Which ion has the greater ratio of charge to volume? K+ or Br-
Which ion has the smaller Δ H h y d r? K+ or Br-
Type in the symbol of the atom so either K or Br

Answers

Answer 1

K+ has the greater ratio of charge to volume because it has a smaller atomic radius than Br- (since it has lost an electron) and therefore has a higher charge density. K+ also has a smaller Δ H h y d r than Br- because it has a smaller ionic radius and is able to more easily hydrate with water molecules, releasing less energy in the process.

The ratio of charge to volume is higher for K+ because it has a higher charge density. This is due to K+ having a smaller ionic radius compared to Br-, even though both ions have a single unit of charge (+1 for K+ and -1 for Br-). The smaller size of K+ results in a greater charge-to-volume ratio.

K+ has the smaller ΔHhydr (hydration enthalpy) because the attraction between the ion and the surrounding water molecules is weaker compared to Br-. This is because K+ has a lower charge density than Br-, making the electrostatic interaction with water molecules less significant.

To know more about volume visit

https://brainly.com/question/1578538?

#SPJ11


Related Questions

Discuss the differences between the atlantic and pacific ocean's dissolved oxygen concentrations and describe the biogeochemical processes responsible for the shape of the individual profiles (look at the scales—which ocean has more oxygen?).

Answers

The Pacific Ocean typically has higher dissolved oxygen concentrations compared to the Atlantic Ocean. This difference arises due to variations in biogeochemical processes and circulation patterns between the two oceans.

The higher dissolved oxygen levels in the Pacific can be attributed to several factors. First, the Pacific Ocean generally experiences stronger upwelling events, where nutrient-rich deep waters are brought to the surface, promoting high primary productivity. Enhanced primary productivity leads to increased photosynthesis by marine plants, resulting in higher oxygen production through photosynthesis. Additionally, the Pacific Ocean's larger size provides a larger area for these biological processes to occur, contributing to higher overall oxygen concentrations.

In contrast, the Atlantic Ocean exhibits lower dissolved oxygen levels due to different biogeochemical processes. The Atlantic Ocean experiences weaker upwelling events compared to the Pacific, leading to less nutrient supply to the surface waters and lower primary productivity. Furthermore, the Atlantic Ocean has stronger stratification, which limits the vertical mixing of oxygen-rich surface waters with deeper oxygen-depleted waters. This stratification restricts the replenishment of dissolved oxygen in the deeper layers, resulting in lower overall oxygen concentrations.

Therefore, due to variations in upwelling, primary productivity, and circulation patterns, the Pacific Ocean generally has higher dissolved oxygen concentrations compared to the Atlantic Ocean.

LEARN MORE ABOUT biogeochemical here: brainly.com/question/1204069

#SPJ11

3. Calcium phosphate (Ca3(PO4)2) has the solubility product Ksp 2.07x10-33. For the study of a calcium dependent enzyme, a biochemist is considering to prepare a 0.1 M phosphate buffer pH 7.5, which is also 10 mM with respect to CaCl2. Is it possible to prepare such a buffer ? Reason your answer by a calculation

Answers

The low concentration of phosphate that would form due to the precipitation of calcium phosphate makes it impossible to prepare a 0.1 M phosphate buffer pH 7.5 which is also 10 mM with respect to [tex]CaCl_2[/tex].

To determine whether it is possible to prepare a 0.1 M phosphate buffer pH 7.5, which is also 10 mM with respect to [tex]CaCl_2[/tex], we need to calculate the concentration of [tex]Ca_3(PO_4)_2[/tex] that will form in the solution.

Firstly, let's consider the dissociation of [tex]Ca_3(PO_4)_2[/tex] in water:

[tex]$\mathrm{Ca_3(PO_4)_2(s) \rightleftharpoons 3 Ca^{2+}(aq) + 2 PO_4^{3-}(aq)}$[/tex]

The solubility product expression for [tex]Ca_3(PO_4)_2[/tex] is:

[tex]$K_{sp} = [\mathrm{Ca^{2+}}]^3 [\mathrm{PO_4^{3-}}]^2$[/tex]

where Ksp [tex]= 2.07 \times 10^{-33[/tex]

We can assume that the concentration of [tex]Ca_2^+[/tex] is 10 mM, so:

[tex]$K_{sp} = (10\ \mathrm{mM})^3 [\mathrm{PO_4^{3-}}]^2$[/tex]

Solving for [[tex]$\mathrm{PO_4^{3-}}$[/tex]], we get:

[tex]$[\mathrm{PO_4^{3-}}] = \sqrt{\frac{K_{sp}}{(10\ \mathrm{mM})^6}} = 2.6\times 10^{-14}\ \mathrm{M}$[/tex]

This concentration of phosphate is much lower than the desired concentration of 0.1 M for the buffer. Therefore, it is not possible to prepare a 0.1 M phosphate buffer pH 7.5 that is also 10 mM with respect to [tex]CaCl_2[/tex], as the addition of [tex]CaCl_2[/tex] will cause precipitation of calcium phosphate due to its low solubility product constant. The biochemist may need to consider alternative buffer systems or find a way to avoid the formation of calcium phosphate in experimental conditions.

To learn more about phosphate

https://brainly.com/question/16411744

#SPJ4

in an aqueous solution of a certain acid with pka = 4.74 the ph is 2.98. calculate the percent of the acid that is dissociated in this solution. round your answer to 2 significant digits.

Answers

The percent of the acid that is dissociated in the given aqueous solution is 0.56%.

The acid dissociation constant (Ka) can be calculated from the given pKa value as follows:  pKa = -log Ka

Ka = 10^(-pKa). Substituting the given pKa value (4.74) into the above equation gives Ka = 1.74 × 10^(-5) .

The percent dissociation of the acid can be calculated as follows:  % dissociation = (concentration of dissociated acid / initial concentration of acid) × 100. Assuming that the initial concentration of acid is 1.0 M (for simplicity), the concentration of H+ ions can be calculated from the given pH value as follows: pH = -log[H+]

[H+] = [tex]10^{(-pH)}[/tex].

Substituting the given pH value (2.98) into the above equation gives [tex][H^{+} ] = 1.37 * 10^{(-3)}[/tex] M. Using the equation for the dissociation of a weak acid, the concentration of dissociated acid can be calculated as follows: Ka = [H+][A-] / [HA].

Substituting these values into the above equation gives:[tex]1.74 * 10^{(-5)} = (1.37 × 10^{(-3)} * x) / (1.0 - x)[/tex] Solving for x gives x = 0.0056 M Substituting this value into the percent dissociation equation gives: % dissociation = (0.0056 / 1.0) × 100 = 0.56% (rounded to 2 significant digits).

To know more about dissociation constant (Ka), refer here:

https://brainly.com/question/30639206#

#SPJ11

Use the Born-Haber cycle to determine the lattice energy (in kJ/mol) of LiCl, given the following thermochemical data:
(1) Li(s) --> Li(g) ΔH1=155.2 kJ/mol (heat of sublimation of Li)
(2) Cl2(g) --> 2Cl(g) ΔH2=242.8 kJ/mol (dissociation energy of gaseous Cl2)
(3) Li(g) --> Li+(g) + e- ΔH3=520 kJ/mol (first ionization energy of Li)
(4) Cl(g) + e- --> Cl-(g) ΔH4=-349 kJ/mol (electron affinity of Cl)
(5) Li(s) + 1/2Cl2(g) --> LiCl(s) ΔH5=-408.3 kJ/mol (heat of formation of solid LiCl)
Answer is 856 kJ/mol Please just explain how to get to this answer! thanks.

Answers

The Born-Haber cycle relates the lattice energy of an ionic compound to a series of steps involving the formation of the ionic solid from its elements. The steps are:

(1) Li(s) --> Li(g) ΔH1=155.2 kJ/mol (sublimation)

(2) 1/2 Cl2(g) --> Cl(g) ΔH2=-121.4 kJ/mol (bond dissociation)

(3) Li(g) --> Li+(g) + e- ΔH3=520 kJ/mol (ionization energy)

(4) Cl(g) + e- --> Cl-(g) ΔH4=-349 kJ/mol (electron affinity)

(5) Li+(g) + Cl-(g) --> LiCl(s) ΔH5=-786.3 kJ/mol (lattice energy)

The sum of the first four steps gives the formation of LiCl(g):

Li(s) + 1/2 Cl2(g) --> LiCl(g) ΔHf = ΔH1 + ΔH2 + ΔH3 + ΔH4 = -195.4 kJ/mol

The sum of the last step and the formation of LiCl(g) gives the formation of LiCl(s):

Li(s) + 1/2 Cl2(g) --> LiCl(s) ΔHf = ΔH1 + ΔH2 + ΔH3 + ΔH4 + ΔH5 = -603.7 kJ/mol

Since the formation of LiCl(s) involves the release of energy, the lattice energy must be positive, so:

lattice energy = -ΔHf = 603.7 kJ/mol

Therefore, the lattice energy of LiCl is 603.7 kJ/mol. However, this is the magnitude of the lattice energy, so the final answer should be 603.7 kJ/mol with a negative sign, or -603.7 kJ/mol.

However, the question asks for the lattice energy, which is defined as the energy required to separate one mole of the solid ionic compound into its gaseous ions, so the final answer should be the opposite sign of the calculated value:

lattice energy = -(-603.7 kJ/mol) = 603.7 kJ/mol

Therefore, the lattice energy of LiCl is 603.7 kJ/mol, which is equivalent to 856 kJ/mol when rounded to the nearest whole number.

Learn more about the Born-Haber cycle here:

https://brainly.com/question/31463853?referrer=searchResults

#SPJ11

Calculate the ph of a 0.2 m solution of an amine that has a pka of 9.5

Answers

The pH of a 0.2 M solution of an amine with a pKa of 9.5 is 9.5.

To calculate the pH of a 0.2 M solution of an amine with a pKa of 9.5, we first need to determine the concentration of the conjugate base of the amine (i.e., the amine with a proton removed).

Since the pKa is 9.5, the pH at which half of the amine molecules will be protonated (i.e., NH3+) and half will be deprotonated (i.e., NH2) is 9.5. This means that at pH 9.5, the concentration of the conjugate base and the amine will be equal.

Using the Henderson-Hasselbalch equation:

pH = pKa + log([conjugate base]/[amine])

We can rearrange this equation to solve for [conjugate base]:

[conjugate base] = [amine] x 10^(pH - pKa)

Plugging in the values given in the question, we get:

[conjugate base] = 0.2 M x 10^(pH - 9.5)

Since at pH 9.5, [conjugate base] = [amine], we can set these two expressions equal to each other:

[conjugate base] = [amine]

0.2 M x 10^(pH - 9.5) = 0.2 M

Dividing both sides by 0.2 M, we get:

10^(pH - 9.5) = 1

Taking the logarithm of both sides:

pH - 9.5 = 0

Solving for pH, we get:

pH = 9.5

Therefore, the pH of a 0.2 M solution of an amine with a pKa of 9.5 is 9.5.

Learn more about amine here,

https://brainly.com/question/29204285

#SPJ11

Calculate ΔS° for the reaction SO2(s) + NO2(g) → SO3(g) + NO(g).
S°(J/K·mol)
SO2(g) 248.5
SO3(g) 256.2
NO(g) 210.6
NO2(g) 240.5

Answers

The standard entropy change for the reaction is ΔS° = 228.8 J/K·mol.

The standard entropy change, ΔS°, can be calculated using the following equation:

ΔS° = ΣS°(products) - ΣS°(reactants)

where ΣS° represents the sum of the standard entropies of the products or reactants, respectively.

Using the standard entropy values given:

ΔS° = [S°([tex]SO_3(g)[/tex]) + S°([tex]NO(g)[/tex])] - [S°([tex]SO_2(s)[/tex]) + S°([tex]NO_2(g)[/tex])]

ΔS° = [(256.2 J/K·mol) + (210.6 J/K·mol)] - [(248.5 J/K·mol) + (240.5 J/K·mol)]

ΔS° = 228.8 J/K·mol

For more question on standard entropy click on

https://brainly.com/question/30174483

#SPJ11

Calculate the osmotic pressure generated at 298 K if a cell with a total solute concentration of 0.500 mol/L is immersed in pure water. The cell wall is permeable to water molecules, but not to the solute molecules.

Answers

The osmotic pressure generated can be calculated using the equation π = iMRT, where π is the osmotic pressure, i is the van't Hoff factor (which is 1 for this case because the solute is not dissociated), M is the molarity of the solute, R is the gas constant (8.314 J/mol K), and T is the temperature in Kelvin (298 K).

To calculate the osmotic pressure generated at 298 K when a cell with a total solute concentration of 0.500 mol/L is immersed in pure water, follow these steps:

1. Identify the given information:
  - Temperature (T) = 298 K
  - Solute concentration (c) = 0.500 mol/L

2. Use the formula for osmotic pressure, which is given by:
  π = cRT
  where π is the osmotic pressure, c is the solute concentration, R is the gas constant (0.0821 L atm/mol K), and T is the temperature in Kelvin.

3. Plug the given values into the formula:
  π = (0.500 mol/L) x (0.0821 L atm/mol K) x (298 K)

4. Calculate the osmotic pressure:
  π = 12.3075 atm

Therefore, the osmotic pressure generated at 298 K when a cell with a total solute concentration of 0.500 mol/L is immersed in pure water is approximately 12.31 atm.

To know about pressure visit:

https://brainly.com/question/12971272

#SPJ11

how many chiral centers are there in the open form of xylose?

Answers

There are four chiral centers in the open form of xylose. A five-carbon monosaccharide called xylose can be found in two different forms: cyclic form and open chain form.

The open chain form of xylose has one chiral center located at the second carbon atom, which is bonded to four different substituents, including a hydroxyl group (-OH), a methoxy group (-OCH₃), a hydrogen atom (-H), and a carboxyl group (-COOH).

This chiral center gives rise to two possible stereoisomers, designated as D-xylose and L-xylose, which are mirror images of each other and cannot be superimposed on each other.

It's important to note that the cyclic form of xylose has four chiral centers, as each carbon atom in the ring can potentially have two possible configurations. The configuration of each chiral center determines the overall stereochemistry of the molecule, which can have important biological and chemical implications.

To know more about the Xylose refer here :

https://brainly.com/question/9873867#

#SPJ11

Generally it acid is used to catalyze the opening or an epoxide
ring this would be an example of a(n) unimolecular or bimolecular and the acid would be used ___

Answers

Generally it acid is used to catalyze the opening or an epoxide ring this would be an example bimolecular reaction and the acid would be used as a catalyst

This type of reaction is known as an acid-catalyzed bimolecular reaction, specifically referred to as an SN2 reaction (substitution nucleophilic bimolecular). In this process, the acid acts as a catalyst to facilitate the opening of the epoxide ring, making the electrophilic carbon more susceptible to nucleophilic attack by a nucleophile. The bimolecular nature of the reaction means that the rate of the reaction depends on the concentration of both the epoxide and the nucleophile.

The acid serves as a proton donor, protonating the oxygen atom in the epoxide ring, which results in the weakening of the carbon-oxygen bond. This allows the nucleophile to attack the carbon more easily, leading to the ring opening and the formation of the desired product. Overall, an acid-catalyzed opening of an epoxide ring is an example of a bimolecular reaction (SN2), and the acid is used as a catalyst to facilitate this reaction.

To learn more about SN2 reaction here:

https://brainly.com/question/31324595

#SPJ11

if the equilibrium mixture for the reaction 2s(g) 3o2(g)⇔2so3(g) contains 0.70 m s, 1.3 m o2, and 0.95 m so3, the value of kc for the reaction is ___________. quizlet

Answers

The equilibrium constant, Kc, can be calculated using the concentrations of the reactants and products at equilibrium.

Kc = [SO3]^2 / ([S]^2 [O2]^3)

Substituting the given equilibrium concentrations, we get:

Kc = (0.95 M)^2 / ((0.70 M)^2 (1.3 M)^3)

Kc = 0.161

Therefore, the value of Kc for the given reaction is 0.161.

To calculate the equilibrium constant, Kc, we use the equilibrium concentrations of the reactants and products. The equation for Kc involves the molar concentrations of the products raised to their stoichiometric coefficients divided by the molar concentrations of the reactants raised to their stoichiometric coefficients. In this case, the stoichiometric coefficients of S and O2 are 2 and 3, respectively, while the stoichiometric coefficient of SO3 is also 2. Substituting the given equilibrium concentrations in the equation for Kc gives us the value of Kc for the reaction.

To know more about stoichiometric visit

https://brainly.com/question/29856106

#SPJ11

Describe the complete role of the acid catalyst in the rearrangement of pinacol. Select one: One acid molecule deprotonates a hydroxyl group and then another acid molecule deprotonates an oxygen after rearrangement The acid deprotonates a hydroxyl group and then the conjugate base protonates an oxygen after rearrangement. One acid molecule protonates a hydroxyl group and then another acid molecule protonates an oxygen after rearrangement. The acid protonates a hydroxyl group and then the conjugate base deprotonates an oxygen after rearrangement

Answers

The complete role of the acid catalyst in the rearrangement of pinacol involves the acid protonating a hydroxyl group and then the conjugate base deprotonating an oxygen after rearrangement.

The acid catalyst plays a crucial role in facilitating the rearrangement of pinacol, a reaction known as the pinacol rearrangement. In this rearrangement, a pinacol molecule undergoes a proton transfer and subsequent rearrangement to form a ketone.

Initially, the acid catalyst protonates one of the hydroxyl groups in pinacol, generating a carbocation intermediate. This protonation increases the electrophilic character of the carbon atom adjacent to the hydroxyl group, making it more susceptible to nucleophilic attack.

After the rearrangement step, where the carbocation undergoes a shift to form a more stable carbocation, the conjugate base of the acid catalyst deprotonates an oxygen atom. This deprotonation step helps restore the aromaticity of the system by eliminating the positive charge on the oxygen atom.

Overall, the acid catalyst in the pinacol rearrangement acts as a proton shuttle, facilitating the rearrangement by protonating a hydroxyl group initially and then allowing the conjugate base to deprotonate an oxygen atom after the rearrangement has occurred.

Learn more about ketone here: https://brainly.com/question/30459912

#SPJ11

draw the structure(s) of the major organic product(s) of the following reaction. trace of hcl in toulene

Answers

The reaction between hydrochloric acid (HCl) and toluene in the presence of a catalyst such as [tex]AlCl_3[/tex] can lead to the formation of two major organic products.

Here 2-Chlorotoluene: This compound is a chlorinated derivative of toluene and has the molecular formula [tex]C_6H_5CH_2Cl.[/tex] It can be represented by the following structure: 1-Chloro-2-methylbenzene: This compound is a chlorinated derivative of a methylbenzene and has the molecular formula [tex]C_6H_4ClCH_3[/tex]. It can be represented by the following below structure.

It's important to note that the reaction between HCl and toluene can also produce other, minor organic products such as 2-bromotoluene and 2-chloro-4-methylbenzene. However, the major products in this reaction are 2-chlorotoluene and 1-chloro-2-methylbenzene.  

Learn more about organic products visit: brainly.com/question/20820642

#SPJ4

a 9.950 l sample of gas is cooled from 79.50°c to a temperature at which its volume is 8.550 l. what is this new temperature? assume no change in pressure of the gas.

Answers

To solve this problem, we can use the combined gas law, which states:

(P1 * V1) / T1 = (P2 * V2) / T2

where:

P1 and P2 are the initial and final pressures of the gas (assumed to be constant)

V1 and V2 are the initial and final volumes of the gas

T1 and T2 are the initial and final temperatures of the gas

In this case, the pressure is assumed to be constant, so we can simplify the equation as follows:

(V1 / T1) = (V2 / T2)

Rearranging the equation to solve for T2, we have:

T2 = (V2 * T1) / V1

Now, let's plug in the given values:

V1 = 9.950 L

T1 = 79.50 °C = 79.50 + 273.15 K (convert to Kelvin)

V2 = 8.550 L

T2 = (8.550 * (79.50 + 273.15)) / 9.950

Calculating the expression, we find:

T2 ≈ 330.07 K

Therefore, the new temperature is approximately 330.07 K.

To know more about combined gas law refer here

https://brainly.com/question/30458409#

#SPJ11

For the following equilibrium, if the concentration of A+ is 2.8×10−5 M, what is the solubility product for A2B?
A2B(s)↽−−⇀2A+(aq)+B2−(aq)
2 sig figures

Answers

The solubility product for A₂B, given that at equilibrium, A⁺ has a concentration of 2.8×10⁻⁵ M, is 1.1×10⁻¹⁴

How do i determine the solubility product?

First, we shall determine the concentration of B²⁻ in the solution. Details below:

A₂B(s) <=> 2A⁺(aq) + B²⁻(aq)

From the above,

2 mole of A⁺ is present in 1 moles of A₂B

Thus,

2.8×10⁻⁵ M A⁺ will be present in = 2.8×10⁻⁵ / 2 = 1.4×10⁻⁵ M A₂B

But

1 mole of A₂B contains 1 moles of B²⁻

Therefore,

1.4×10⁻⁵ M A₂B will also contain 1.4×10⁻⁵ M B²⁻

Finally, we can determine the solubility product. This is illustarted below:

Concentration of A⁺ = 2.8×10⁻⁵ MConcentration of B²⁻ = 1.4×10⁻⁵ M MSolubility product (Ksp) =?

A₂B(s) <=> 2A⁺(aq) + B²⁻(aq)

Ksp = [A⁺]² × [B²⁻]

Ksp =  (2.8×10⁻⁵)² × 1.4×10⁻⁵

Ksp = 1.1×10⁻¹⁴

Thus, we can conclude that the solubility product is 1.1×10⁻¹⁴

Learn more about solubility of product:

https://brainly.com/question/4530083

#SPJ1

how many minutes are required to deposit 2.61 g cr from a cr³⁺(aq) solution using a current of 2.50 a? (f = 96,500 c/mol)

Answers

1.73 minutes are required to deposit 2.61 g cr from a cr³⁺(aq) solution using a current of 2.50 a

Electroplating is a process of depositing a metal onto a conductive surface by using electrolysis. In this process, an electric current is passed through an electrolyte solution containing ions of the metal to be deposited. The metal ions are reduced at the cathode, which is the surface where the metal is being deposited. The rate at which the metal is deposited depends on the current and the time for which the current is applied.

To calculate the time required to deposit a certain amount of metal, we can use Faraday's law of electrolysis, which states that the amount of metal deposited is proportional to the amount of electric charge that passes through the cell. The equation for this is:

mass of metal deposited = (current x time x atomic mass of metal) / (Faraday's constant x charge on ion)

In this problem, we are given the current (2.50 A), the mass of metal to be deposited (2.61 g), the charge on the Cr³⁺ ion (3+), and the Faraday's constant (96,500 C/mol). The atomic mass of Cr is 52.0 g/mol.

Substituting these values into the equation, we get:

2.61 g = (2.50 A x time x 52.0 g/mol) / (96,500 C/mol x 3)

Simplifying this equation gives:

time = (2.61 g x 96,500 C/mol x 3) / (2.50 A x 52.0 g/mol)

time = 103.9 s or 1.73 minutes (rounded to two decimal places)

Therefore, it would take approximately 1.73 minutes to deposit 2.61 g of Cr from a Cr³⁺(aq) solution using a current of 2.50 A.

Learn more about Electrolysis at: https://brainly.com/question/16929894

#SPJ11

The industrial degreasing solvent methylene chloride, CH2Cl2, is prepared from methane by reaction with chlorine:
CH4(g)+2Cl2(g)⟶CH2Cl2(g)+2HCl(g).
Use the following data to calculate Δ H∘ in kilojoules for the reaction:
CH4(g)+Cl2(g)⟶CH3Cl(g)+HCl(g)ΔH∘=−98.3kJCH3Cl(g)+Cl2(g)⟶CH2Cl2(g)+HCl(g)ΔH∘=−104kJ

Answers

Methylene chloride is prepared by reacting methane with chlorine in the presence of UV light or high temperature and pressure.

The reaction proceeds via a free-radical mechanism, where chlorine radicals abstract hydrogen atoms from methane to form methyl radicals, which then react with chlorine to form CH2Cl2. The reaction is highly exothermic and must be carefully controlled to prevent unwanted side reactions, such as the formation of chlorinated methane byproducts. The resulting CH2Cl2 product is then purified by distillation and used as a solvent in various industrial processes, such as paint stripping, metal cleaning, and pharmaceutical manufacturing.

Learn more about Methylene chloride here;

https://brainly.com/question/29426391

#SPJ11

How many of the following 4 molecules are polar? BrF3 CS2 SF4 SO3 FOR UPLOAD: DRAW LEWIS STRUCTURE FOR EACH COMPOUND, DETERMINE IF THERE ARE POLAR BONDS IN EACH COMPOUND AND EXPLANATION FOR YOUR ANSWER. 4 O 1 2 O o 3

Answers

Three out of the four molecules are polar.

Which of the given molecules are polar?

Among the given molecular polarity , BrF3, SF4, and SO3 are polar due to their molecular geometry and polar bonds. BrF3 has a trigonal bipyramidal shape with three polar bonds and a lone pair, making it polar. SF4 has a seesaw shape with one lone pair and four polar bonds, making it polar. SO3 has a trigonal planar shape with three polar bonds but is overall nonpolar due to its symmetry. CS2, on the other hand, is a linear molecule with two nonpolar bonds and is nonpolar overall.

Polarity is an important concept in chemistry, as it affects a molecule's physical and chemical properties, including its solubility, boiling and melting points, and reactivity. Polar molecules have an uneven distribution of charge, with one end of the molecule being slightly positive and the other end slightly negative.

Nonpolar molecules have an even distribution of charge and do not have a dipole moment. The polarity of a molecule depends on its molecular geometry and the polarity of its individual bonds.

Learn more about molecular polarity

brainly.com/question/29869649

#SPJ11

Chlorine gas, Cl2, and fluorine gas, F2, react at 2500 K to produce an equilibrium with CIF. The equilibrium constant for this reaction at 2500K, Kc = 25. A vessel is charged with 0.364 M chlorine, 0.364 M of fluorine, and 2.397 M CIF and allowed to reach equilibrium. i) write a balanced equation for this reaction. ii) Write an expression for the reaction quotient (Qc). iii) What are the equilibrium concentrations for this reaction? Show your work and use the methods I showed you in class.

Answers

When, chlorine and fluorine gas will react at 2500k to produce an equilibrium with CIF then, the balanced equation is; Cl₂(g) + F₂(g) ⇌ 2CIF(g), the expression for the reaction quotient is; Qc = [CIF]² / [Cl₂][F₂], and the equilibrium concentrations for chlorine is -0.688 M, for fluorine -0.688 M, and for chlorine fluoride is 3.449 M.

The balanced equation for the reaction is;

Cl₂(g) + F₂(g) ⇌ 2CIF(g)

The expression for the reaction quotient Qc will be;

Qc = [CIF]² / [Cl₂][F₂]

To find the equilibrium concentrations, we can use the ICE table;

Initial concentrations: [Cl₂] = 0.364 M

[F₂] = 0.364 M

[CIF] = 2.397 M

Change: -2x -2x +2x

Equilibrium concentrations; [Cl₂] = 0.364 - 2x M

[F₂] = 0.364 - 2x M

[CIF] = 2.397 + 2x M

At equilibrium, Qc = Kc;

25 = ([CIF]² / [Cl₂][F₂])

Substituting the equilibrium concentrations into this expression, we have;

25 = ((2.397 + 2x)² / (0.364 - 2x)(0.364 - 2x))

Simplifying and rearranging, we get a quadratic equation;

4x² - 14.518x + 4.1126 = 0

Solving for x using quadratic formula, we get;

x = 0.526 M

Therefore, the equilibrium concentrations are;

[Cl₂] = 0.364 - 2(0.526) = -0.688 M (this negative value indicates that all of the chlorine has reacted)

[F₂] = 0.364 - 2(0.526) = -0.688 M (this negative value indicates that all of the fluorine has reacted)

[CIF] = 2.397 + 2(0.526) = 3.449 M

Note that the negative concentrations for Cl₂ and F₂ simply indicate that all of the reactants have been consumed to form the product CIF at equilibrium.

To know more about equilibrium concentrations here

https://brainly.com/question/16645766

#SPJ4

Why are solar cells particularly suitable for developing countries?

Answers

Answer: They give energy without having to hire trained workers to manage power plants.

Explanation: You can just slap them on houses hook them up and there good for a month till you have to clean the dust off them which anyone can do.

Solar cells are particularly suitable for developing countries because they provide a sustainable and affordable source of energy.

Solar cells, also known as photovoltaic cells, are electronic devices that convert sunlight into electricity. They are made of semiconductor materials, such as silicon, and work by absorbing photons from sunlight.

By using solar cells, developing countries can improve access to electricity and reduce their reliance on fossil fuels.

Developing countries often lack access to reliable electricity, and solar cells can provide a solution to this problem. Solar cells are also easy to install and maintain, making them a practical option for developing countries.

In conclusion, solar cells are a great option for developing countries because they provide a sustainable, affordable, and practical source of energy.

Learn more about solar cells here:

https://brainly.com/question/29553595

#SPJ6

What are the three measurements you need to make an order to calculate power? Where are the units of those measurement

Answers

The three measurements you need to make an order to calculate power are Work (W) or Energy The unit of work or energy is the joule (J) in the International System of Units (SI), Time (t) The unit of time is typically seconds (s) in SI, Power (P) The unit of power is the watt (W) in SI.

To calculate power, there are three essential measurements that need to be considered:

1. Work (W) or Energy €: Work is the amount of energy transferred or expended in a given process. It represents the effort required to accomplish a task. The unit of work or energy is the joule (J) in the International System of Units (SI).

2. Time (t): Time is the duration or interval over which the work or energy is transferred or expended. It measures how long it takes to perform a certain task or process. The unit of time is typically seconds (s) in SI.

3. Power (P): Power is the rate at which work or energy is transferred or expended. It indicates how quickly or efficiently work is done. Mathematically, power is calculated by dividing the amount of work or energy by the time taken. The unit of power is the watt (W) in SI.

The formula for calculating power is:

Power (P) = Work (W) / Time (t)

By knowing the values of work, time, and using this formula, we can determine the power involved in a particular process or task. These three measurements and their corresponding units play a crucial role in quantifying and understanding the concept of power in various fields such as physics, engineering, and technology.

Learn more about Energy here:

https://brainly.com/question/4543824

#SPJ11

The first sign of gastrulation is the appearance of the 1. of 2. This structure #1 appears caudally in the 3. At the beginning of the third week, an opacity formed by a thickened linear band plane of the dorsal aspect of the embryonic disc.

Answers

The first sign of gastrulation is the primitive streak, which appears caudally in the midline of the embryonic disc. This structure marks the beginning of the process of forming the three germ layers of the embryo.

Firstly, in gastrulation, the appearance of the primitive streak occurs, which forms caudally in the midline of the embryonic disc. The primitive streak is a raised linear structure that forms on the dorsal surface of the embryonic disc and is visible by the end of the second week of development.

This structure is important because it marks the beginning of gastrulation, which is the process by which the three germ layers of the embryo are formed. The primitive streak is the site where cells migrate inward from the surface of the embryonic disc and begin to form the mesoderm and endoderm. The ectoderm is formed by the remaining cells on the surface of the disc.

To know more about the gastrulation refer here :

https://brainly.com/question/31106166#

#SPJ11

What carboxylic acid and alcohol are needed to synthesize benzyl acetate?

Answers

Acetic acid and benzyl alcohol are needed to synthesize benzyl acetate through an esterification reaction.

To synthesize benzyl acetate, you will need the carboxylic acid , acetic acid and the alcohol benzyl alcohol. Here's a step-by-step explanation:

1. Identify the carboxylic acid: Acetic acid (CH3COOH) is required for this synthesis. It contains a carboxyl group (COOH) that will react with the alcohol.

2. Identify the alcohol: Benzyl alcohol (C6H5CH2OH) is needed. It contains a hydroxyl group (OH) that will react with the carboxylic acid.

3. Perform the esterification reaction: Combine acetic acid and benzyl alcohol in the presence of an acid catalyst (such as sulfuric acid) to form benzyl acetate (C6H5CH2OOCCH3) and water as a byproduct.

In summary, acetic acid and benzyl alcohol are needed to synthesize benzyl acetate through an esterification reaction.

Learn more about carboxylic acid here,

https://brainly.com/question/26855500

#SPJ11

determine the structure of the compound with chemical formula c8h11n using the following 1h-nmr data: s(6h), 2.34 δ s(2h), 6.27 δ s(2h), 6.36 δ s(1h), 6.71 δ

Answers

Based on the 1H-NMR data provided, the compound with chemical formula C8H11N has the following structure:CH3-CH2-CH2-CH2-CH2-CH2-N-CH=CH. The presence of six signals at 6H suggests that there are six hydrogen atoms that are chemically equivalent, meaning they are attached to the same type of carbon atom. This indicates the presence of a hexyl chain (CH3-CH2-CH2-CH2-CH2-CH2-).


- The presence of two signals at 2H indicates the presence of a di-substituted ethylene group (-CH=CH-) in the molecule.
- The signal at 6.71 δ indicates the presence of a hydrogen atom attached to an sp2 hybridized carbon, likely part of the di-substituted ethylene group.
- The signals at 6.27 and 6.36 δ indicate the presence of two hydrogen atoms attached to two separate sp2 hybridized carbon atoms, also part of the di-substituted ethylene group.
- Since there are no other hydrogen atoms present, it can be concluded that the remaining hydrogen atom is attached to the nitrogen atom, completing the structure as shown above.

Based on the given 1H-NMR data for the compound with the chemical formula C8H11N, the structure can be determined as follows:

1. A singlet (s) at 2.34 δ with 6 hydrogens (6H) suggests a CH3 group attached to an electronegative atom, like nitrogen (N). There are two of these groups since 6H are present.
2. A singlet (s) at 6.27 δ with 2 hydrogens (2H) indicates a CH2 group that is part of an aromatic ring.
3. A singlet (s) at 6.36 δ with 1 hydrogen (1H) represents a CH group in the aromatic ring, possibly ortho or para to the CH2 group.
4. A singlet (s) at 6.71 δ with 2 hydrogens (2H) suggests another CH2 group that is part of the aromatic ring and adjacent to the nitrogen atom.

Based on this information, the structure of the compound can be determined as N,N-dimethyl-2,5-dihydroxyaniline. The aromatic ring contains a primary amine (NH2) group with two methyl groups (CH3) attached to the nitrogen atom, and hydroxyl (OH) groups at positions 2 and 5.

To know more about NMR visit:

https://brainly.com/question/29885193

#SPJ11

calculate the enthalpy change for the reaction ch2ch2 (g) h2o (l)→ ch3ch2oh (l) in kj/mole

Answers

The enthalpy change for the reaction is +99.5 kJ/mol. This indicates that this is an endothermic reaction.

To calculate the enthalpy change for the given reaction, we need to use the enthalpy of formation values for the reactants and products. The enthalpy change of a reaction is defined as the difference between the sum of the enthalpies of the products and the sum of the enthalpies of the reactants.
The balanced chemical equation for the given reaction is:
C2H4 (g) + H2O (l) → C2H5OH (l)
Now, we need to find the enthalpy of formation values for the reactants and products. The enthalpy of formation is the energy required to form one mole of a compound from its constituent elements in their standard states.
The enthalpy of formation values for the reactants and products are:
C2H4 (g) = +52.3 kJ/mol
H2O (l) = -285.8 kJ/mol
C2H5OH (l) = -238.6 kJ/mol
Using these values, we can calculate the enthalpy change for the reaction as follows:
Enthalpy change = Σ(Enthalpy of products) - Σ(Enthalpy of reactants)
               = [-238.6 kJ/mol] - [52.3 kJ/mol + (-285.8 kJ/mol)]
               = -238.6 kJ/mol + 338.1 kJ/mol
               = +99.5 kJ/mol
Therefore, the enthalpy change for the reaction is +99.5 kJ/mol. This indicates that the reaction is endothermic, meaning that it requires energy to proceed.

To know more about endothermic reaction visit:
https://brainly.com/question/23184814
#SPJ11

part a predict the molecular geometry of clno . enter the molecular geometry of clno.

Answers

The molecular geometry of ClNO can be determined by examining its Lewis structure and applying the valence shell electron pair repulsion (VSEPR) theory. The molecular geometry of ClNO is trigonal pyramidal.

To determine the Lewis structure of ClNO, we assign the central atom (N) and connect it with the surrounding atoms (Cl and O) using single bonds. The Lewis structure for ClNO is:

Cl

I

O--N

Now, based on the Lewis structure, we can determine the molecular geometry using VSEPR theory. In VSEPR theory, the electron pairs around the central atom (N) repel each other and try to get as far apart as possible.

In ClNO, there are two bonding pairs (N-Cl and N-O) and one lone pair on the nitrogen atom. The presence of lone pair electrons affects the molecular geometry.

Therefore, the molecular geometry of ClNO is trigonal pyramidal.

For more details regarding molecular geometry, visit:

https://brainly.com/question/31993718

#SPJ12

The Henry's law constant for the solubility of nitrogen in water is 6.4 x 104 M/atm at 25°C. At 0.75 atm of N2, what mass of N2(8) dissolves in 1.0 L of water at 25°C? a. 4.8 x 104 g b. 8.5 x 104 g c. 4.5 x 10' g d. 1.3 x 104g

Answers

Every moment a bottle of Pepsi (or any other carbonated beverage) is opened, Henry's law is put into action. Usually, pure carbon dioxide is retained in the gas above a sealed carbonated beverage at a pressure that is just a little bit higher than atmospheric pressure. The correct option is A.

Henry's law, a gas law, states that, while the temperature is held constant, the amount of gas that is dissolved in a liquid is directly proportional to the partial pressure of that gas above the liquid. Henry's law constant (sometimes abbreviated as "kH") is the proportionality constant for this relationship.

c = kH × p

c =  6.4 x 10⁴ × 0.75

c = 4.8 × 10⁴  mol / L

Mass in 1 L = 4.8 × 10⁴ × 1 =  4.8 × 10⁴ g

Thus the correct option is A.

To know more about Henry's law, visit;

https://brainly.com/question/11994691

#SPJ1

The solubility of PbBr2 is .427 g per 100 ml of solution at 25 C. Determine the value of the solubility product constant for this strong electrolyte. Lead(II) bromide does not react with water.A. 5.4 x 10^-4B. 2.7 x 10^-4C. 3.1 x 10^-6D. 1.6 x 10^-6E. 6.3 x 10^-6

Answers

The value of the solubility product constant for PbBr2 at 25°C is 2.7 x 10^-4 (Option B).

To determine the solubility product constant (Ksp) for PbBr2, first, you need to calculate the molar solubility. Given the solubility is 0.427 g per 100 mL of solution, you can convert it to moles per liter:

Molar solubility = (0.427 g / 367.01 g/mol) / 0.1 L = 0.0116 mol/L

PbBr2 dissociates in water as follows: PbBr2(s) → Pb2+(aq) + 2Br-(aq)

Since there is 1 Pb2+ ion and 2 Br- ions produced for every mole of PbBr2 dissolved, the equilibrium concentrations are:

[Pb2+] = 0.0116 mol/L and [Br-] = 2 * 0.0116 mol/L = 0.0232 mol/L

Now, you can calculate the Ksp using these concentrations:

Ksp = [Pb2+] * [Br-]^2 = (0.0116) * (0.0232)^2 = 2.7 x 10^-4

Considering the given solubility of PbBr2 and the fact that it is a strong electrolyte that does not react with water, you can determine the solubility product constant (Ksp) by first finding the molar solubility, then using the equilibrium concentrations to calculate Ksp. The correct answer is 2.7 x 10^-4 (Option B).

To learn more about solubility product visit:

brainly.com/question/31493083

#SPJ11

5. calculate the ratio [pbt-]/[ht2-] for nta in equilibrium with pbco3 in a medium having [hco3-] = 3.00 10-3 m

Answers

The ratio [Pb(NTA)(HCO3)]/[HCO3-]^2 for nta in equilibrium is:

[Pb(NTA)(HCO3)]/[HCO3-]^2 = 6.37 × 10^-7 M / 9.00 × 10^-6 M^2 = 0.0708 M^-1.

What is the ratio [pbt-]/[ht2-] for nta in equilibrium with pbco3?

The balanced equation for the equilibrium reaction between NTA and PbCO3 is:

NTA + PbCO3 + H2O ⇌ Pb(NTA)(HCO3) + OH-

To calculate the ratio [Pb(NTA)(HCO3)]/[HCO3-]^2, we need to first write the expression for the equilibrium constant (K) for this reaction:

K = [Pb(NTA)(HCO3)]/[HCO3-][NTA]

Next, we need to express the concentrations of Pb(NTA)(HCO3) and NTA in terms of the initial concentrations of NTA, PbCO3, and HCO3- and the extent of the reaction (α):

[Pb(NTA)(HCO3)] = α[PbCO3]

[NTA] = [NTA]0 - α

Since we are given the concentration of HCO3- and not PbCO3, we need to first use the equilibrium expression for the reaction between HCO3- and PbCO3 to calculate [PbCO3]:

Ksp = [Pb2+][CO32-] = 1.4 × 10^-13

[HCO3-] = 3.00 × 10^-3 M

Let x be the extent of the reaction between HCO3- and PbCO3, then:

[PbCO3] = x

[CO32-] = x

[HCO3-] = 3.00 × 10^-3 - x

Substituting these values into the Ksp expression and solving for x gives:

x = [PbCO3] = [CO32-] = 1.18 × 10^-8 M

Now we can calculate the extent of the reaction between NTA and PbCO3:

α = [Pb(NTA)(HCO3)]/[PbCO3] = K[HCO3-]/[NTA]0 = (1.8 × 10^5)(3.00 × 10^-3)/(0.01) = 54

Using the expressions for [Pb(NTA)(HCO3)] and [NTA], we can calculate the ratio [Pb(NTA)(HCO3)]/[HCO3-]^2:

[Pb(NTA)(HCO3)] = α[PbCO3] = (54)(1.18 × 10^-8) = 6.37 × 10^-7 M

[HCO3-]^2 = (3.00 × 10^-3)^2 = 9.00 × 10^-6 M^2

Therefore, the ratio [Pb(NTA)(HCO3)]/[HCO3-]^2 is:

[Pb(NTA)(HCO3)]/[HCO3-]^2 = 6.37 × 10^-7 M / 9.00 × 10^-6 M^2 = 0.0708 M^-1.

Learn more about equilibrium

brainly.com/question/30807709

#SPJ11

How


many moles of Strontium Phosphate are in 55. 50 grams of Strontium Phosphate :


Sr3(PO4)2?

Answers

There are approximately 0.1229 moles of strontium phosphate in 55.50 grams of the compound.

To determine the number of moles of strontium phosphate [tex](Sr_3(PO_4)_2)[/tex] in 55.50 grams, we need to use the concept of molar mass and Avogadro's number.  First, we calculate the molar mass of strontium phosphate by summing up the atomic masses of each element present in the compound. Strontium (Sr) has an atomic mass of approximately 87.62 grams/mol, phosphorus (P) has an atomic mass of approximately 30.97 grams/mol, and oxygen (O) has an atomic mass of approximately 16.00 grams/mol.  So, the molar mass of strontium phosphate is:

3(Sr) + 2([tex](PO_4)[/tex]) = 3(87.62) + 2(30.97 + 4(16.00)) = 261.86 + 2(30.97 + 64.00) = 261.86 + 2(94.97) = 261.86 + 189.94 = 451.80 grams/mol

Next, we use the formula:

moles = mass / molar mass

Plugging in the given mass of 55.50 grams and the molar mass of 451.80 grams/mol:

moles = 55.50 g / 451.80 g/mol ≈ 0.1229 mol

Learn more about  molar mass here:

https://brainly.com/question/30640134

#SPJ11

Procedure/Step Observation Appearance of each starting material Cholesterol: white powdery solid (66 mg) MCPBA: white flaky solid (39 mg) When dissolved in methylene chloride: Clear colorless solution Spotted on TLC plate (Spot 1) Reaction run at 40°C for 30 minutes Reaction mixture: clear, colorless solution Final reaction mixture spotted on TLC plate (Spot 2) Mass of empty test Test tube 1: 2.107g tubes: Test tube 2: 2.073g Chromatograph product Fractions are clear and colorless. Fraction spotted on TLC plate (Spot 3)Run TLC - elute with tert-butyl methyl ether Sketch and measurements shown under TLC data Evaporate ether from fractions Use combined difference of weights for % Test tube 1 with residue: 2.127g Test tube 2 with residue: 2.095g yield calculation Recrystallize residue from Test Tube 2 (figure out mass by figuring out difference Dry crystals are white needlelike from test tube with residue and empty crystalline solid test tube) using acetone/water solvent Mass of recrystallized solid: 17 mg pair Take melting point of crystal 145-148°C1 a) Why was TLC used? b)Why did you need to use two visualization techniques for the TLC that you took? c) Did the reaction go to completion based on the TLC? Explain your answer.2. Why was column chromatography used in this experiment and why was this a good technique to achieve the purpose?3. Why was recrystallization used in the experiment?4. What does the melting point data of the product indicate about the product?

Answers

Thin Layer Chromatography (TLC) is a chromatographic technique used to separate and analyze mixtures of compounds. It is a simple and inexpensive method that is widely used in various fields such as chemistry, biochemistry, pharmaceuticals, and forensics.

1A-TLC (Thin Layer Chromatography) was used to monitor the progress of the reaction, determine the polarity and purity of the compounds, and visualize the separation of components.

1b) Two visualization techniques were needed to ensure that all components were properly observed and detected, as some compounds might not be visible under a single technique.
1c) Based on the TLC data, it's difficult to definitively conclude if the reaction went to completion. However, the presence of different spots on the TLC plate indicates that the reaction has progressed, and some product has formed.

2) Column chromatography was used in this experiment to separate and purify the desired product from the reaction mixture. This technique is a good choice because it effectively separates compounds based on their polarity and affinity for the stationary phase.

3) Recrystallization was used in the experiment to further purify the desired product. This method involves dissolving the product in a solvent, then allowing it to slowly recrystallize, which results in a more pure and crystalline solid.

4) The melting point data of the product indicates its purity and identity. The narrow range (145-148°C) suggests that the product is relatively pure, and the specific melting point can be compared to known data to help confirm the identity of the compound.

learn more about Thin Layer Chromatography here:

https://brainly.com/question/10296715

#SPJ11

Other Questions
(i) (7 points) Let E = {V1, V2, V3} = {(4,6, 7)", (0,1,1),(0,1,2)?} and F = {U1, U2, U3} = {(1,1,1),(1,2,2), (2, 3, 4)?} be bases for R3. (i) Find the transition matrix from E to F. (ii) If x = 2v1 +3v2+2V3, find the coordinates of x with respect to the basis F (ii) (6 points) Let L be a linear transformation on P2 (set of all polynomials of degree 2) given by L(p(x)) = x'p" (2) - 2:0p'(I). Find the kernel and range of L. A pendulum is exactly 70 cm long. If its period is 1.68 s, what is the value of g at the location of the pendulum? -C&A has on average $6000 in inventory and its daily sales are $200. What is its days- of-supply? A. 1,200,000 B. 600 C. 200 D. 30 Downward forces of 45.0 N and 15.0 N, respectively, are required to keep a plastic block totally immersed in water and in oil. If the volume of the block is 8000 cm, find the density of the oil. Ans. 620 kg/m a good example of 2020 company adopting a blue ocean strategy would be: question 45 options: tesla uber apple lyft If the systolic pressures of two patients differ by 17 millimeters, by how much would you predict their diastolic pressures to differ? Which one has the higher boiling point and why ch4 or SiH4? The Trading Depot has $1,000 face value bonds outstanding with amarket price of $980. The bonds pay interest annually, mature in 8years, and have a yield to maturity of 7.339 percent. What is thecurrent yield?a. 7.00 percentb. 7.14 percentc. 7.34 percentd. 7.59 percente. 7.88 percent a line perpendicular to the boundary between two media a line parallel to the boundary between two media a vertical line separating two media If a correlation coefficient has an associated probability value of .02 thena. There is only a 2% chance that we would get a correlation coefficient this big (or bigger) if the null hypothesis were true.b. The results are importantc. We should accept the null hypothesisd. The hypothesis has been proven in 1971, when the consumer price index was 40.48, women earned a median income of $2,408 per year. if the consumer price index in 2012 was 229.6, how much was $2,408 in 2012 dollars? Which of the following definitions best characterizes foraging? A. Producing iron using forges B. Living off the land without modifying it C. Preparing food that can be preserved D. Destroying natural habitats Please select the best answer from the choices provided. A B C D. as we saw in humans, even deleterious alleles can persist in a population. can you think of processes that account for this, in addition to deleterious recessive alleles Kudzu, Clemmons and Clancy form KCC Partnership with the following contributions:PartnerContributionAdjusted BasisFair Market ValueKudzuLand$52,000$50,000KudzuServicesN/A$ 5,000ClemmonsProperty$30,000$40,000ClancyProperty$25,000$30,000What amount of taxable income to Kudzu results from the formation of KCC?$7,000$2,000$0$5,000 What is the term for a court's determination that an administrative agency decision is the result of plain error or mistake?O mistake of factO clearly erroneousO contrary to lawO abuse of discretion set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the y-axis. x = y2 5y What possible changes can Martha make to correct her homework assignment? Select two options. The first term, 5x3, can be eliminated. The exponent on the first term, 5x3, can be changed to a 2 and then combined with the second term, 2x2. The exponent on the second term, 2x2, can be changed to a 3 and then combined with the first term, 5x3. The constant, 3, can be changed to a variable. The 7x can be eliminated. Use the space equation of Section 4.1.3 to determine the break-even point for an array-based list and linked list implementation for lists when the sizes for the data field, a pointer, and the array-based lists array are as specified. State when the linked list needs less space than the array.(a) The data field is eight bytes, a pointer is four bytes, and the array holds twenty elements.(b) The data field is two bytes, a pointer is four bytes, and the array holds thirty elements.(c) The data field is one byte, a pointer is four bytes, and the array holds thirty elements.(d) The data field is 32 bytes, a pointer is four bytes, and the array holds forty elements. Two parallel black discs are positioned coaxially with a distance of 0.25 m apart in a surroundings witha constant temperature of 300 K. the lower disk is 0.2 m in diameter and the upper disk is 0.4 m in diameter. if the lower disk is heated electrically at 100w to maintian a uniform temperature of 500 K, determine the temperature of the upper disk.answer: T=241 K Popanz, the associate director of Peregrine Corp., was offered the position of director. She refused the position based on the oral promise made by the director when Popanz had been hired that she could retain her current position until she reached age 65, which would happen in several years. Three years later Peregrine terminated Popanz when it eliminated her position. She sued for breach of the promise of employment until 65. Is her claim barred by the statute of frauds? Explain.