when their center-to-center separation is 50 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.2525 N. What were the initial charges on the spheres

Answers

Answer 1

Answer:

q1 = 7.6uC , -2.3 uC

q2 = 7.6uC , -2.3 uC

( q1 , q2 ) = ( 7.6 uC , -2.3 uC ) OR ( -2.3 uC , 7.6 uC )

Explanation:

Solution:-

- We have two stationary identical conducting spheres with initial charges ( q1 and q2 ). Such that the force of attraction between them was F = 0.6286 N.

- To model the electrostatic force ( F ) between two stationary charged objects we can apply the Coulomb's Law, which states:

                              [tex]F = k\frac{|q_1|.|q_2|}{r^2}[/tex]

Where,

                     k: The coulomb's constant = 8.99*10^9

- Coulomb's law assume the objects as point charges with separation or ( r ) from center to center.  

- We can apply the assumption and approximate the spheres as point charges under the basis that charge is uniformly distributed over and inside the sphere.

- Therefore, the force of attraction between the spheres would be:

                             [tex]\frac{F}{k}*r^2 =| q_1|.|q_2| \\\\\frac{0.6286}{8.99*10^9}*(0.5)^2 = | q_1|.|q_2| \\\\ | q_1|.|q_2| = 1.74805 * 10^-^1^1[/tex] ... Eq 1

- Once, we connect the two spheres with a conducting wire the charges redistribute themselves until the charges on both sphere are equal ( q' ). This is the point when the re-distribution is complete ( current stops in the wire).

- We will apply the principle of conservation of charges. As charge is neither destroyed nor created. Therefore,

                             [tex]q' + q' = q_1 + q_2\\\\q' = \frac{q_1 + q_2}{2}[/tex]

- Once the conducting wire is connected. The spheres at the same distance of ( r = 0.5m) repel one another. We will again apply the Coulombs Law as follows for the force of repulsion (F = 0.2525 N ) as follows:

                          [tex]\frac{F}{k}*r^2 = (\frac{q_1 + q_2}{2})^2\\\\\sqrt{\frac{0.2525}{8.99*10^9}*0.5^2} = \frac{q_1 + q_2}{2}\\\\2.64985*10^-^6 = \frac{q_1 + q_2}{2}\\\\q_1 + q_2 = 5.29969*10^-^6[/tex]  .. Eq2

- We have two equations with two unknowns. We can solve them simultaneously to solve for initial charges ( q1 and q2 ) as follows:

                         [tex]-\frac{1.74805*10^-^1^1}{q_2} + q_2 = 5.29969*10^-^6 \\\\q^2_2 - (5.29969*10^-^6)q_2 - 1.74805*10^-^1^1 = 0\\\\q_2 = 0.0000075998, -0.000002300123[/tex]

                         

                          [tex]q_1 = -\frac{1.74805*10^-^1^1}{-0.0000075998} = -2.3001uC\\\\q_1 = \frac{1.74805*10^-^1^1}{0.000002300123} = 7.59982uC\\[/tex]

 


Related Questions

A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline

Answers

Answer:

x = 46.54m

Explanation:

In order to find the length of the incline you use the following formula:

[tex]x=v_ot+\frac{1}{2}at^2[/tex]      (1)

vo: initial speed of the soccer ball = 0 m/s

t: time

a: acceleration

You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):

[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex]      (2)

Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:

[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex]       (3)

The length of the incline is 46.54 m

Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.

Answers

Answer:

The two value of the wavelength for the out of tune guitar is  

[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]

Explanation:

From the question we are told that

     The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]

     The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]

     

Generally the frequency of the note played by the guitar that is in tune is  

        [tex]f_1 = \frac{v_s}{\lambda}[/tex]

Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]

       [tex]f_1 = \frac{343}{0.0065}[/tex]

      [tex]f_1 = 5276.9 \ Hz[/tex]

The difference in beat is mathematically represented as

       [tex]\Delta f = |f_1 - f_2|[/tex]

Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar

     [tex]f_2 =f_1 \pm \Delta f[/tex]

substituting values

      [tex]f_2 =f_1 + \Delta f[/tex]

      [tex]f_2 = 5276.9 + 17.0[/tex]  

     [tex]f_2 = 5293.9 \ Hz[/tex]

The wavelength for this frequency is

      [tex]\lambda_2 = \frac{343 }{5293.9}[/tex]

     [tex]\lambda_2 = 0.0648 \ m[/tex]

    [tex]\lambda_2 = 6.48 \ cm[/tex]

For the second value of the second frequency

     [tex]f_2 = f_1 - \Delta f[/tex]

     [tex]f_2 = 5276.9 -17[/tex]

      [tex]f_2 = 5259.9 Hz[/tex]

The wavelength for this frequency is

   [tex]\lambda _2 = \frac{343}{5259.9}[/tex]

   [tex]\lambda _2 = 0.0652 \ m[/tex]

   [tex]\lambda _2 = 6.52 \ cm[/tex]

This question involves the concepts of beat frequency and wavelength.

The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".

The beat frequency is given by the following formula:

[tex]f_b=|f_1-f_2|\\\\[/tex]

f₂ = [tex]f_b[/tex] ± f₁

where,

f₂ = frequency of the out-of-tune guitar = ?

[tex]f_b[/tex] = beat frequency = 17 Hz

f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]

Therefore,

f₂ = 5276.9 Hz ± 17 HZ

f₂ = 5293.9 Hz (OR) 5259.9 Hz

Now, calculating the possible wavelengths:

[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]

λ₂ = 6.48 cm (OR) 6.52 cm

Learn more about beat frequency here:

https://brainly.com/question/10703578?referrer=searchResults

The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

The distance is  [tex]d = 1.5 *10^{15} \ km[/tex]

Explanation:

From the question we are told that

        The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]

Generally a grid unit is  [tex]\frac{1}{10}[/tex] of  an arcsec

  This implies that  0.2 grid unit is  [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]

The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as

           [tex]d = \frac{1}{k}[/tex]

substituting values

           [tex]d = \frac{1}{0.02}[/tex]

           [tex]d = 50 \ parsec[/tex]

Note  [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]

So  [tex]d = 50 * 3.08 *10^{13}[/tex]

     [tex]d = 1.5 *10^{15} \ km[/tex]

Other Questions
A ball is thrown into the air with an upward velocity of 36 ft/s. Its height h in feet after t seconds is given by the function h = 16t^2 + 36t + 10. a. In how many seconds does the ball reach its maximum height? Round to the nearest hundredth if necessary. b. What is the balls maximum height? According to Brad, consumers claim to prefer the brand-name products better than the generics, but they can't even tell which is which. To test his theory, Brad gives each of 199 consumers two potato chips - one generic, and one brand-name - then asks them which one is the brand-name chip. 92 of the subjects correctly identified the brand-name chip.Required:a. At the 0.01 level of significance, is this significantly greater than the 50% that could be expected simply by chance? b. Find the test statistic value. if y= -6 when x= -2 find y when x= 5 Which of the following would be more reactive than magnesium (Mg)?A. Calcium (Ca)B. Potassium (K)C. Argon (Ar)D. Beryllium (Be) ((ASAP)) you guys Im slow idk Using the underlined words, what change, if any, should be made to the sentence?These events for which Friar Laurence is at fault is the true cause of Romeo and Juliet'suntimely deaths.A Change "events" to "event"B Change "is" to "are"C Change "cause" to "causes"D Make no change Read and choose the option with the correct word or words to complete the sentence.a las diez de la maana y no se usa ms hasta las tres de la tarde. Cuando llego a las tres,pongo mi carro en elLa puerta del garajegaraje.A) se abre, cuandoB) se cierra; en seguidaC) se ducha; hastaD) se maquilla; donde Can you help me with this question (8x - 4)(7y + 2) multiplying binomials Line j is a straight line. Line j is a straight line. 2 lines come out of the line to form 4 angles. From top left, clockwise, the angles are: x, y, z, w. Which equation represents the relationship between the measures of Angle w and Angle z? Measure of angle w = measure of angle z Measure of angle w + measure of angle z = 90 degrees Measure of angle w + measure of angle z = 100 degrees Measure of angle w + measure of angle z = 180 degrees given that 1=$1..62 what is 650 pounds in dollars On a coordinate plane, a solid straight line has a positive slope and goes through (negative 4, 1) and (0, 3). Everything below and to the right of the line is shaded. Which linear inequality is represented by the graph? y 2x + 4 y one-halfx + 3 y One-halfx + 3 y 2x + 3 Complete this sentence. The CNS communicates with the body proper through ________. View Available Hint(s) Complete this sentence. The CNS communicates with the body proper through ________. some cranial nerves, some spinal nerves, and some additional nerves that were mentioned but not discussed in the tutorial the spinal nerves but not specifically through the cranial nerves the cranial nerves but not specifically through the spinal nerves some (but not all) of the cranial nerves and some (but not all) of the spinal nerves the cranial nerves and the spinal nerves A species of spruce tree occupies the same niche at the mouth of a river that a species of pine tree occupies further upstream. One year, several pinecones fall into the river and are carried to the mouth, where they take root and grow amongst the spruce trees. What will be the most likely result of this occurrence Read the excerpt from Part 2 of "The Most Dangerous Game, by Richard Connell. He slid down from the tree, and struck off again into the woods. His face was set and he forced the machinery of his mind to function. Three hundred yards from his hiding place he stopped where a huge dead tree leaned precariously on a smaller, living one. Throwing off his sack of food, Rainsford took his knife from its sheath and began to work with all his energy. The job was finished at last, and he threw himself down behind a fallen log a hundred feet away. He did not have to wait long. In this scene in both the story and the film, Rainsford is depicted as Can someone help me with the below question??? What is the area of the triangle below?18 Nathans Athletic Apparel has 2,000 shares of 5%, $100 par value preferred stock the company issued at the beginning of 2017. All remaining shares are common stock. The company was not able to pay dividends in 2017, but plans to pay dividends of $22,000 in 2018.Required: 1. & 2. Assuming the preferred stock is cumulative and noncumulative, how much of the $22,000 dividend will be paid to preferred stockholders and how much will be paid to common stockholders in 2018? CumlativeNon Cumlativepreferred Dividends for 2018preferred Dividends in arrears for 2017Remaining Dividends to common stockholdersTotal Dividens: Help will give brainliest please please help need to pass history 26.Which sentence below uses commas CORRECTLY 1.Frustrated Caity-lynne had kicked her little brother in the knee, to make him cry. 2.Frustrated, Caity-lynne had kicked her little brother in the knee to make him cry.