time = 1.632995101 × 10^-7 seconds

So it takes approximately 0.1633 microseconds (or 163.3 nanoseconds) for radiation from a cesium-133 atom to complete 1.5 million cycles.

To know more about cesium-133 visit:-

https://brainly.com/question/4830355

#SPJ1

5. Two equal charges are situated in a vacuum 10.0cm apart, if they repel each other with a force of 0.5N, calculate the value of the charge on each. [4π)¹ = 9.0 x 10⁹ I​

Answers

The value of the charge on each particle is [tex]1.05 x 10^-8 C[/tex].

What is Coulomb's law?

Coulomb's law is a fundamental principle of electrostatics that describes the interaction between electric charges. It states that the force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. We can use Coulomb's law to solve this problem. Mathematically,

[tex]F = k(q1q2)/r^2[/tex]

where F is the force of attraction or repulsion between the two charged particles,[tex]q1[/tex] and [tex]q2[/tex] are the magnitudes of the charges on the two particles, r is the distance between them, and k is Coulomb's constant, which has a value of [tex]9.0 x 10^9 Nm^2/C^2.[/tex]

In this problem, we know that the charges are equal and the distance between them is 10.0 cm. We also know that the force between them is 0.5 N. Therefore,

[tex]0.5 N = k(q^2)/(0.1 m)^2[/tex]

Solving for q, we get:

[tex]q = \sqrt{[(0.5 N)(0.1 m)^2/k]}[/tex]

[tex]q = \sqrt{(0.5 N)(0.01 m)/(9.0 x 10^9 Nm^2/C^2)}[/tex]

[tex]q = 1.05 x 10^-8 C[/tex]

Therefore, the value of the charge on each particle is [tex]1.05 x 10^-8 C.[/tex]

Learn more about electrostatics here:

https://brainly.com/question/31042490

#SPJ1

How loud in Decibels would a sound be with an intensity of 7.8x10^-4 W/m2? (write your answer to one decimal space)

Answers

A sound that is 7.8x10-4 W/m2 in intensity is equal to (10 dB)log3.2106 W/m21012 W/m2=185 dB.

How can you determine the relative volume of a sound?

The decibel, often known as the db or 0.1 bel, is the standard measurement unit. Hence, b = 10 log10 (I/I0) can be used to express the relationship between relative intensities, or b, in decibels. This equation can be used to determine that one decibel equals a 26 percent intensity variations.

What does physics mean by relative intensity?

The "decibel level" of a sound is a less formal term for relative intensity level. It is not the same as energy; relative intensity level reflects loudness more faithfully by using a logarithmic scale.

To know more about sound visit :

https://brainly.com/question/29707602

#SPJ1

A rock climber stands on top of a 59 m -high cliff overhanging a pool of water. He throws two stones vertically downward 1.0 s apart and observes that they cause a single splash. The initial speed of the first stone was 1.7 m/s . Include value and units.
a) How long after the release of the first stone does the second stone hit the water?
b) What was the initial speed of the second stone?
c) What is the speed of the first stone as it hits the water?
d) What is the speed of the second stone as it hits the water?

Answers

a) The time after the release of the first stone that the second stone hits the water is 2.0 s.

b) 15.7 m/s is the initial speed of the second stone.

c)  The speed of the first stone as it hits the water is 15.7 m/s.

d) The speed of the second stone as it hits the water is 28.2 m/s.

What is velocity?

Velocity is a vector quantity that measures both the speed and direction of an object's motion. It is equal to the rate of change of an object's position with respect to time. Velocity is usually represented by the symbol v and is measured in meters per second (m/s).

a) The time between first and second stone's release is 1.0 s. Since the time of release of first stone and the time of splash of both stones are same, the time between the release of second stone and the splash of both stones is 1.0 s.

Thus, the time after the release of the first stone that the second stone hits the water is 2.0 s.

b) The initial speed of the second stone can be calculated using the equation of motion,

v² = u² + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity (9.8 m/s²), and s is the displacement.

Substituting the values,

v² = (1.7)² + 2(9.8) * 59

v = 15.7 m/s

c) The speed of the first stone as it hits the water can be calculated using the equation of motion,

v² = u² + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity (9.8 m/s²), and s is the displacement.

Substituting the values,

v² = (1.7)² + 2(9.8) * 59

v = 15.7 m/s

d) The speed of the second stone as it hits the water can be calculated using the equation of motion,

v² = u² + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity (9.8 m/s²), and s is the displacement.

Substituting the values,

v² = (15.7)² + 2(9.8) * 59

v = 28.2 m/s

For more questions related to initial speed

https://brainly.com/question/24493758

#SPJ1

A model rocket blast off and moves upward with an acceleration of 12m/s2 until it reaches a height of 26m, at which point its engine shuts off and it continues its flight in free fall.
a) What is the maximum height attained by the rocket?
b) What is the speed of the rocket just before it hits the ground?
c) What is the total duration of the rocket's flight?

Answers

To solve this problem, we can use the kinematic equations of motion.

a) To find the maximum height attained by the rocket, we need to find the time it takes to reach that height. We can use the equation:

h = vi*t + (1/2)*a*t^2

where h is the maximum height attained, vi is the initial velocity (which is zero), a is the acceleration, and t is the time taken to reach the maximum height.

Plugging in the values given, we get:

26m = 0*t + (1/2)*12m/s^2*t^2

Simplifying the equation, we get:

t^2 = (2*26m) / 12m/s^2
t^2 = 3.5s^2
t = 1.87s

Now that we know the time taken to reach the maximum height, we can use another kinematic equation to find the maximum height:

v = vi + a*t

where v is the final velocity at the maximum height.

Plugging in the values given, we get:

v = 0 + 12m/s^2*1.87s
v ≈ 22.44m/s

Now we can find the maximum height using the equation:

h = vi*t + (1/2)*a*t^2

Plugging in the values given, we get:

h = 0*1.87s + (1/2)*12m/s^2*(1.87s)^2
h ≈ 26.2m

Therefore, the maximum height attained by the rocket is approximately 26.2 meters.

b) To find the speed of the rocket just before it hits the ground, we can use the equation:

v^2 = vi^2 + 2*a*h

where h is the maximum height attained, vi is the initial velocity (which is zero), a is the acceleration, and v is the final velocity just before hitting the ground.

Plugging in the values given, we get:

v^2 = 0 + 2*12m/s^2*26m
v^2 = 624m^2/s^2
v ≈ 25m/s

Therefore, the speed of the rocket just before it hits the ground is approximately 25 meters per second.

c) The total duration of the rocket's flight is the time taken to reach the maximum height plus the time taken to fall back

If the sun were more massive, what would happen to Earth’s gravity with the sun?
A. decrease
B. would be infinite
C. would be 0
D. increase

Answers

Answer: d. increase

Explanation:

If the sun were more massive, the gravitational force between the sun and Earth would increase. This means that Earth's gravity with the sun would also increase. Therefore, the correct answer is (D) increase.

The gravitational force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. So, if the mass of one of the objects increases, the gravitational force between them will also increase. In this case, if the mass of the sun were to increase, the gravitational force between the sun and Earth would become stronger, and hence, Earth's gravity with the sun would also increase.

an election of mass 9.1 × 10^31kg moves with a velocity of 4.2 × 10^7mJs between the cathode and anode of an X-ray tube. Calculate the wavelength.( take Planck's constant, h= 6.6 × 10^ 34 J's)​

Answers

The wavelength of the electron is 1.724 × 10^-12 m.

How do we calculate?

The wavelength of the electron is found  using the de Broglie wavelength formula:

λ = h / p

where λ = wavelength,

h= Planck's constant, a

p =  momentum of the electron.

we find  the momentum of the electron,

p = m * v

p = (9.1 × 10^-31 kg) * (4.2 × 10^7 m/s)

p = 3.822 × 10^-22 kg m/s

Therefore, wavelength ;

λ = h / p

λ = (6.6 × 10^-34 J s) / (3.822 × 10^-22 kg m/s)

λ = 1.724 × 10^-12 m

Learn more about wavelength at: https://brainly.com/question/10728818

#SPJ1

If the speed of a wave is 400 cm/s with a frequency of 80 Hz, what is the wavelength for this wave?
32,000 cm
32,000 m
5 cm
5m

Answers

The speed of a wave is represented by the equation:

Speed = wavelength x frequency

We can rearrange this equation to solve for wavelength:

Wavelength = Speed / frequency

Plugging in the given values, we get:

Wavelength = 400 cm/s / 80 Hz
Wavelength = 5 cm

Therefore, the wavelength for this wave is 5 cm.

A 0.80kg block of carbon (solid) is dropped into 1.4kg of water. If the carbon starts at -20C, the water starts at 92C, and they have equal final temperatures, what is the final temperature of the system?

Answers

The system's final temperature is roughly 16.7°C.

What is a system's final temperature?

You may determine your substance's final heat by multiplying the temperature change by the initial temperature. Your water's final temperature would be 24 + 6, or 30 degrees Celsius, for instance, if it started off at 24 degrees Celsius.

The following is the formula for energy conservation:

Q1 + Q2 = 0

Q = mcΔT

Q1 + Q2 = 0

568.8

Simplifying and solving for

6394.4 - 106768 = 0

= 16.7°C

To know more about temperature visit:-

https://brainly.com/question/4160783

#SPJ1

30 POINTS!!!! NO CHATGPT OR ANY BOTS_


As you sit in a fishing boat, you notice that 12 waves pass the boat every 45 s
. If the distance from one crest to the next is 9.0 m
, what is the speed of these waves?
Express your answer to two significant figures and include the appropriate units.

Answers

The speed of the waves can be expressed to two significant figures as 0.2 m/s. The unit for this expression is meters per second (m/s).

What is wave crest?

A wave crest is the highest point of a wave. It is the top of the wave, where the wave is moving most up and away from the equilibrium position. It is the point of highest amplitude (height) of the wave and is followed by a wave trough, which is the lowest point of the wave.

The speed of the waves can be calculated using the formula speed = distance over time.

We know the distance between wave crests is 9.0 m and the time it takes for 12 waves to pass the boat is 45 s. Therefore, the speed of the waves can be calculated as:

Speed = 9.0 m / 45 s

Speed = 0.2 m/s

The speed of the waves can be expressed to two significant figures as 0.2 m/s. The unit for this expression is meters per second (m/s).

This calculation shows that the speed of the waves passing the boat is 0.2 m/s. This speed can be further broken down into how many meters the waves travel in one second if necessary.

For more questions related to speed

https://brainly.com/question/13943409

#SPJ1

The attractive electric force between the point charges q and −2q has a magnitude of 2.2 N when the separation between the charges is 1.4 m . k=8.99×109N⋅m2/C2

What is the magnitude of charge q?

Answers

The electric force between two point charges is given by the equation

[tex]F=k*q_1*q_2/r^2[/tex]

What is force?

The interaction between two things is measured by the physical quantity known as force. It is a vector quantity, and the sign F is frequently used to denote it. When an object interacts with another object, it feels a push or a pull.

where r is the distance between the charges, q1 and q2 are their magnitudes, and k is the Coulomb constant.

When we enter the problem's specified values, we obtain

[tex]2.2N=8.99*10^9\ N*m^2/C^2*q*-2q/(1.4 m)^2[/tex]

which simplifies to

q = -0.500 N/C.

Thus, the magnitude of charge q is 0.500 N/C.

To learn more about force, visit:

brainly.com/question/12785175

#SPJ1

Other Questions
1. Choose the correct answer. 1. I need to improve my English B. but A in order to C. and 2. my mother tongue is Mongolian, I can also speak English and German fluen A Although B. However C. So that D. Also 3. The wardrobe door is broken we call a carpenter tomorrow? A. Do B. Have D Shall 4. The Bogd Khan museum over a hundred years ago near the Tuul River. A built B. was build C. was built D. has been built 5 The people in this country__________ about an earthquake or an avalanche lately. A. hasn't heard B haven't heard 6 I could get my dream job. D. so that A. Either of C. Ought C. didn't hear D. weren't heard ---these birds is an herbivores. They only eat meat. B. Neither of C Both of D. All of How does energy in the food chain flow to an omnivore such as a fox?A) The fox is a plant eater and receives energy directly from plants.B) The fox receives energy directly from the sun and the plants it eats.C) When the fox eats an animal that eats plants, it receives energy directly from the sun.D) When the fox eats an animal that eats plants, it receives energy indirectly from the sun. Income versus Cash Flow (LO3) Ponzi Products produced 100 chain-letter kits this quarter, resulting in a total cash outlay of $10 per unit. It will sell 50 of the kits next quarter at a price of $11, and the other 50 kits in the third quarter at a price of $12. It takes a full quarter for Ponzi to collect its bills from its customers. (Ignore possible sales in earlier or later quarters.) (Negative amount should be indicated by a minus sign.) a. What is the net income for Ponzi next quarter? Net Income in second quarter s 550 b. What are the cash flows for the company this quarter? the idea that an individuals behavior is influenced by others expectations for them is a description of a(n) What is the slope of the line? -2-112 If r=0.5 m, A = ???(Use the r key.) when a nnormal population grows past the ecosystem's carrying capacity (k), what happens to the population? Members of a leftist coalition that overthrew the Nicaraguan dictatorship of Anastasia Somoza in 1979 and attempted to install a socialist economy. The United States financed armed opposition by the Contras. The Sandinistas lost national elections in 1990 Select one: True False. As a nurse working in a hospital one of the jobs is to give appropriate doses of medicinebefore surgery so the patient doesn't wake up during surgery. 4cc of this particular medicine ismeant for a 180lb man, what would be the correct dosage for a 145 lb. woman? please help Prompt 1: There is one door you pass every day that is always locked. However, one day, you pass by and it's slightly ajar. You decide to walk in. Plan a narrative about what you find and what happens when you enter.now Include the final draft of your narrative below. Use this checklist to be sure you have included all required elements: an exposition that introduces a protagonist and a setting rising action that introduces the conflict and two events that develop the conflict a climax in which the protagonist must make a decision to resolve their conflict falling action that reveals what happens after the protagonists decision a resolution that contains the protagonists reflection and a theme (or lesson learned) well-developed characters, conflict, and setting at least two narrative techniques (dialogue, flashback, foreshadowing, juxtaposition, pacing, or sensory details) temporal words and phrases that clarify the passage of time for your reader at least 500 words in length HELP PLS EXPLAIN THISSSSS question 5 an employee at a company plugs a router into the corporate network to make a simple wireless network. an attacker outside the building uses it to get access to the corporate network. what is the name of this type of attack? . dna's primary structure is made up of just four different bases, and its secondary structure is regular and highly stable. how can a molecule with these characteristics hold the information required to build and maintain a cell? Parker Street is perpendicular to the rain-line and has a y-intercept of -5.5. If Mary istraveling north-east on Parker Street, atwhat point will she intercept the rain? The nurse is caring for a patient in cardiogenic shock. Which hemodynamic parameters would the nurse expect to note to support this diagnosis? a. Increased right atrial pressure b. Decreased pulmonary artery wedge pressure c. Increased cardiac output d. Decreased cardiac index A global positioning system (GPS) receiver is purchased for $6,000. The IRS informs your company that the useful (class) life of the system is six years. The expected market (salvage) value is $450 at the end of year six a. Use the straight line method to calculate depreciation in year two b. Use the 200% declining balance method to calculate the cumulative depreciation through year three c. Use the MACRS method to calculate the cumulative depreciation through year four d. What is the book value of the GPS receiver at the end of year three when straight line depreciation is used? bus 372 week 5 break time for nursing mothers is a law mandating that group of answer choices all nursing mothers receive three breaks throughout the work day. all nursing mothers receive a special hourly wage. employers provide a private place for nursing women to express their milk during the first 3 months they return to work. employers provide a private place for women to express their milk. a solution is 17 ml ethanol in 48 ml of solution. what is the percent volume of ethanol in this solution? call a positive integer kinda-prime if it has a prime number of positive integer divisors. if there are $168$ prime numbers less than $1000$, how many kinda-prime positive integers are there less than $1000$? Solve the following problem. Be sure to show all the steps (V. E. S. T. ) and work in order to receive full credit. The sum of three numbers is 26. The second number is twice the first and the third number is 6 more than the second. Find the numbers. Please help due tomorrow