Answer:
∛-2
Step-by-step explanation:
The aritmetic expressión is:
∛-2
1. Manuel quiere fabricar banderitas chilenas para venderlas en los partidos de la selección nacional. Si se demora 1 hora en hacer 45 banderitas y trabaja 5 horas diarias. ¿Cuántos días se demorará en fabricar 1800 banderitas?
Answer:
[tex]\large \boxed{\text{Eight days}}[/tex]
Step-by-step explanation:
1. Calculate the hours
[tex]\text{Hours} = \text{1800 flags} \times \dfrac{\text{1 h}}{\text{45 flags}} = \textbf{40 h}[/tex]
2. Calculate the days
[tex]\text{Days} = \text{40 h} \times \dfrac{\text{1 da}}{\text{5 h}} = \text{8 da}\\\\\text{It will take $\large \boxed{\textbf{eight days}}$ to make 4500 flags.}[/tex]
An article reported on the results of an experiment in which half of the individuals in a group of 66 postmenopausal overweight women were randomly assigned to a particular vegan diet, and the other half received a diet based on National Cholesterol Education Program guidelines. The sample mean decrease in body weight for those on the vegan diet was 6 kg, and the sample SD was 3.2, whereas for those on the control diet, the sample mean weight loss and standard deviation were 3.8 and 2.4, respectively. Does it appear the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg? Carry out an appropriate test of hypotheses at significance level .05 based on calculating a P-value.
Answer:
We conclude that the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg.
Step-by-step explanation:
We are given that an article reported on the results of an experiment in which half of the individuals in a group of 66 postmenopausal overweight women were randomly assigned to a particular vegan diet, and the other half received a diet based on National Cholesterol Education Program guidelines.
The sample mean decrease in body weight for those on the vegan diet was 6 kg, and the sample SD was 3.2, whereas, for those on the control diet, the sample mean weight loss and standard deviation were 3.8 and 2.4, respectively.
Let = true average weight loss for the vegan diet.
[tex]\mu_2[/tex] = true average weight loss for the control diet.
So, Null Hypothesis, : 1 kg {means that the true average weight loss for the vegan diet exceeds that for the control diet by less than or equal to 1 kg}
Alternate Hypothesis, : > 1 kg {means that the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg}
The test statistics that will be used here is Two-sample t-test statistics because we don't know about population standard deviations;
T.S. = [tex]\frac{(\bar X_1-\barX_2)-(\mu_1-\mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ~ [tex]t__n_1_+_n_2_-_2[/tex]
where, = sample mean weight loss for the vegan diet = 6 kg
= sample mean weight loss for the control diet = 3.8 kg
= sample standard deviation weight loss for the vegan diet = 3.2 kg
= sample standard deviation weight loss for the control diet = 2.4 kg
[tex]n_1[/tex] = sample of vegan diet women = 33
[tex]n_2[/tex] = sample of control diet women = 33
Also, [tex]s_p=\sqrt{\frac{(n_1-1)\times s_1^{2}+(n_2-1)\times s_2^{2} }{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(33-1)\times 3.2^{2}+(33-1)\times 2.4^{2} }{33+33-2} }[/tex] = 2.83
So, the test statistics = [tex]\frac{(6-3.8)-(1)}{2.83 \times \sqrt{\frac{1}{33}+\frac{1}{33} } }[/tex] ~ [tex]t_6_4[/tex]
= 1.722
The value of t-test statistics is 1.722.
Also, the P-value of the test statistics is given by;
P-value = P([tex]t_6_4[/tex] > 1.722) = 0.0461 or 4.61%
Since the P-value of our test statistics is less than the level of significance as 0.0461 < 0.05, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg.
When dividing 336 by the natural number n> 10, the remainder is 2. Then the remainder obtained by dividing 2007 by n is
Answer:
3
Step-by-step explanation:
336 / n = k + 2/n, where k is an integer
336 = kn + 2
334 = kn
2007 / n
(2004 + 3) / n
(334×6 + 3) / n
334×6/n + 3/n
6k + 3/n
The remainder is 3.
Safegate Foods, Inc., is redesigning the checkout lanes in its supermarkets throughout the country and is considering two designs. Tests on customer checkout times conducted in two stores where the two new systems have been installed result in the following summary of the data: System A System B Size 120 100 mean 4.1 minutes 3.4 minutes Standard Deviation 2.2 minutes 1.5 minutes Test at the 0.05 level of significance to determine whether the population mean checkout times of the two systems differ. Which system is preferred?
Use both the critical and p-value approach.
Hypotheses:
Decision rule:
Calculations:
Conclusions:
Answer:
the answer would be calculations
Step-by-step explanation:
because they have do determine if the check out times differ between the two systems so they need to calculate the difference between the two
how could you correctly rewrite the equation 4(5+3)=2(22-6) using the distributive property?
We can correctly rewrite the equation: 4(5+3) = 2(22-6) by distributing each side.
4(5+3) = 2(22-6)
4(8) = 2(16)
32 = 32
Once you finish distributing each side, you can check to see if it is equal on both sides.
In our case it is since they both equal 32 after distributing the terms.
Solve the quadratic equation 4x2 – x = 8 using the quadratic formula.
Answer:
[tex]1x=\frac{1\sqrt{129} }{8}[/tex]
Step-by-step explanation:
In between the 1 and the [tex]\sqrt{129}[/tex] goes this symbol: ±
hope this helps!
Find the standard divisor to two decimal places (hundredth) for the given population and number of representative seats.
Population : 140,000
# seats : 9
A) 15,555.56
B) 17,055.56
C) 13,056
D) 14,055.56
E) 16,055
Answer:
A
Step-by-step explanation:
A divisor refers to a number by which another number is to be divided.
So what this question is practically asking us is that which of the values in the options to 2 decimal places is the result dividing the population by the number of seats
Thus we have;
140,000/9 = 15,555.55555 which to 2 decimal places is 15,555.56
rectangular field has a total perimeter of 128 feet. The width is
A
24 feet less than the length. What are the dimensions of the field?
Answer:
l = 44 ft
w = 20 ft
Step-by-step explanation:
Perimeter is
P = 2 ( l+w)
The width is
w = l -24
We know the perimeter is 128 and substituting into the equation for perimeter
128 = 2 ( l + l-24)
128 = 2 ( 2l -24)
Divide by 2
128/2 = 2/2 ( 2l-24)
64 = 2l - 24
Add 24 t o each sdie
64+24 = 2l
88 = 2l
Divide by 2
44 =l
The length is 44
Now find w
w = l - 24
w = 44-24
w = 20
Answer:
[tex]\boxed{l=44 \: \mathrm{feet}, \: \: w=20 \: \mathrm{feet}}[/tex]
Step-by-step explanation:
The width (w) = l - 24
The length (l) = l
The perimeter (P) = 128
The shape is a rectangle. Use the formula for the perimeter of a rectangle.
P = 2w + 2l
Plug in the values.
128 = 2(l - 24) + 2l
Solve for l.
Expand brackets.
128 = 2l - 48 + 2l
Combine like terms
128 = 4l - 48
Add 48 on both sides.
176 = 4l
Divide both sides by 4.
44 = l
Apply formula again.
P = 2l + 2w
Solve for w.
Subtract 2w and P on both sides.
-2w = 2l - P
Divide both sides by -2.
w = -l + P/2
Plug in the values for l and P, solve for w.
w = -(44) + 128/2
w = -44 + 64
w = 20
The length is 44 feet.
The width is 20 feet.
A small fruit basket with 6 apples and 6 oranges costs $7.50. A different fruit basket with 10 apples and 5 oranges costs $8.75. If x is the cost of one apple and y is the cost of one orange, the system of equations below can be used to determine the cost of one apple and one orange. 6x+6y=7.50 10x+5y=8.75 What is the cost of one apple?
Answer:
$0.50
Step-by-step explanation:
Let's remove common factors from the equations.
x + y = 1.25 . . . . divide the first equation by 62x +y = 1.75 . . . divide the second equation by 5Subtracting the first equation from the second, we find the cost of an apple:
(2x +y) -(x +y) = 1.75 -1.25
x = 0.50
The cost of one apple is $0.50.
There are three points on a line, A, B, and C, so that AB = 12 cm, BC = 13.5 cm. Find the length of the segment AC . Give all possible answers.
Answer:
AC = 25.5 or 1.5
Step-by-step explanation:
If they are on a line and they are in the order ABC
AB + BC = AC
12+13.5 = AC
25.5 = AC
If they are on a line and they are in the order CAB
CA + AB = BC
AC + 12 =13.5
AC = 13.5 -12
AC = 1.5
If they are on a line and they are in the order ACB
That would mean that AB is greater than BC and that is not the case
How do I find the length of AB
Also can I get explained on how to do it!!
ASAP
Answers
A-211.63
B-9.35
C-207
D-44.98
Answer:
Hello, there!!!
The answer is option D.
but you can also write 45 by rounding off, alright.
Hope it helps...
hello
now we know that this is a vertical triangle.
if C = 90° and B = 12°
90+12 = 102 180-102=78.
so A = 78°
now look at the A. A is looking to the CB.
so we can set up an equal.
A is 44
and
B is ?
if 78 is 44
12 is x 12×44÷78= 6.7692..
right now
AC = 6.7692
BC is = 44
this is a vertical triangle thats why the verticals angle's lookings (AB) square, should be the others lookings squares sum.
6.7692^2 = 45.2875..
44^2 = 1936
1936+45.2875= 1981.2875
now im taking 1981.2875 into the square root to find AB.
✓1981.2875 = 44.5
there were many numbers after the 1981 thats why it will probably 44.9
good luckk
Because of a manufacturing error, 3 cans of regular soda were accidentally filled with diet soda and placed into a 24-pack. Suppose that two cans are randomly selected from the 24-pack. Determine the probability that at least one contain regular soda.
Answer:
161/184 or 0.875
Step-by-step explanation:
Total number of cans = 24 cans
Total number of diet soda = 3 cans
Total number of regular soda = 21 cans
We are asked to find the probability that:that at least one contain regular soda if two cans are selected randomly
We have two ways for this happening
a) two of the cans are regular soda
b) one of the cans is regular , while one is diet
Hence,
Probability (that at least one contain regular soda) = Probability(that two of the cans are regular soda) + Probability ( one of the cans is regular , while one is diet)
Probability(that two of the cans are regular soda) = 21/24 × 20/23
= 35/46
Probability ( one of the cans is regular , while one is diet) = 21/24 × 3/23
= 21/184
Probability (that at least one contain regular soda) = 35/46 + 21/184
We find the Lowest common multiple of the denominators = 184
= 35/46 + 21/184
= (35 × 4) + (21 × 1)/184
= 140 + 21/184
= 161/184
= 0.875
Therefore, the probability that at least one can contains regular soda = 161/184 or 0.875
The measure of minor arc JL is 60°. Circle M is shown. Line segments M J and M L are radii. Tangents J K and L K intersect at point K outside of the circle. Arc J L is 60 degrees. What is the measure of angle JKL? 110° 120° 130° 140°
Answer:
angle JKL = 120 degrees
Step-by-step explanation:
Since arc JL is 60 degrees, the central angle is also 60 degrees.
Point K is the intersection of tanges at J and L, therefore KJM and KLM are 90 degrees.
Consider quadrilateral JKLM whose sum of internal angles = 360.
Therefore
angle JKL + angle KLM + angle LMJ + angle MJK = 360 degrees
angle JKL + 90 + 60 + 90 = 360
angle JKL = 360 - 90 - 60 -90 = 120 degrees
Answer:
120 degrees
Step-by-step explanation:
Since arc JL is 60 degrees, the central angle is also 60 degrees.
Point K is the intersection of tanges at J and L, therefore KJM and KLM are complementary or equal 90 degrees.
look at quadrilateral JKLM whose sum of internal angles = 360.
Therefore
angle JKL plus angle KLM plus angle LMJ plus angle MJK = 360 degrees
angle JKL + 90 + 60 + 90 = 360
The Stanford-Binet Intelligence Scale is an intelligence test, which, like many other IQ tests, is standardized in order to have a normal distribution with a mean of 100 and a standard deviation of 15 points.
As an early intervention effort, a school psychologist wants to estimate the average score on the Stanford-Binet Intelligence Scale for all students with a specific type of learning disorder using a simple random sample of 16 students with the disorder. Determine the margin of error, m, of a 99% confidence interval for the mean IQ score of all students with the disorder. Assume that the standard deviation IQ score among the population of all students with the disorder is the same as the standard deviation of IQ score for the general population, sigma = 15 points.
Answer:
The margin of error is [tex]MOE = 9.68[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n= 16[/tex]
The standard deviation is [tex]\sigma = 15[/tex]
The confidence level is [tex]C = 99[/tex]%
Generally the level of significance is mathematically evaluated as
[tex]\alpha = 100 - C[/tex]
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha = 1%[/tex]%
[tex]\alpha = 0.01[/tex]
The critical value of [tex]\frac{\alpha }{2}[/tex] obtained from the normal distribution table is
[tex]Z_{\frac{\alpha }{2} } = 2.58[/tex]
The reason obtaining the critical value of [tex]\frac{\alpha }{2}[/tex] instead of [tex]\alpha[/tex] is because we are considering the two tails of the area normal distribution curve which is not inside the 99% confidence interval
Now the margin of error is evaluated as
[tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
substituting values
[tex]MOE = 2.58 * \frac{15}{\sqrt{16} }[/tex]
[tex]MOE = 9.68[/tex]
The average flight time from Seattle (SEA) to New York (JFK) is 4.3 hours. The distance between them is 2421 miles. The average flight time going the other way, JFK to SEA is 5.5 hours. The difference is due to the jet stream. Translate this situation to a system of equations and find the average speed of the jet and the average speed of the jet stream.
Answer:
Speed of the jet is 563.02 miles/hr
Speed of the jet stream is 122.83 miles/hr
Step-by-step explanation:
The average time for going from Seattle to New York is 4.3 hours
The distance between these places is 2421 miles
The average time for going back (impaired by jet stream) is 5.5 hours
If we designate the speed of the jet = v
and the speed of the jet stream = u
then on the return trip, the relative speed of the jet = v - u
Also, recall that distance = speed x time
For the going trip, the distance covered by the jet = 4.3 x v = 2421 miles
For the return trip, the distance covered by the jet = 5.5 x (v - u) = 2421 miles
= 5.5(v - u)
these translate into the following equation written below
4.3v = 2421 ....equation 1
5.5(v - u) = 2421 ....equation 2
solving, equation 1, we'll have
4.3v = 2421
v = 2421/4.3 = 563.02 miles/hr this is the speed of the jet
substituting the value of v into equation 2, we'll have
5.5(v - u) = 2421
5.5(563.02 - u) = 2421
3096.61 - 5.5u = 2421
3096.61 - 2421 = 5.5u
675.61 = 5.5u
u = 675.61/5.5
u = 122.83 miles/hr this is the speed of the jet stream
Betty has several of the standard six-sided dice that are common in many board games. If Betty rolls one of these dice, what is the probability that: She rolls a three. She rolls an odd number. She rolls a six or odd number.
Answer:
The probability of rolling a 3 is 1/6 because there's only one 3 out of the 6 options that are on a standard die.
The probability of rolling an odd number is 3/6 or 1/2 because 3 out of the 6 numbers on a standard die (1, 3, 5) are odd.
The probability of rolling a six or odd number is 4/6 or 2/3 because out of the 6 numbers on a standard die, there's one 6 and 3 odd numbers and 1 + 3 = 4.
A quality control inspector has determined that 0.25% of all parts manufactured by a particular machine are defective. If 50 parts are randomly selected, find the probability that there will be at most one defective part.
Answer:
9.941*10^-6
Step-by-step explanation:
Probability of at most 1 means not more than 1 defective= probability of 1 or probability of 0
Probability of 1 = 50C1(0.25)(0.75)^49
Probability= 50(0.25)*7.55*10^-7
Probability= 9.375*10^-6
Probability of 0
= 50C0(0.25)^0(0.75)^50
= 1(1)(0.566*10^-6)
= 0.566*10^-6
Total probability
= 9.375*10^-6+ 0.566*10^-6
= 9.941*10^-6
Solve 2x2 – 6x + 10 = 0 by completing the square.
Answer: x = 6.32 or -0.32
Step-by-step explanation:
2x² - 6x + 10 = 0
No we divide the expression by 2 to make the coefficient of x² equals 1
We now have
x² - 3x + 5 = 0
Now we remove 5 to the other side of the equation
x² - 3x = -5
we add to both side square of half the coefficient of x which is 3
x² - 3x + ( ⁻³/₂)² = -5 + (⁻³/₂)²
(x - ³/₂)² = -5 + ⁹/₄
Resolve into fraction
(x - ³/₂)² = ⁻¹¹/4
Take the roots of the equation
x - ³/₂ = √¹¹/₄
x - ³/₂ = √11/₂
x = ³/₂ ± 3.32/₂
= 3+ 3.32 or 3 - 3.32
= 6.32 or - 0.32
Penny's parents gave her $50 to spend on new video games. Used games are $7 and new games are $12. 1. What is the system of inequalities that represent this situation? 2. What is the maximum amount of used games that she could buy? 3. What is the minimum amount of new games that she could buy? 4. What are two possible combinations of used and new games she can purchase?
The correct answers are Part 1: 7x + 12y 50, x,y 0; Part 2: 7; Part 3: 0: Part 4: 2 old and 3 new video games.
Step-by-step explanation:
Penny's parents gave her $50 to buy new video games.
Price of used games are $7 and new games are $12.
Let Penny buy x number of old video games and y number of new video games.
Part 1:
Total price she spent on buying the video games are 7x + 12y.
This amount should be less than or equal to the amount of money she possess. therefore 7x + 12y 50, x, y 0.
Part 2:
Maximum number of used game she can buy can be given when she spends all her money just on used games. Therefore y = 0. This implies x .
Thus the maximum number of used game she can buy is 7 where she does not buy any new game and has $1 left with her after the purchase.
Part 3:
Minimum number of new games that Penny can buy is zero. She can not buy any new games and spent all her money purchasing old games.
Part 4:
The possible combination in which she can purchase both the video games is 2 old games and 3 new games.
hope this helps
Help thank you!!!!!!!
[tex] v = \sqrt{4900} + \sqrt{8100} = 70 + 90 = 160[/tex]
Answer: D. 160
(SAT Prep) Find the value of x.
Answer:
x = 65°
Step-by-step explanation:
Naming the sides of the parallelogram formed ABCD as shown in the attached image to this solution.
Angle A = 2x (vertically opposite angles are equal)
Angle A = Angle C (opposite angles of a parallelogram are equal)
Angle A = Angle C = 2x
(Angle C) + 50° = 180° (Sum of angles on a straight line is 180°)
2x + 50° = 180°
2x = 180° - 50° = 130°
x = (130°/2) = 65°
Hope this Helps!!!
Answer:
65 degrees
Step-by-step explanation:
The measure of ∠1 is 150°. What are the measures of ∠4, ∠3 and ∠2?
Answer:
∠1 is 150°
∠2 is 30°
∠3 is 150°
∠4 is 30°
Step-by-step explanation:
∠1 is vertically opposite to ∠3 so they are equal
360° - (150° + 150°) = 360° - 300° = 60°
∠2 and ∠4 must sum to 60°
Step-by-step explanation:
From the question
∠1 is opposite to ∠ 3 and vertically opposite angles are equal
So
∠1 = ∠ 3
That's
∠ 3 = 150°∠ 3 and ∠ 4 are on a straight line and angles on a straight line add up to 180°
So to find ∠4, subtract ∠3 from 180°
That's
∠ 4 = 180 - ∠ 3
∠ 4 = 180 - 150
∠ 4 = 30°Since ∠ 4 and ∠ 2 are opposite they are also equal
That's
∠ 4 = ∠ 2
Therefore
∠ 2 = 30°Hope this helps you
The top and bottom margins of a poster are each 9 cm and the side margins are each 6 cm. If the area of the printed material on the poster is fixed at 864 cm2, find the dimensions of the poster with the smallest area.
Answer:
the dimensions of the poster with the smallest area is 36cm by 54cm
Step-by-step explanation:
✓Let us represent the WIDTH of the printed material on the poster as "x"
✓Let us represent the HEIGHT of the printed material on the poster as "y"
✓ The given AREA is given as 864 cm2
Then we have
864 cm2= xy ...................eqn(1)
We can make "y" subject of the formula.
y= 864/x .......................eqn(2)
✓The total height the big poster which includes the 9cm margin that is at the bottom as well as the top is
(y+18)
✓The total width of the poster which includes the 6cm margin that is at the bottom as well as the top is
(x+12)
✓Then AREA OF THE TOTAL poster
A= (y+18)(x+12) ...................eqn(3)
Substitute eqn (2) into eqn(3)
A= ( 18+ 864/x)(x+12)
We can now simplify by opening the bracket, as
A=18x +1080 +10368/x
A= 18x +10368/x +1080
Let us find the first derivative of A which is A'
A'= 18-(10368/x²)
If we set A' =0
Then
0= 18- (10368/x²)
18= (10368/x²)
x²= 10368/18
x²= 576
x=√576
x=24
The second derivatives will be A"= 2(10368)/x³ and this will be positive for x> 0, and here A is concave up and x=24 is can be regarded as a minimum
The value of "y" when x=24 can now be be calculated using eqn(2)
y= 864/x
y= 864/24
y=36cm
✓The total width of the poster= (x+12)
= 24+12=36cm
✓The total height big the poster= (y+18)=36+18=54cm
the dimensions of the poster with the smallest area is 36cm by 54cm
Answer:
The total width of the paper [tex]=36 cm.[/tex]
The total height of the paper [tex]=54cm[/tex]
Step-by-step explanation:
Given information:
Top margin of the paper = 9 [tex]cm\\[/tex]
Bottom margin of the paper = 6 [tex]cm\\[/tex]
Area of the printed material = [tex]864[/tex] [tex]cm^2[/tex]
Let, the width of the printed material = [tex]x[/tex]
And the height of the printed material = [tex]y[/tex]
So, Area [tex]x \times y=864[/tex] [tex]cm^2[/tex]
After including margins;
Width of the paper [tex]= (x+12)[/tex]
Height of the paper [tex]= (y+18)[/tex]
Area [tex](A) = (y+18) (x+12)[/tex]
[tex]A=18x+(10368/x)+1080\\[/tex]
Take first derivative:
[tex]A'= 18- (10368/x^2)[/tex]
When [tex]A'=0[/tex]
Then,
[tex]18-(10368/x^2)=0\\x^2=576\\x=24[/tex]
Now ,when we take second derivative and check if it is positive or not ,
We find that it is grater than zero so the obtained value can be consider as minimum and can be proceed for further solution.
Hence ,
[tex]x \times y=864\\y=864/24\\y=36\\[/tex]
Now ,
The total width of the paper
[tex]= 24+12\\=36 cm.[/tex]
And , total height of the paper
[tex]=36+18\\=54 cm.[/tex]
For more information visit:
https://brainly.com/question/14261130
Suppose a city official conducts a hypothesis test to test the claim that the majority of voters oppose a proposed school tax. Assume that all of the conditions fro proceeding with a one-sample test on proportions have been met. The calculated test statistic is approximately 1.23 with an associated p-value of approximately 0.1093. Choose the conclusion that provides the best interpretation for the p-value at a significance level of alpha = 0.05.
A. If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is surprising (or considered unusual) and could not easily happen by chance.
B. If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is not surprising (or considered unusual) and could easily happen by chance
C. The p-value should be considered extreme: therefore, the hypothesis test proves that the null hypothesis is true
D. none of the above
Answer:
The correct option is (B).
Step-by-step explanation:
The p-value is well-defined as per the probability, [under the null-hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was the truly observed value of the test statistic.
In this case, we need to test the claim that the majority of voters oppose a proposed school tax.
The hypothesis can be defined as follows:
H₀: The proportion of voters opposing a proposed school tax is not a majority, i.e. p ≤ 0.50.
Hₐ: The proportion of voters opposing a proposed school tax is a majority, i.e. p > 0.50.
It is provided that the test statistic value and p-value are:
z = 1.23
p-value = 0.1093
The probability, [under the null-hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was the truly observed value of the test statistic is 0.1093.
The significance level of the test is:
α = 0.05
The p-value of the test is larger than the significance level of the test.
p-value = 0.1093 > α = 0.05
The null hypothesis will not be rejected.
Concluding that there is not enough evidence to support the claim.
Thus, the correct option is:
"If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is not surprising (or considered unusual) and could easily happen by chance"
Solve for x. Answer as an integer or simplified fraction. Please include steps. Thanks!
Answer:
x=40 degreesStep-by-step explanation:
According to the angle sum theorem, the interior angles of a triangle add up to 180 degrees:
So, we can use the following equation to find x:
x+(x+10)+(210-3x)=180
now add like terms:
x+x+(-3x)+10+210=180
-x+220=180
now isolate the variable:
-x=180-220
-x=-40
x=-40/-1
x=40/1
x=40
The answer is that: the measure of x is 40 degrees
2.4.6.8. 10.... geometrical,arithmetic or neither?
Answer:
This is an arithmetic sequence.
Step-by-step explanation:
The difference between the consecutive terms is constant => sequence is arithmetic.
4-2 = 2
6-4= 2
8-6 = 2
10-8 = 2
Step-by-step explanation:
It's an arithmetic sequences.
Formed by the n th term 2n.
As the difference is 2 between them.
let's find it, by formulae.
n th term = 2n
t1= 2×1=2t2 = 2×2=4t3=2×3=6t4=2×4=8and so on.....
Therefore, it's an arithmetic sequence.
Hope it helps..
In a class full of men and women, 5 9 of the class are women. What is the ratio of men to women in its simplest form?
Select the type of equations. Consistent. Equivalent. Inconsistent
Answer:
Consistent.
Step-by-step explanation:
Since there is one solution ( the lines intersect), the equations are consistent
They would be inconsistent if the lines do not intersect
The would be equivalent if they are the same line
The answer would be consistent.
Step-by-step explanation:
In the graph shown here, there is only one solution
because the lines intersect at the point (5, 3).
In order for the lines to be inconsistent, the lines would have to not
meet or intersect each other but notice that this is not the case here.
The would be equivalent if they are the same exact line
so it would look like there would just be one line.
I can't solve this problem, can anyone help me?
Answer:
x < 5
Step-by-step explanation:
The total amount is 595$ and the amount Helena want to leave for equipement is 420$
595-420 = 175The amount helena can use is 175$
each ticket costs 35$
175/35 = 5so Helena can oly buy 5 tickets or less
x < 5 with x the number of tickets
Fifty students are enrolled in a Business Statistics class. After the first examination, a random sample of 5 papers was selected. The grades were 60, 75, 80, 70, and 90. a) Determine the standard error of the mean
Answer:
The standard error S.E of the mean is 5
Step-by-step explanation:
From the given data;
Fifty students are enrolled in a Business Statistics class.
After he first examination, a random sample of 5 papers was selected.
Now; let consider a random sample of 5 papers was selected. with the following grades : 60, 75, 80, 70, and 90
The objective of this question is to determine the standard error of the mean
In order to achieve this ; we need to find the mean and the standard deviation from the given data.
TO start with the mean;
Mean [tex]\overline X[/tex] = [tex]\dfrac{1}{n} \sum x_i[/tex]
Mean [tex]\overline X[/tex] = [tex]\dfrac{1}{5} (60+75+80+70+90)[/tex]
Mean [tex]\overline X[/tex] = 0.2(375)
Mean [tex]\overline X[/tex] = 75
On the other hand; the standard deviation is :
[tex]s = \sqrt{\dfrac{1}{n-1}\sum(x_i - \overline X)^2}[/tex]
[tex]s = \sqrt{\dfrac{1}{5-1}((60-75)^2+(75-75)^2+(80-75)^2+(70-75)^2+(90-75)^2 )}[/tex]
[tex]s = \sqrt{\dfrac{1}{4}(225+0+25+25+225 )}[/tex]
[tex]s = \sqrt{\dfrac{1}{4}(500 )}[/tex]
[tex]s = \sqrt{125}[/tex]
s = 11.18
Finally; the standard error S.E of the mean is:
[tex]S.E = \dfrac{s}{\sqrt{n}}[/tex]
[tex]S.E = \dfrac{11.18}{\sqrt{5}}[/tex]
[tex]S.E = \dfrac{11.18}{2.236}[/tex]
[tex]S.E = 5[/tex]
The standard error S.E of the mean is 5