Answer:
option c see image... and yw
The molecule shown in option C is butane.
What is butane?The organic compound with four carbon atoms and ten hydrogen atom lie in linear chain without any functional group is called butane.It is belongs to alkane family.What is alkane?It is acyclic saturated hydrocarbons organic compounds.It is also known as paraffin.An alkanes contain carbon atoms and hydrogen atoms bonded with single bond.It general formula is [tex]C_{n} H_{n+2}[/tex] .To learn more about butane,
https://brainly.com/question/14818671
#SPJ2
Titration of 25.0 mL of an HCl solution of unknown concentration requires 14.8 mL of 0.100 M NaOH. What is the molar concentration of the HCl solution
whts the ph of po4 9.78
Answer:
4.22
Explanation:
We know from the question, that the pOH of the solution is 9.78. Now the pOH is defined as -log [OH^-].
If the pOH of a solution is given, one may obtain the pH of such solution from the formula;
pH + pOH =14
Hence we can write;
pH = 14-pOH
pH = 14 - 9.78 = 4.22
Hence the pH of the solution is 4.22.
It would require ? Liters of water to dissolve 36 grams of the substance.
The correct answer is 3 liters
Explanation:
If a substance has a solubility of [tex]12 \frac{grams}{liter}[/tex], this means in 1 liter, the grams that can be dissolved are 12 grams. Now, considering Justin and Ellie need to dissolve 36 grams to calculate the number of liters just divide the total of grams into 12 as each liter dissolves only 12 grams. The process is shown below:
36 grams (the amount that will be dissolved) ÷ 12 (grames dissolved per liter) = 3 liters (liters to dissolved 36 grams)
Answer:
It would be 3 liters
Explanation:
In which pair do both compounds exhibit predominantly ionic bonding? A) KCl and CO2 B) SO2 and BaF2 C) F2 and N2O D) N2O3 and Rb2O E) NaF and SrO
Answer:
E) NaF and SrO
Explanation:
The ionic bonding occurs between atoms with a great difference in electronegativity. This usually happens between a metal and a non-metal.
In which pair do both compounds exhibit predominantly ionic bonding?
A) KCl and CO₂. NO. C and O are non-metals and present covalent bonding.
B) SO₂ and BaF₂. NO. S and O are non-metals and present covalent bonding.
C) F₂ and N₂O. NO. Both compounds contain non-metals and present covalent bonding.
D) N₂O₃ and Rb₂O. NO. N and O are non-metals and present covalent bonding.
E) NaF and SrO. YES. Na and Sr are metals while F and O are non-metals.
Write down the molecular formula and molecular weight of carbon dioxide .
Answer:
CO2
Molar mass: 44.01 g/mol
Explanation:
CO2
When balancing redox reactions under basic conditions in aqueous solution, the first step is to:________.
a. balance oxygen
b. balance hydrogen
c. balance the reaction as though under acidic conditions
d. none of the above
Answer:
When balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.
Explanation:
Oxidation-reduction reactions or redox reactions are those in which an electron transfer occurs between the reagents. An electron transfer implies that there is a change in the number of oxidation between the reagents and the products.
The gain of electrons is called reduction and the loss of electrons oxidation. That is to say, there is oxidation whenever an atom or group of atoms loses electrons (or increases its positive charges) and in the reduction an atom or group of atoms gains electrons, increasing its negative charges or decreasing the positive ones.
The oxidation and reduction half-reactions, in a basic medium, adjust the oxygens and hydrogens as follows:
In the member of the half-reaction that presents excess oxygen, you add as many water molecules as there are too many oxygen. Then, in the opposite member, the necessary hydroxyl ions are added to fully adjust the half-reaction. Normally, twice as many hydroxyl ions, OH-, are required as water molecules have previously been added.
In short, you first adjust the oxygens with OH-, then you adjust the H with H₂O, and finally you adjust the charge with e-
So, when balancing redox reactions under basic conditions in aqueous solution, the first step is to balance oxygen.
Answer:
c. balance the reaction as though under acidic conditions
Explanation:
When balancing redox reactions under basic conditions, a good technique is to first balance the reaction as though under acidic conditions. We then adjust the result to reflect the basic conditions.
A student mixes 1.0 mL of aqueous silver nitrate, AgNO3 (aq), with 1.0 mL of aqueous sodium chloride, NaCl (aq), in a clean test tube. What will the student observe
Answer:
AgCl (silver Chloride) is being precipitated out as white and cloudy crystals.
Explanation:
If a student mixes 1.0 mL of aqueous silver nitrate AgNO3 (aq) with 1.0 mL of aqueous sodium chloride, NaCl (aq), in a clean test tube.
The sodium chloride is being acidified with dilute trioxonitrate (V) acid. Then a few drops of silver trioxonitrate(V) is added afterwards. A white precipitate of silver chloride, which dissolves readily in aqueous ammonia indicates the presence of sodium chloride.
The reaction proceeds as follows:
[tex]\mathtt{AgNO_{3(aq)} + NaCl _{(aq)} \to AgCl _{(s)} + NaNO_3_{(aq)}}[/tex]
From the reaction between AgNO3 (aq) and NaCl (aq), AgCl (silver Chloride) is being precipitated out as white and cloudy crystals.
Which of the following processes is spontaneous? Select the correct answer below:
a. carbon graphite turning to carbon diamond at normal pressure
b. carbon diamond turning to carbon graphite at normal pressure
c. carbon diamond turning to carbon graphite at high pressure
d. none of the above
Answer:
b. carbon diamond turning to carbon graphite at normal pressure.
Explanation:
Graphite is the stable form of the carbon element under normal ambient pressure. The process of conversion of carbon diamond to carbon graphite is a spontaneous process under typical ambient conditions, since diamonds are said to be thermodynamically unstable but kinetically stable under ambient conditions, and the process of conversion can take place without a continuous input of energy from an external source.
During which phase do the centromeres split, allowing the two linked chromatids to separate?
Answer:
Anaphase
Explanation:
The centromere splits during the anaphase of the cell division. Thus, allowing the two linked chromatids to separate.
A typical chromosome is made up of two sister chromatids joined together by a structure known as the centromere. During cell division - at the metaphase stage - the chromosomes align at the equator of the cell, forming the metaphase plate. The spindle from the opposing ends of the cell engages each chromosome at the kinetochore of the centromere.
At the anaphase stage, the centromere splits, leading to the separation of the sister chromatids of each chromosome. The sister chromatids of the same then start migrating in the opposite direction as a result of the shortening of the spindle fiber.
If my primary DNA strand is ATACCGCAA
a write the complimentary DNA strand
Answer:
TATGGCGTT
Explanation:
Complimentary base pairs:
A-T
C-G
Use the other letter for complimentary strands
The condensation of chromosomes is inducted in?
Answer:
Chromosome condensation, the landmark event at the onset of prophase, often begins in isolated patches of chromatin at the nuclear periphery. Later, chromosome condense into two threads termed sister chromatids that are closely paired along their entire lengths.
Explanation:
hope dis help & may I have brainly plz
The conversion of CICH=CHCI to CI2C=CC12 can be carried out with:
C12 / H20
C12
C12/ hv
C12 / aq. NaOH
Answer:
I think third C12/hv is right answer
The electrolysis of molten AlCl 3 for 2.50 hr with an electrical current of 15.0 A produces ________ g of aluminum metal.
Most of the costs associated with using renewable resources are due to
а. overuse of resources
b. atmospheric pollution
C.lack of availability
d.global warming
Answer:
The answer is a.
Explanation:
Most of the costs associated with using renewable resources are due to overuse of the resources.
Most of the costs associated with using renewable resources are due to overuse of resources.
What are renewable resources?Renewable resources are those resources which will be generated naturally and continously from the nature and these are also inexhaustible means non ended.
As from the definition it is clear that we can reuse or will use again and again these types of resources, that's why cost associated with these renewable resources are high.
Atmospheric pollution and global warming causes hazardous effect on the environment, so it will not be the reason with the associated cost.Lack of availability makes its important, not costly and in our daily life we used many kinds of renewable resorces so it is not possible to use costly resources daily.Hence, overuse of resouces is one of the reason.
To know more about renewable resorces, visit the below link:
https://brainly.com/question/79953
PLEASE HELP ASAP!!!
Answer:
I don't know What can I do.
A small object has a mass of 68.1 grams. When completely immersed in a graduated cylinder with a water level of 25.0mL the object causes the water level to rise to 43.3mL. What is the density of the object in g/mL?
Answer:
3.72
Explanation:
First you need the volume.
Final level = 43.3
Initial level = 25.0
Change in volume =18.3
So the density = mass / volume
mass = 68.1
vol = 18.3
density = 68.1 / 18.3
density = 3.72
Answer:
[tex]\boxed {\boxed {\sf 3.72 \ g/mL}}[/tex]
Explanation:
We are asked to find the density of a small object. Density is calculated using the following formula.
[tex]\rho= \frac{m}{v}[/tex]
The mass of the object is 68.1 grams.
The volume was found using water displacement. A known quantity of water was measured out (25.0 mL), then the object was added. The new water level was recorded (43.3 mL). The volume is the difference between the two water levels.
volume = final water level - initial water level volume = 43.3 mL - 25 mL = 18.3 mLNow we know the mass and the volume, so we can substitute the values into the formula.
[tex]\rho= \frac{ 68.1 \ g }{18.3 \ mL}[/tex]
[tex]\rho = 3.721311475 \ g/mL[/tex]
The original measurements of mass and water levels have 3 significant figures, so our answer must have the same. For the number we found, that is the hundredth place. The 1 in the thousandth place tells us to leave the 2 in the hundredth place.
[tex]\rho \approx 3.72 \ g/mL[/tex]
The density of the small object is approximately 3.72 grams per milliliter.
The pH of an acid solution is 5.82. Calculate the Ka for the monoprotic acid. The initial acid concentration is 0.010 M.
Answer:
The answer is
[tex]Ka = 2.29 \times {10}^{ - 14} moldm^{ - 3} [/tex]Explanation:
The Ka of an acid when given the pH and concentration can be found by
[tex]pH = - \frac{1}{2} log(Ka) - \frac{1}{2} log(c) [/tex]where
c is the concentration of the acid
From the question
pH = 5.82
c = 0.010 M
Substitute the values into the above formula and solve for Ka
We have
[tex]5.82 = - \frac{1}{2} log(Ka) - \frac{1}{2} log(0.010) [/tex][tex] - \frac{1}{2} log(Ka) = 5.82 + 1[/tex][tex] - \frac{1}{2} log(Ka) = 6.82[/tex]Multiply through by - 2
[tex] log(Ka) = - 13.64[/tex]Find antilog of both sides
We have the final answer as
[tex]Ka = 2.29 \times {10}^{ - 14} moldm^{ - 3} [/tex]Hope this helps you
1. For the following reaction, 4.86 g of magnesium nitride are mixed with excess water. The reaction yields 7.18 g of magnesium hydroxide.
magnesium nitride(s) + water(1) –> magnesium hydroxide (aq) + ammonia (aq)
What is the ideal yield of magnesium hydroxide?
What is the percent yield for this reaction?
2. For the following reaction, 6.41 g of hydrogen gas are mixed with excess nitrogen gas. The reaction yields 26.2 g of ammonia.
nitrogen(g) + hydrogen(g) –> ammonia(g)
What is the ideal yield of ammonia?
What is the percent yield for this reaction?
3. For the following reaction, 3.79 g of water are mixed with excess chlorine gas. The reaction yields 8.70 g of hydrochloric acid.
chlorine(g) + water(1) –> hydrochloric acid(aq) + chloric acid (HCIO3)(aq)
What is the ideal yield of hydrochloric acid?
What is the percent yield for this reaction?
Answer:
See explanation
Explanation:
1)
Mg3N2(s) + 6H2O(l) ------------> 3Mg(OH)2 + 2NH3(g)
Number of moles of magnesium nitride= mass/molar mass= 4.86g/100.9494 g/mol = 0.048 moles
1 mole of magnesium nitride yields 3 moles of magnesium hydroxide
0.048 moles of magnesium nitride yields 0.048 moles × 3= 0.144 moles of magnesium hydroxide
Theoretical yield of magnesium hydroxide = 0.144 moles × 58.3197 g/mol = 8.398 g
Percent yield= actual yield/ theoretical yield × 100
Percent yield= 7.18/8.398 × 100/1 = 85.5%
2)
N2(g) + 3H2(g) -------> 2NH3(g)
Number of moles of hydrogen gas = mass/ molar mass = 6.41g/ 2gmol-1 = 3.205 moles of hydrogen gas.
From the balanced reaction equation;
3 moles of hydrogen gas yields 2 moles of ammonia
3.205 moles of hydrogen gas yields 3.205 × 2/3 = 2.1367 moles of ammonia
Theoretical yield of ammonia = 2.1367 moles × 17 gmol-1 = 36.3 g
Percent yield = actual yield/ theoretical yield ×100
Percent yield = 26.2/36.3 ×100
Percent yield = 72.2%
3)
3Cl2(g) + 3H2O(l) ------> HOCl3(aq) + 5HCl(aq)
Number of moles of water= mass/ molar mass = 3.79g/18 gmol-1 = 0.21 moles
Since
3 mole of water yields 5 mole of HCl
0.21 moles of water yields 0.21 × 5/3 = 0.35 moles of HCl
Theoretical yield of HCl = 0.35 moles × 36.5 gmol-1 = 12.775 g
Percent yield = actual yield/ theoretical yield × 100/1
Percent yield = 8.70/12.775 ×100
Percent yield = 68.1%
11. How many oxygen atoms are there in one formula unit of Ca2+?
Answer:
NO3 has 3 atoms of oxygen in it per molecule (indicated by the subscript of 3) and (NO3)2 means you have 2 NO3 molecules, meaning you double the subscript to get 6 oxygen atoms
Which of the following reasons is why spent fuel rods are stored in a pool of water?
Answers
A.
Water recovers useful energy from the continuing reaction.
B.
Water increases the speed of the chain reaction in the fuel rods.
C.
Water acts as a radiation shield to reduce the radiation levels.
D.
Water dissolves the nuclear waste in the rods so it is easier to handle.
Answer:
C. water acts as a radiation shield to reduce the radiation level
What is Non Metal?
help me find
The element which can not loose electron easily and having electronagtive character is called non-metal it has following property-
1. it can not conduct heat and electricity
2. it is netiher ductile not malleable
3. it is not lsuturous and also not sonorous
Explanation:
a nonmetal (or non-metal) is a chemical element that mostly lacks the characteristics of a metal. Physically, a nonmetal tends to have a relatively low melting point, boiling point, and density. A nonmetal is typically brittle when solid and usually has poor thermal conductivity and electrical conductivity. Chemically, nonmetals tend to have relatively high ionization energy, electron affinity, and electronegativity. They gain or share electrons when they react with other elements and chemical compounds. Seventeen elements are generally classified as nonmetals: most are gases (hydrogen, helium, nitrogen, oxygen, fluorine, neon, chlorine, argon, krypton, xenon and radon); one is a liquid (bromine); and a few are solids (carbon, phosphorus, sulfur, selenium, and iodine). Metalloids such as boron, silicon, and germanium are sometimes counted as nonmetals.
1. What's the concentration of hydronium ions if a water-base solution has a temperature of 25°C (Kw = 1.0x10-14), with a concentration of
hydroxide ions of 2.21x10-6 M? A. 3.1x10-6 M
B. 4.52 X10-9 M
C. 2.8x10-8 M
D. 1.6x10-9 M
Answer:
B. 4.52 X10-9 M
Explanation:
Our goal for this question is to calculate the concentration of hydronium ions [tex]H^+[/tex] produced by water in a vessel with a concentration of hydroxide ions of [tex]2.21X10^-^6~M[/tex]. So, our first approach can be the ionization reaction of water:
[tex]H_2O_(_l_)~->~H^+~_(_a_q_)~+~OH^-~_(_a_q_)[/tex]
If we write the Keq expression for this reaction we will have:
[tex]Keq=[H^+][OH^-][/tex]
Now, water is the universal solvent, so, Keq has a special name. In the equilibrium problems for water we have to use "Kw" instead of "Keq":
[tex]Kw=[H^+][OH^-][/tex]
From this equation, we know the Kw value () and the concentration of the hydroxide ions ([2.21X10^-^6~M]). If we replace these values into the equation we can solve for [tex][H^+][/tex]:
[tex]1.0X10^-^1^4=[H^+][2.21X10^-^6~M][/tex]
[tex][H^+]=\frac{1.0X10^-^1^4}{2.21X10^-^6}=4.52X^-^9[/tex]
I hope it helps!
Answer:
B. 4.52 * 10^-9M
Explanation:
did the test
A sentence using the word Compound
Answer:
The air smelled like a compound of diesel and gasoline fumes.
Determine the mass of CaCO3 required to produce 40.0 mL CO2 at STP. Hint use molar volume of an ideal gas (22.4 L)
Answer:
[tex]m_{CaCO_3}=0.179gCaCO_3[/tex]
Explanation:
Hello,
In this case, since the undergoing chemical reaction is:
[tex]CaCO_3(s)\rightarrow CaO(s)+CO_2(g)[/tex]
The corresponding moles of carbon dioxide occupying 40.0 mL (0.0400 L) are computed by using the ideal gas equation at 273.15 K and 1.00 atm (STP) as follows:
[tex]PV=nRT\\\\n=\frac{PV}{RT}=\frac{1.00 atm*0.0400L}{0.082\frac{atm*L}{mol*K}*273.15 K})=1.79x10^{-3} mol CO_2[/tex]
Then, since the mole ratio between carbon dioxide and calcium carbonate is 1:1 and the molar mass of the reactant is 100 g/mol, the mass that yields such volume turns out:
[tex]m_{CaCO_3}=1.79x10^{-3}molCO_2*\frac{1molCaCO_3}{1molCO_2} *\frac{100g CaCO_3}{1molCaCO_3}\\ \\m_{CaCO_3}=0.179gCaCO_3[/tex]
Regards.
The mass of CaCO₃ required to produce 40.0 mL of CO₂ at STP is 0.179 g
From the question,
We are to determine the mass of CaCO₃ required to produce 40.0 mL of CO₂ at STP.
First, we will determine the number of mole of CO₂ required to be produced
From the formula
PV = nRT
Where
P is the pressure
V is the volume
n is the number of moles
R is the ideal gas constant
and T is the temperature
Then, we can write that
[tex]n = \frac{PV}{RT}[/tex]
From the question,
V = 40.0 mL = 0.04 L
At STP
P = 1 atm
T = 273.15 K
and
R = 0.08206 L atm mol⁻¹ K⁻¹
Putting the parameters into the formula, we get
[tex]n = \frac{1 \times 0.04}{0.08206 \times 273.15}[/tex]
∴ n = 0.0017845 mole
Now, we will write the balanced chemical equation for the decomposition of CaCO₃
CaCO₃ → CaO + CO₂
This means,
1 mole of CaCO₃ will decompose to produce 1 mole of CO₂
Since 0.0017845 mole of CO₂ is to be produced,
Then,
0.0017845 mole of CaCO₃ would be required
Now, for the mass of CaCO₃ required,
Using the formula
Mass = Number of moles × Molar mass
Molar mass of CaCO₃ = 100.0869 g/mol
∴ Mass of CaCO₃ required = 0.0017845 × 100.0869
Mass of CaCO₃ required = 0.178605 g
Mass of CaCO₃ required ≅ 0.179 g
Hence, the mass of CaCO₃ required to produce 40.0 mL of CO₂ at STP is 0.179 g
Learn more here: https://brainly.com/question/17169574
c6h5-c=o-ch3 + br2/oh
Explanation:
here's the molecule you were looking for
The formula of complex ion formed when aluminum hydroxide dissolves in sodium hydroxide will be: Select the correct answer below: [AlOH]2+
Answer:
Al(OH)₃ + OH⁻ → Al(OH)₄⁻
The compound is called hydroxoaluminate.
Explanation:
Aluminiun Hydroxide → Al(OH)₃
NaOH → Sodium hydroxide.
The Al(OH)₃ is an amphoteric compound, while the NaOH is a strong base. When they react, we may think that, fist of all, the base can dissociate: NaOH → Na⁺ + OH⁻
So the Al(OH)₃ will be a Lewis acid, as it can donate a pair of e⁻
Al(OH)₃ + OH⁻ → Al(OH)₄⁻
Below is the structure of what should be the peptide Thr-Glu-Arg-Met. However, one of these residues has been drawn incorrectly. Identify this residue
Thr
Glu
Arg
Met
Answer:
the answer is glu and I know
The residue that has been drawn incorrectly is option (B) i.e. glu .
What is glutamate residue?Glutathione consists of a glutamate residue linked to cysteine via its γ-carboxyl rather than the α-carboxyl group and followed by a conventional peptide bond between cysteine and glycine.
It plays an important role in maintaining the proper ratio of oxidized to reduced forms of metabolically important thiols such as coenzyme A.
It also provides reducing equivalents that detoxify reactive oxygen species such as peroxides.
The tripeptide is regenerated through the concerted action enzymes in the so-called γ-glutamyl cycle.
The residue that has been drawn incorrectly is glutamate residue ,hence option (B) is correct.
Learn more about glutamate residue ,here:
https://brainly.com/question/13873550
#SPJ2
Aqueous potassium nitrate (KNO3) and solid silver bromide are formed by the reaction of aqueous potassium bromide and aqueous silver nitrate (AgNO3). Write a balanced chemical equation for this reaction
Answer:
For the mentioned reaction, the balanced chemical equation is:
KBr (aq) + AgNO3 (s) ⇒ KNO3 (aq) + AgBr (s)
The number written in front of the ion, atoms, and molecules in a chemical reaction so that each of the elements on both the sides of reactants and products of the equation gets balanced is known as the stoichiometric coefficient.
From the mentioned balanced equation, the stoichiometric coefficient before KBr is 1, AgNO3 is 1, KNO3 is 1, as well as before AgBr is also 1. Thus, it is clear that 1 mole of potassium bromide reacts with 1 mole of silver nitrate to produce 1 mole of potassium nitrate and 1 mole of silver bromide.
A sample of ice absorbs 15.6kJ of heat as it undergoes a reversible phase transition to form liquid water at 0∘C. What is the entropy change for this process in units of JK? Report your answer to three significant figures. Use −273.15∘C for absolute zero.
Answer:
Entropy change of ice changing to water at 0°C is equal to 57.1 J/K
Explanation:
When a substance undergoes a phase change, it occurs at constant temperature.
The entropy change Δs, is given by the formula below;
Δs = q/T
where q is the quantity of heat absorbed or evolved in Joules and T is temperature in Kelvin at which the phase change occur
From the given data, T = 0°C = 273.15 K, q = 15.6 KJ = 15600 J
Δs = 15600 J / 273.15 K
Δs = 57.111 J/K
Therefore, entropy change of ice changing to water at 0°C is equal to 57.1 J/K
The entropy change of ice changing to water will be "57.1 J/K".
Entropy changeThe shift in what seems like a thermodynamic system's condition of confusion is caused by the transformation of heat as well as enthalpy towards activity. Entropy seems to be greater mostly in a network with a high quantity or measure of chaos.
According to the question,
Temperature, T = 0°C or,
= 273.15 K
Heat, q = 15.6 KJ or,
= 15600 J
We know the formula,
Entropy change, Δs = [tex]\frac{q}{T}[/tex]
By substituting the values, we get
= [tex]\frac{15600}{273.15}[/tex]
= 57.11 J/K
Thus the above answer is correct.
Find out more information about Entropy change here:
https://brainly.com/question/6364271
If the Ksp for Li3PO4 is 5.9×10−17, and the lithium ion concentration in solution is 0.0020 M, what does the phosphate concentration need to be for a precipitate to occur?
Answer:
7.4 × 10⁻⁹ M
Explanation:
Step 1: Given data
Solubility product constant (Ksp) for Li₃PO₄: 5.9 × 10⁻¹⁷
Concentration of lithium ion: 0.0020 M
Step 2: Write the reaction for the solution of Li₃PO₄
Li₃PO₄(s) ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)
Step 3: Calculate the phosphate concentration required for a precipitate to occur
The solubility product constant is:
Ksp = 5.9 × 10⁻¹⁷ = [Li⁺]³ × [PO₄³⁻]
[PO₄³⁻] = 5.9 × 10⁻¹⁷ / [Li⁺]³
[PO₄³⁻] = 5.9 × 10⁻¹⁷ / 0.0020³
[PO₄³⁻] = 7.4 × 10⁻⁹ M