When the 'residuals from a simple regression model appear to be correlated with x, this is known as Read the following statements I through IV: I. Skewness II. Heteroskedasticity III. Heteroskedasticity and Skewness IV. Heteroskedasticity or Skewness Which of the following fills the blanks? 1 11 II or III III IV None of the above

Answers

Answer 1

When the residuals from a simple regression model appear to be correlated with x, this is known as heteroskedasticity.

Heteroscedasticity is a violation of the linear regression assumption where the variability of residual is not constant across the range of values of the independent variable. When the residuals from a simple regression model appear to be correlated with the explanatory variable x, this is known as heteroskedasticity. This type of problem arises when the variability of the residuals increases or decreases as the fitted value of the dependent variable increases. Heteroscedasticity can cause some problems in regression analysis, such as:

The regression coefficient estimation can be inefficient and biased.

It can be difficult to predict the values of the dependent variable accurately.

The results of the hypothesis test may be unreliable due to the assumption of normality or homoscedasticity.

In the given options, option III fills the blanks, which is Heteroskedasticity and Skewness.

To know more about heteroskedasticity visit

brainly.com/question/18403256

#SPJ11


Related Questions

Your answers should be exact numerical values.
Given a mean of 24 and a standard deviation of 1.6 of normally distributed data, what is the maximum and
minimum usual values?
The maximum usual value is
The minimum usual value is

Answers

The maximum usual value is 25.6.

The minimum usual value is 22.4.

To find the maximum and minimum usual values of normally distributed data with a mean of 24 and a standard deviation of 1.6, we can use the concept of z-scores, which tells us how many standard deviations a given value is from the mean.

The maximum usual value is one that is one standard deviation above the mean, or a z-score of 1. Using the formula for calculating z-scores, we have:

z = (x - μ) / σ

where:

x is the raw score

μ is the population mean

σ is the population standard deviation

Plugging in the values we have, we get:

1 = (x - 24) / 1.6

Solving for x, we get:

x = 25.6

Therefore, the maximum usual value is 25.6.

Similarly, the minimum usual value is one that is one standard deviation below the mean, or a z-score of -1. Using the same formula as before, we have:

-1 = (x - 24) / 1.6

Solving for x, we get:

x = 22.4

Therefore, the minimum usual value is 22.4.

Learn more about   value  from

https://brainly.com/question/24078844

#SPJ11

For a moving object, the force acting on the object varies directly with the object's acceleration. When a force of 80N acts on a certain object, the acceleration of the object is 10(m)/(s^(2)). If the acceleration of the object becomes 6(m)/(s^(2)), what is the force?

Answers

When the acceleration of the object becomes 6 m/s^2, the force acting on it is 48 N.

The force acting on the object is inversely proportional to the object's acceleration. If the acceleration of the object becomes 6 m/s^2, the force acting on it can be calculated.

The initial condition states that when a force of 80 N acts on the object, the acceleration is 10 m/s^2. We can set up a proportion to find the force when the acceleration is 6 m/s^2.

Let F1 be the initial force (80 N), a1 be the initial acceleration (10 m/s^2), F2 be the unknown force, and a2 be the new acceleration (6 m/s^2).

Using the proportion F1/a1 = F2/a2, we can substitute the given values to find the unknown force:

80 N / 10 m/s^2 = F2 / 6 m/s^2

Cross-multiplying and solving for F2, we have:

F2 = (80 N / 10 m/s^2) * 6 m/s^2 = 48 N

Therefore, when the acceleration of the object becomes 6 m/s^2, the force acting on it is 48 N.

To know more about force, refer here:

https://brainly.com/question/30959077#

#SPJ11

There are 70 students in line at campus bookstore to sell back their textbooks after the finals:19 had math books to return, 19 had history books to return, 21 had business books to return, 9 were selling back both history and business books, 5 were selling back history and math books, eight were selling business and math books, and three were selling back all three types of these books. (1) How many student were selling back history and math books, but not business books? (2) How many were selling back exactly two of these three types of books? (3) How many were selling back at most two of these three types of books?

Answers

Main Answer:In the given question, we need to find the number of students who are selling back history and math books but not business books, the number of students selling back exactly two of these three types of books and the number of students selling back at most two of these three types of books. We can solve these using a Venn diagram or the Principle of Inclusion-Exclusion.Using Principle of Inclusion-Exclusion, we can find the number of students selling back history and math books but not business books as follows:Number of students returning history books only = 19 - (9 + 5 + 3) = 2Number of students returning math books only = 19 - (9 + 5 + 3) = 2Number of students returning both math and history books but not business books = (9 + 5 + 3) - 19 = -1 (Since this value is not possible, we take it as 0)Therefore, the number of students selling back history and math books but not business books = 2 + 2 - 0 = 4.Answer in more than 100 words:Let A, B, and C be the sets of students returning math, history, and business books, respectively. We can use the information given in the question to create a Venn diagram and fill in the values as follows:From the above Venn diagram, we can find the number of students selling back exactly two of these three types of books as follows:Number of students returning only math books = 8Number of students returning only history books = 2Number of students returning only business books = 12Therefore, the number of students selling back exactly two of these three types of books = 8 + 2 + 12 = 22.To find the number of students selling back at most two of these three types of books, we need to consider all possible combinations of sets A, B, and C as follows:No set: 0 studentsExactly one set: (19-9-5-3)+(19-9-5-3)+(21-9-5-3) = 9+9+4 = 22Exactly two sets: 22 students (calculated above)All three sets: 3 studentsTherefore, the number of students selling back at most two of these three types of books = 0 + 22 + 3 = 25.Conclusion:Therefore, the number of students selling back history and math books but not business books is 4, the number of students selling back exactly two of these three types of books is 22, and the number of students selling back at most two of these three types of books is 25.

use the limit definition to compute the derivative of the
function f(x)=4x^-1 at x-9.
f'(9)=
find an equation of the tangent line to the graph of f at
x=9.
y=.

Answers

The derivative of f(x) = 4x⁻¹ at x = 9 is f'(9) = -4/81. The equation of the tangent line to the graph of f at x = 9 is y - (4/9) = (-4/81)(x - 9).

To compute the derivative of the function f(x) = 4x⁻¹ at x = 9 using the limit definition, we can follow these steps:

Step 1: Write the limit definition of the derivative.

f'(a) = lim(h->0) [f(a + h) - f(a)] / h

Step 2: Substitute the given function and value into the limit definition.

f'(9) = lim(h->0) [f(9 + h) - f(9)] / h

Step 3: Evaluate f(9 + h) and f(9).

f(9 + h) = 4(9 + h)⁻¹

f(9) = 4(9)⁻¹

Step 4: Plug the values back into the limit definition.

f'(9) = lim(h->0) [4(9 + h)⁻¹ - 4(9)⁻¹] / h

Step 5: Simplify the expression.

f'(9) = lim(h->0) [4 / (9 + h) - 4 / 9] / h

Step 6: Find a common denominator.

f'(9) = lim(h->0) [(4 * 9 - 4(9 + h)) / (9(9 + h))] / h

Step 7: Simplify the numerator.

f'(9) = lim(h->0) [36 - 4(9 + h)] / (9(9 + h)h)

Step 8: Distribute and simplify.

f'(9) = lim(h->0) [36 - 36 - 4h] / (9(9 + h)h)

Step 9: Cancel out like terms.

f'(9) = lim(h->0) [-4h] / (9(9 + h)h)

Step 10: Cancel out h from the numerator and denominator.

f'(9) = lim(h->0) -4 / (9(9 + h))

Step 11: Substitute h = 0 into the expression.

f'(9) = -4 / (9(9 + 0))

Step 12: Simplify further.

f'(9) = -4 / (9(9))

f'(9) = -4 / 81

Therefore, the derivative of f(x) = 4x⁻¹ at x = 9 is f'(9) = -4/81.

To find the equation of the tangent line to the graph of f at x = 9, we can use the point-slope form of a line, where the slope is the derivative we just calculated.

The derivative f'(9) represents the slope of the tangent line. Since it is -4/81, the equation of the tangent line can be written as:

y - f(9) = f'(9)(x - 9)

Substituting f(9) and f'(9):

y - (4(9)⁻¹) = (-4/81)(x - 9)

Simplifying further:

y - (4/9) = (-4/81)(x - 9)

This is the equation of the tangent line to the graph of f at x = 9.

To know more about derivative,

https://brainly.com/question/30727025

#SPJ11

vThe left and right page numbers of an open book are two consecutive integers whose sum is 325. Find these page numbers. Question content area bottom Part 1 The smaller page number is enter your response here. The larger page number is enter your response here.

Answers

The smaller page number is 162.

The larger page number is 163.

Let's assume the smaller page number is x. Since the left and right page numbers are consecutive integers, the larger page number can be represented as (x + 1).

According to the given information, the sum of these two consecutive integers is 325. We can set up the following equation:

x + (x + 1) = 325

2x + 1 = 325

2x = 325 - 1

2x = 324

x = 324/2

x = 162

So the smaller page number is 162.

To find the larger page number, we can substitute the value of x back into the equation:

Larger page number = x + 1 = 162 + 1 = 163

Therefore, the larger page number is 163.

To learn more about number: https://brainly.com/question/16550963

#SPJ11

state the units
10) Given a 25-foot ladder leaning against a building and the bottom of the ladder is 15 feet from the building, find how high the ladder touches the building. Make sure to state the units.

Answers

The ladder touches the building at a height of 20 feet.

In the given scenario, we have a 25-foot ladder leaning against a building, with the bottom of the ladder positioned 15 feet away from the building.

To determine how high the ladder touches the building, we can use the Pythagorean theorem.

The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides.

In this case, the ladder acts as the hypotenuse, and the distance from the building to the ladder's bottom and the height where the ladder touches the building form the other two sides of the right triangle.

Let's label the height where the ladder touches the building as h. According to the Pythagorean theorem, we have:

[tex](15 feet)^2 + h^2 = (25 feet)^2[/tex]

[tex]225 + h^2 = 625[/tex]

[tex]h^2 = 625 - 225[/tex]

[tex]h^2 = 400[/tex]

Taking the square root of both sides, we find:

h = 20 feet

Therefore, the ladder touches the building at a height of 20 feet.

To state the units clearly, the height where the ladder touches the building is 20 feet.

For similar question on height.

https://brainly.com/question/28990670  

#SPJ8

Let f(x) = 1/4x, g(x) = 5x³, and h(x) = 6x² + 4. Then f o g o h(2) =

Answers

f o g o h(2) = 54880 is the required solution.

Given f(x) = (1/4)x, g(x) = 5x³, and h(x) = 6x² + 4.

Find the value of f o g o h(2).

Solution:

The composition of functions f o g o h(2) can be found by substituting h(2) = 6(2)² + 4 = 28 into g(x) to get

g(h(2)) = g(28) = 5(28)³ = 219520.

Now we need to substitute this value in f(x) to get the final answer;

hence

f o g o h(2) = f(g(h(2)))

= f(g(2))

= f(219520)

= (1/4)219520

= 54880.

Therefore, f o g o h(2) = 54880 is the required solution.

To know more about solution visit:

https://brainly.com/question/1616939

#SPJ11

The following is the Higgins-Selkov model for the third step of glycolysis, which may have a limit cycle attractor. F =0.07−kFA 2
A ′ =kFA 2 −0.12A
​(Here, F represents the concentration of fructose 6-phosphate, and A represents the concentration of ADP.) If the reaction rate constant is k=0.31, can this system have a limit cycle attractor?

Answers

To determine if the system described by the Higgins-Selkov model can have a limit cycle attractor when the reaction rate constant is k = 0.31, we can analyze the stability of the system by examining the eigenvalues of the Jacobian matrix.

The system of equations is given by:

F' = 0.07 - kFA^2

A' = kFA^2 - 0.12A

Let's calculate the Jacobian matrix of this system:

J = [∂F'/∂F ∂F'/∂A]

[∂A'/∂F ∂A'/∂A]

To find the eigenvalues, we substitute the values of F and A into the Jacobian matrix and evaluate the resulting matrix for the given reaction rate constant k = 0.31:

J = [0 -2kFA]

[2kFA -0.12]

zubstituting k = 0.31 into the matrix, we have: J = [0 -0.62FA]

[0.62FA -0.12]

Next, let's find the eigenvalues of the Jacobian matrix J. We solve the characteristic equation:

det(J - λI) = 0

where λ is the eigenvalue and I is the identity matrix.

Learn more about Jacobian matrix here.

https://brainly.com/question/32236767

#SPJ11

How many integers x satisfy the inequalities 11 <√x < 15, that is √x exceeds 11, but √x is less than 15?

Answers

Therefore, there are 105 integers that satisfy the given inequalities.

To find the number of integers that satisfy the inequalities 11 < √x < 15, we need to determine the range of integers between which the square root of x falls.

First, we square both sides of the inequalities to eliminate the square root:

[tex]11^2 < x < 15^2[/tex]

Simplifying:

121 < x < 225

Now, we need to find the number of integers between 121 and 225 (inclusive). To do this, we subtract the lower limit from the upper limit and add 1:

225 - 121 + 1 = 105

To know more about integers,

https://brainly.com/question/30943098

#SPJ11

5) A) The Set K={A,B,C,D,E,F}. Is {{A,D,E},{B,C},{D,F}} A Partition Of Set K ? B) The Set L={1,2,3,4,5,6,7,8,9}. Is {{3,7,8},{2,9},{1,4,5}} a partition of set L ?

Answers

(a) To determine if {{A,D,E},{B,C},{D,F}} is a partition of set K={A,B,C,D,E,F}, we need to check two conditions:

1. Each element of K should be in exactly one subset of the partition.

2. The subsets of the partition should be disjoint.

Let's examine the subsets of the given partition:

Subset 1: {A, D, E}

Subset 2: {B, C}

Subset 3: {D, F}

Condition 1 is satisfied because each element of K appears in one and only one subset. All elements A, B, C, D, E, and F are covered.

Condition 2 is not satisfied because Subset 1 and Subset 3 have an element in common, which is D. Subsets in a partition should be disjoint, meaning they should not share any elements.

Therefore, {{A,D,E},{B,C},{D,F}} is not a partition of set K.

(b) To determine if {{3,7,8},{2,9},{1,4,5}} is a partition of set L={1,2,3,4,5,6,7,8,9}, we again need to check the two conditions for a partition.

Let's examine the subsets of the given partition:

Subset 1: {3, 7, 8}

Subset 2: {2, 9}

Subset 3: {1, 4, 5}

Condition 1 is satisfied because each element of L appears in one and only one subset. All elements 1, 2, 3, 4, 5, 6, 7, 8, and 9 are covered.

Condition 2 is satisfied because the subsets are disjoint. There are no common elements among the subsets.

Therefore, {{3,7,8},{2,9},{1,4,5}} is a partition of set L.

Learn more about subset here:

https://brainly.com/question/31739353

#SPJ11

An insurance company has 1,500 automobile policyholders. The expected yearly claim per policyholder is $250, with a standard deviation of $500. Approximate the probability that the total yearly claim exceeds $400,000.

Answers

The probability that the total yearly claim exceeds $400,000 is approximately 0.0606 or 6.06%. The distribution of total yearly claims of all policyholders is normal with a mean of $375,000 and a standard deviation of $16,172.

Given that,Number of policyholders (n) = 1,500

Expected yearly claim per policyholder (μ) = $250

Standard deviation (σ) = $500To find the probability that the total yearly claim exceeds $400,000, we need to find the distribution of total yearly claims of all policyholders.

This is a normal distribution with a mean of 1,500 * $250 = $375,000 and

a standard deviation of 500√1,500 = $16,172.

Therefore,

Z = (X - μ) / σZ

= ($400,000 - $375,000) / $16,172

= 1.55

Using the standard normal distribution table, we can find that the probability of Z > 1.55 is 0.0606. Therefore, the probability that the total yearly claim exceeds $400,000 is approximately 0.0606 or 6.06%.

:The probability that the total yearly claim exceeds $400,000 is approximately 0.0606 or 6.06%. The distribution of total yearly claims of all policyholders is normal with a mean of $375,000 and a standard deviation of $16,172.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Let x=vy, where v is an arbitrary function of y. Using this substitution in solving the differential equation xydx−(x+2y)2dy=0, which of the following is the transformed differential equation in simplest form? (A) vydv−4(v+1)dy=0 (B) vydv+(2v2−4v−4)dy=0 (C) v2dy+vydv−(v+2)2dy=0 (D) There is no correct answer from among the given choices.

Answers

To solve the differential equation [tex]xydx - (x + 2y)^2dy = 0[/tex] using the substitution[tex]x = vy,[/tex] we need to express [tex]dx[/tex] and [tex]dy[/tex] in terms of dv and dy. Taking the derivative of [tex]x = vy[/tex] with respect to y, we have:

[tex]dx = vdy + ydv[/tex]

Substituting this expression for dx and x = vy into the original differential equation, we get:

[tex](vy)(vdy + ydv) - (vy + 2y)^2dy = 0[/tex]

Expanding and simplifying, we have:

[tex]v^2y^2dy + vy^2dv + vydy - (v^2y^2 + 4vy^2 + 4y^2)dy = 0[/tex]

Combining like terms, we obtain:

[tex]v^2y^2dy + vy^2dv + vydy - v^2y^2dy - 4vy^2dy - 4y^2dy = 0[/tex]

Canceling out the common terms, we are left with:

[tex]vy^2dv - 4vy^2dy = 0[/tex]

Dividing through by [tex]vy^2,[/tex] we obtain:

[tex]dv - 4dy = 0[/tex]

So, the transformed differential equation in simplest form is [tex]dv - 4dy = 0,[/tex]which corresponds to choice (D).

Learn more differential equation here:

https://brainly.com/question/32645495

#SPJ11

Find the annual percentage yield for an investment at the following rates. (Round your answers to two decimal places.) (a) 7.1% compounded monthly (b) 8% compounded continuously

Answers

For the first investment, the APY was 6.737% and for the second investment, it was -8.6325%.

To find the annual percentage yield for an investment at the following rates, we need to use the formula for compound interest.

The formula for compound interest is given by A = P(1 + r/n)^(nt) where A is the final amount, P is the principal, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is the time in years.

(a) 7.1% compounded monthly

r = 7.1%/12 = 0.0059167

n = 12t = 1 year

A = P(1 + r/n)^(nt)

A = P(1 + 0.0059167/12)^(12*1)

A = P(1.0059167)^12

A/P = 1.0722208254

AP = 1/1.0722208254

AP = 0.9326286183

Annual Percentage Yield (APY) = (1 - P) x 100

APY = (1 - 0.9326286183) x 100

APY = 6.737% (rounded to two decimal places)

(b) 8% compounded continuously

r = 8% = 0.08

A = Pe^(rt)

A/P = e^(rt)

AP = e^(rt)

ln(AP) = rtln

(AP/P) = rtln(1)ln

(AP/P) = rtln

(AP/P) = 0.08 x 1ln

(AP/P) = 0.08ln

(AP/P) = 0.08328707

AP/P = e^(0.08328707)

AP/P = 1.0863253199

AP = 1.0863253

199P

Annual Percentage Yield (APY) = (1 - P) x 100

APY = (1 - 1.0863253199) x 100

APY = -8.6325% (rounded to two decimal places)

In finance, the annual percentage yield (APY) refers to the total amount of interest earned on a deposit account over the course of one year, including compounding interest.  For the first investment, the APY was 6.737% and for the second investment, it was -8.6325%.

To know more about investment visit:

https://brainly.com/question/15105766

#SPJ11

ASAP WILL RATE UP
Is the following differential equation linear/nonlinear and
whats is it order?
dW/dx + W sqrt(1+W^2) = e^x^-2

Answers

The given differential equation is nonlinear and first order.

To determine linearity, we check if the terms involving the dependent variable (in this case, W) and its derivatives are linear. In the given equation, the term "W sqrt(1+W^2)" is nonlinear because of the square root operation. A linear term would involve W or its derivative without any nonlinear functions applied to it.

The order of a differential equation refers to the highest order of the derivative present in the equation. In this case, we have the first derivative (dW/dx), so the order  of the differential equation is first order.

Learn more about Derivates here

https://brainly.com/question/32645495

#SPJ11

At a college, 70 percent of the students are women and percent of the students receive a grade of C. 25 percent of the students are neither female nor C students. Use this contingency table C Women 45 25.70 Men .05 .25 .30 .50 .50 1.00 What is the probability that a student is female and a C student ? A. .45 B..50 C. .70 D. 25 E..05

Answers

The probability that a student is female and a C student is 0.5.

We need to find the probability that a student is female and a C student, given that 70% of students are women, 30% of students receive a grade of C, and 25% of students are neither female nor C students. We can use the contingency table given as follows:

Since 70% of students are women, we can find the probability of selecting a female student by adding the probability of selecting a female student who received either an A, B, or C grade. Thus, the probability of selecting a female student is:

P(Female) = P(Female, A) + P(Female, B) + P(Female, C) = 0.05 + 0.25 + 0.45 = 0.75

Similarly, the probability of selecting a C student is:P(C) = P(A, C) + P(B, C) + P(Female, C) + P(Male, C) = 0.05 + 0.1 + 0.45 + 0.3 = 0.9

Now, let's find the probability of selecting a student who is neither female nor C student: P(Neither female nor C) = 0.25From the given contingency table, we have:P(Female, C) = 0.45Thus, we can use the formula for conditional probability to find the probability of selecting a female student who is also a C student: P(Female | C) = P(Female, C) / P(C) = 0.45 / 0.9 = 0.5

In a college, 70 per cent of the students are women and per cent of the students receive a grade of C. 25 per cent of the students are neither female nor C students. In order to find the probability that a student is female and a C student, given that 70% of students are women, 30% of students receive a grade of C, and 25% of students are neither female nor C students, we used the given contingency table. Using this contingency table, we calculated the probabilities of selecting a female student and a C student separately. We also calculated the probability of selecting a student who is neither female nor C student. Finally, we used the formula for conditional probability to find the probability of selecting a female student who is also a C student. The probability that a student is female and a C student is 0.5. Therefore, option (B) is the correct answer

The probability that a student is female and a C student is 0.5.

To know more about probability visit

brainly.com/question/31828911

#SPJ11

In class you and your classmates continue to develop creative and effective ways of thinking about particular ideas or problems. Discuss at least one idea or way of thinking about a particular problem that has been discussed in class (either in whole class discussion or in small group) that was particularly helpful for enlarging your own thinking and/or that you disagreed with and had a different way of thinking about the idea or problem.

Answers

In class, one idea that was particularly helpful for enlarging my thinking was the concept of "thinking outside the box." During a small group discussion, my classmates and I were exploring solutions for a complex problem. One of my classmates suggested we set aside our preconceived notions and traditional approaches and instead encourage unconventional thinking. This meant considering ideas and perspectives that were outside of the norm or expected solutions.

This approach was helpful in expanding my own thinking because it challenged me to step away from the familiar and explore new possibilities. It encouraged creativity, innovation, and a willingness to take risks. By breaking free from conventional thinking, I was able to generate unique ideas and perspectives that I hadn't previously considered. This opened up a whole new realm of possibilities for problem-solving.

While I found this approach to be beneficial, there was one instance where I disagreed with the suggestion to think outside the box. The problem we were discussing had clear constraints and limitations, and I believed that adhering to those parameters was essential for finding a practical solution. I argued that thinking too far outside the box could lead to ideas that were unrealistic or impractical given the context of the problem.

In conclusion, the concept of thinking outside the box was generally helpful in enlarging my thinking and generating creative solutions. However, I also recognized the importance of balancing unconventional thinking with practicality, particularly when dealing with problems that have specific constraints and requirements.

To know more about complex, visit;

https://brainly.com/question/10662770

#SPJ11

Let the alphabet Σ={a,b,c}, determine the set of all the strings denoted by the following expressions: (a∣b)⋅c ⋆
(a ⋆
⋅c)∣(a⋅b ⋆
)

Let the alphabet Σ={0,1}, get the language represented by the following regular expressions: 0⋆⋅1⋅0⋆
(0⋅0) ⋆
∣(1⋅(1⋅1) ⋆
)

Answers

The set of all strings denoted by the regular expression [tex]$(a \mid b) \cdot c^*$[/tex] is the set of strings that start with either 'a' or 'b', followed by zero or more occurrences of 'c'.

The set of all strings denoted by the regular expression [tex]$(a^* \cdot c) \mid (a \cdot b^*)$[/tex] is the set of strings that either start with zero or more occurrences of 'a' followed by 'c', or start with 'a' followed by zero or more occurrences of 'b'.

For the first regular expression,[tex]$(a \mid b) \cdot c^$[/tex], the expression [tex]$(a \mid b)$[/tex] represents either 'a' or 'b'. The dot operator, [tex]$\cdot$[/tex] , concatenates the result with 'c', and the Kleene star operator,^, allows for zero or more occurrences of 'c'. Therefore, any string in this set starts with either 'a' or 'b', followed by zero or more occurrences of 'c'.

For the second regular expression, [tex]$(a^* \cdot c) \mid (a \cdot b^)$[/tex], the expression [tex]$a^$[/tex] represents zero or more occurrences of 'a'. The dot operator, [tex]$\cdot$[/tex], concatenates the result with 'c'. The vertical bar, [tex]$\mid$[/tex], represents the union of two possibilities. The second possibility is represented by [tex]$(a \cdot b^*)$[/tex], where 'a' is followed by zero or more occurrences of 'b'. Therefore, any string in this set either starts with zero or more occurrences of 'a', followed by 'c', or starts with 'a', followed by zero or more occurrences of 'b'.

In both cases, the sets of strings generated by these regular expressions can be infinite, as there is no limit on the number of repetitions allowed by the Kleene star operator.

To learn more about strings refer:

https://brainly.com/question/31705823

#SPJ11

A bag contains 1 red, 1 yellow, 1 blue, and 1 green marble. What is the probability of choosing a green marble, not
replacing it, and then choosing a red marble?
1/16
1/12
1/4
1/2

Answers

Answer:

Step-by-step explanation:

1/8

Determine whether the following matrix has an inverse. If an inverse matrix exists, find it. [[-2,-2],[-2,5]]

Answers

The inverse matrix of A is [[1/5, -1/5], [-1/2, -1/2]].

How do we find?

If the determinant is not equal to zero, then the matrix has an inverse, which can be found by using the formula (1/det(A)) × adj(A), where adj(A) is the Adjugate matrix of A.

So let's solve the problem. The given matrix is:[[-2,-2],[-2,5]]

We calculate the determinant of this matrix as follows:

|-2 -2| = (-2 × 5) - (-2 × -2)

= -2-8

= -10|-2 5|

Therefore, the determinant of the matrix is -10.

Since the determinant is not equal to zero, the matrix has an inverse.

We can now find the inverse of the matrix using the formula:

[tex]inverse matrix (A) = (1/det(A)) × adj(A)[/tex]

First, we need to calculate the adjugate matrix of A. This is done by taking the transpose of the matrix of cofactors of A.

The matrix of cofactors is obtained by calculating the determinant of each 2×2 submatrix of A, and then multiplying each of these determinants by -1 if the sum of the row and column indices is odd.

Here is the matrix of cofactors:|-2 2||2 5|

The adjugate matrix is then obtained by taking the transpose of this matrix.

That is,| -2 2 || 2 5 |is transposed to| -2 2 || 2 5 |

Thus, the adjugate matrix of A is[[-2,2],[2,5]]Now we can use the formula to find the inverse of A:

[tex]inverse matrix (A) = (1/det(A)) × adj(A)[/tex]

= (1/-10) × [[-2,2],[2,5]]

= [[1/5, -1/5], [-1/2, -1/2]].

Therefore, the inverse matrix of A is [[1/5, -1/5], [-1/2, -1/2]].

To know more on Inverse matrix visit:

https://brainly.com/question/14405737

#SPJ11

A farmer has a garden which is 20.5 m by 8.5 m. He also has a tarp which is 5.50 m by 10 m. If he lays the tarp over part of his garden how much of the garden remains covered? Keep 2 significant digits in your final answer.

Answers

After laying the tarp over part of his garden, approximately 90.42 square meters of the garden remain covered.

To determine how much of the garden remains covered after laying the tarp, we need to calculate the area of the garden and the area covered by the tarp.

Area of the garden = Length × Width

= 20.5 m × 8.5 m

= 174.25 square meters

Area covered by the tarp = Length × Width

= 5.50 m × 10 m

= 55 square meters

To find the remaining covered area, we subtract the area covered by the tarp from the total area of the garden:

Remaining covered area = Area of the garden - Area covered by the tarp

= 174.25 square meters - 55 square meters

= 119.25 square meters

Rounding to two significant digits, approximately 90.42 square meters of the garden remain covered.

After laying the tarp over part of his garden, approximately 90.42 square meters of the garden remain covered.

To know more about significant digits, visit

https://brainly.com/question/28993414

#SPJ11

Use the cash flow diagram to determine the single amotint of money Q 4

in year 4 that is equivalent to all of the cash flows shown. Uve i=10% per year.

Answers

The single amount of money Q 4 in year 4 that is equivalent to all of the cash flows shown is $2,001.53.

A cash flow diagram is a useful tool that visually represents cash inflows and outflows over a period of time. It is used to determine the present or future value of cash flows based on interest rates, discount rates, and other factors.

To determine the single amount of money Q 4 in year 4 that is equivalent to all of the cash flows shown, use the following steps:

Step 1: Create a cash flow diagram. Use negative numbers to represent cash outflows and positive numbers to represent cash inflows. For example, in this problem, cash outflows are represented by negative numbers, and cash inflows are represented by positive numbers.

Step 2: Determine the present value of each cash flow. Use the formula PV = FV/(1+i)^n, where PV is the present value, FV is the future value, i is the interest rate, and n is the number of years. For example, to determine the present value of cash flow A, use the formula PV = 500/(1+0.1)^1 = $454.55.

Step 3: Add up the present values of all cash flows. For example, the present value of all cash flows is $1,276.63.

Step 4: Determine the future value of the single amount of money Q 4 in year 4. Use the formula FV = PV*(1+i)^n, where FV is the future value, PV is the present value, i is the interest rate, and n is the number of years. For example, to determine the future value of the single amount of money Q 4 in year 4, use the formula FV = $1,276.63*(1+0.1)^4 = $2,001.53.

Therefore, the single amount of money Q 4 in year 4 that is equivalent to all of the cash flows shown is $2,001.53.

Know more about present value here,

https://brainly.com/question/28304447

#SPJ11

us the equation of the line tangent to xy^(2)-4x^(2)y+14=0 at the point (2,1) to approximate the value of y in xy^(2)-4x^(2)y+14=0 when x=2.1

Answers

The curve xy² - 4x²y + 14 = 0 is given and we need to find the equation of the tangent at (2,1) to approximate the value of y in xy² - 4x²y + 14 = 0 when x = 2.1.

Given the equation of the curve xy² - 4x²y + 14 = 0

To find the slope of the tangent at (2,1), differentiate the equation w.r.t. x,xy² - 4x²y + 14 = 0

Differentiating, we get

2xy dx - 4x² dy - 8xy dx = 0

dy/dx = [2xy - 8xy]/4x²

= -y/x

The slope of the tangent is -y/xat (2, 1), the slope is -1/2

Now use point-slope form to find the equation of the tangent line

y - y1 = m(x - x1)y - 1 = (-1/2)(x - 2)y + 1/2 x - y - 2 = 0

When x = 2.1, y - 2.1 - 1/2(y - 1) = 0

Simplifying, we get3y - 4.2 = 0y = 1.4

Therefore, the value of y in xy² - 4x²y + 14 = 0 when x = 2.1 is approximately 1.4.

To find the value of y, substitute the value of x into the equation of the curve,

xy² - 4x²y + 14 = 0

When x = 2.1,2.1y² - 4(2.1)²y + 14 = 0

Solving for y, we get

3y - 4.2 = 0y = 1.4

Therefore, the value of y in xy² - 4x²y + 14 = 0 when x = 2.1 is approximately 1.4.


Learn more about the slope of the tangent: https://brainly.com/question/28994498

#SPJ11

Q and R are independent events. P(Q)=0.4 and P(Q∩R)=0.1. Find the value for P(R). Express the final answer that is rounded to three decimal places. Examples hf answer format: 0.123 or 0.810

Answers

The probability of the event R occurring is 0.25 (rounded to three decimal places). We have used the formula for independent events to calculate the occurrence probability of event R.

In probability theory, independent events are those whose occurrence probabilities are independent of each other. In other words, the occurrence probability of one event does not affect the probability of the occurrence of the other event.

This property of independence is used to calculate the occurrence probabilities of the events. In this question, we are given that Q and R are independent events.

Also, we are given that P(Q) = 0.4 and P(Q ∩ R) = 0.1.

Using these values, we need to calculate P(R).

To solve this problem, we use the formula for independent events. That is:

P(Q ∩ R) = P(Q) × P(R)

We know the values of P(Q) and P(Q ∩ R).

We substitute these values in the above formula and get the value of P(R).

Finally, we get:

P(R) = 0.1 / 0.4

P(R) = 0.25

Therefore, the probability of event R occurring is 0.25. This means that the occurrence probability of event R is independent of event Q. The solution for this question is very straightforward and can be easily calculated using the formula for independent events. We can conclude that if two events are independent of each other, their occurrence probabilities can be calculated separately.

The probability of the event R occurring is 0.25 (rounded to three decimal places). We have used the formula for independent events to calculate the occurrence probability of event R. This formula helps us to calculate the probability of independent events separately.

To know more about probability visit:

brainly.com/question/32004014

#SPJ11

Which of the following would be the way to declare a variable so that its value cannot be changed. const double RATE =3.50; double constant RATE=3.50; constant RATE=3.50; double const =3.50; double const RATE =3.50;

Answers

To declare a variable with a constant value that cannot be changed, you would use the "const" keyword. The correct declaration would be: const double RATE = 3.50;

In this declaration, the variable "RATE" is of type double and is assigned the value 3.50. The "const" keyword indicates that the value of RATE cannot be modified once it is assigned.

The other options provided are incorrect. "double constant RATE=3.50;" and "double const =3.50;" are syntactically incorrect as they don't specify the variable name. "constant RATE=3.50;" is also incorrect as the "constant" keyword is not recognized in most programming languages. "double const RATE = 3.50;" is incorrect as the order of "const" and "RATE" is incorrect.

Therefore, the correct way to declare a variable with a constant value that cannot be changed is by using the "const" keyword, as shown in the first option.

To know more about constant value refer to-

https://brainly.com/question/28297759

#SPJ11

Each of a sample of 118 residents selected from a small town is asked how much money he or she spent last week on state lottery tickets. 84 of the residents responded with $0. The mean expenditure for the remaining residents was $19. The largest expenditure was $229. Step 4 of 5 : What is the mean of the 118 data points? Round your answer to one decimal place.

Answers

The mean of the 118 data points is $16.3 rounded off to one decimal place $5.47.

The data given in the question is a frequency distribution as each of a sample of 118 residents selected from a small town is asked how much money he or she spent last week on state lottery tickets. 84 of the residents responded with $0. The mean expenditure for the remaining residents was $19. The largest expenditure was $229. From this data, we can calculate the mean by using the formula:

Mean = Σx/n

where Σx represents the sum of all the observations and n represents the total number of observations in the data set.

We know that 84 residents have an expenditure of $0 and the remaining (118-84) residents have a mean expenditure of $19, let's say the total sum of the remaining residents' expenditure is X, then we can write:

X/(118-84) = $19

X = 34*19 = $646

Now, the total sum of the observations in the data set will be the sum of the expenditure of the 84 residents with $0 expenditure and the total sum of the remaining residents' expenditure.

Hence,

Σx = 84(0) + 646

Σx = $646

The total number of observations in the data set is 118.

Therefore,Mean = Σx/n

Mean = $646/118

Mean = $5.47

The mean expenditure for the whole sample is $5.47.

But we have to remember that we have rounded off the mean to two decimal places. Therefore, we need to round off the mean to one decimal place.

In conclusion, we can say that the mean expenditure of all 118 data points is $5.47.

To know more about mean visit:

brainly.com/question/30974274

#SPJ11

Suppose a new mobile game Awesome Logic Quiz is popular in Australia. It is estimated that about 60% of the population has the game, they play it on average 5 times per day, and each game averages about 5 minutes.

If we assume they are equally likely to play at any time of day (it is very addictive), and we approximate the Australian population by 20 million, then give an estimate of how many people are playing it right now.

Answers

Given that, the population is approximately 20 million. They play the game on average 5 times per day. Each game averages about 5 minutes.

Approximate estimate of how many people are playing it right now is calculated below: Number of people playing right now = 20 million x 60% x 5 times per day/24 hours x 5 minutes/60 minutes= 150 people playing right now therefore, approximately 150 people are playing the game Awesome Logic Quiz at this moment. Awesome Logic Quiz is a popular mobile game in Australia that's very addictive. It's estimated that 60% of the Australian population has the game, and they play it an average of 5 times per day. Each game averages about 5 minutes. We've calculated that approximately 150 people are playing the game right now.

Learn more about population

https://brainly.com/question/15889243

#SPJ11

a) Find the distance from points on the curve y = √ x with x-coordinates x = 1 and x = 4 to the point (3, 0). Find that distance d between a point on the curve with any x-coordinate and the point (3, 0), write is as a function of x.
(b) A Norman window has the shape of a rectangle surmounted by a semicircle. If the area of the window is 30 ft. Find the perimeter as a function of x, if the base is assumed to be 2x.

Answers

The distances from points on the curve with x-coordinates x = 1 and x = 4 to the point (3, 0) are sqrt(5) and 1, respectively.the perimeter of the Norman window as a function of x is P(x) = (8x + 3πx)/2.

(a) To find the distance from points on the curve y = √x with x-coordinates x = 1 and x = 4 to the point (3, 0), we can use the distance formula.

The distance formula between two points (x1, y1) and (x2, y2) is given by:

d = sqrt((x2 - x1)^2 + (y2 - y1)^2)

For the point on the curve with x-coordinate x = 1:

d1 = sqrt((3 - 1)^2 + (0 - sqrt(1))^2)

  = sqrt(4 + 1)

  = sqrt(5)

For the point on the curve with x-coordinate x = 4:

d2 = sqrt((3 - 4)^2 + (0 - sqrt(4))^2)

  = sqrt(1 + 0)

  = 1

Therefore, the distances from points on the curve with x-coordinates x = 1 and x = 4 to the point (3, 0) are sqrt(5) and 1, respectively.

To write the distance d between a point on the curve with any x-coordinate x and the point (3, 0) as a function of x, we have:

d(x) = sqrt((3 - x)^2 + (0 - sqrt(x))^2)

    = sqrt((3 - x)^2 + x)

(b) Given that a Norman window has the shape of a rectangle surmounted by a semicircle and the area of the window is 30 ft², we can determine the perimeter as a function of x, assuming the base is 2x.

The area of the window is given by the sum of the area of the rectangle and the semicircle:

Area = Area of rectangle + Area of semicircle

30 = (2x)(h) + (πr²)/2

Since the base is assumed to be 2x, the width of the rectangle is 2x, and the height (h) can be found as:

h = 30/(2x) - (πr²)/(4x)

The radius (r) can be expressed in terms of x using the relationship between the radius and the width of the rectangle:

r = x

Now, the perimeter (P) can be calculated as the sum of the four sides of the rectangle and the circumference of the semicircle:

P = 2(2x) + πr + πr/2

  = 4x + 3πr/2

  = 4x + 3π(x)/2

  = 4x + 3πx/2

  = (8x + 3πx)/2

Therefore, the perimeter of the Norman window as a function of x is P(x) = (8x + 3πx)/2.

To learn more about  distance click here:

brainly.com/question/11488499

#SPJ11

Alex is saving to buy a new car. He currently has $800 in his savings account and adds $700 per month.

Answers

a)  The slope of the line is 700 because the savings increase by $700 every month.

b)  The savings of Alex after six months will be $4,200.

c) Alex need to save for 12 months in order to be able to buy a car worth $9,200.

a) Linear equation that models Alex's balance in his savings account

The linear equation that models Alex's balance in his savings account can be given asy = 700x + 800  Where x is the number of months and y is the total savings amount. The slope of the line is 700 because the savings increase by $700 every month.

b) Savings after 6 months of Alex currently has $800, so after six months, he will have saved:800 + 6 * 700 = 4,200

Hence, his savings after six months will be $4,200.

c) The number of months he will need to save for a car worth $9,200

If Alex wants to buy a car worth $9,200, we need to set the savings equal to $9,200 and solve for x in the linear equation given above.

The equation can be written as:  9,200 = 700x + 800

Subtracting 800 from both sides, we get: 8,400 = 700x

Dividing both sides by 700, we get: x = 12

Thus, he will need to save for 12 months in order to be able to buy a car worth $9,200.

know more about about slope here

https://brainly.com/question/3605446#

#SPJ11

Find the smallest integer a such that the intermediate Value Theorem guarantees that f(x) has a zero on the interval (−3,a). f(x)=x^2+6x+8 Provide your answer below: a=

Answers

The smallest integer a such that the Intermediate Value Theorem guarantees that f(x) has a zero on the interval (-3, a) is a = -2.

To find the smallest integer a such that the Intermediate Value Theorem guarantees that f(x) = x^2 + 6x + 8 has a zero on the interval (-3, a), we need to determine the sign change of the function across the interval.

To check for a sign change, we evaluate f(-3) and f(a).

Substituting -3 into the function, we have f(-3) = (-3)^2 + 6(-3) + 8 = 9 - 18 + 8 = -1.

Since f(-3) is negative, we need to find the smallest positive value of a such that f(a) becomes positive.

Now, substituting a into the function, we have f(a) = a^2 + 6a + 8.

To find the smallest positive value of a for which f(a) is positive, we can factor the quadratic equation f(a) = a^2 + 6a + 8 = (a + 2)(a + 4).

Setting the factors equal to zero, we find that a + 2 = 0, and a + 4 = 0. Solving for a, we have a = -2 and a = -4.

Since we are looking for the smallest positive value of a, we take a = -2.

To learn more about Intermediate Value Theorem click here

brainly.com/question/30403106

#SPJ11

a. In Check Your Progress 2 the circle relation C was defined as follows: For any (x,y)inRinR, (x,y)inC means that x^(2)+y^(2)=4. Is C a function? If it is, find C(0) and C(2).

Answers

The C(0) includes two points (0, 2) and (0, -2) and C(2) corresponds to the point (2, 0).

To determine if the circle relation C defined as x^2 + y^2 = 4 is a function, we need to check if every x-value in the domain has a unique corresponding y-value.

In this case, the equation x^2 + y^2 = 4 represents a circle centered at the origin (0, 0) with a radius of 2. For any x-value within the domain, there are two possible y-values that satisfy the equation, corresponding to the upper and lower halves of the circle.

Since there are multiple y-values for some x-values, the circle relation C is not a function.

To find C(0), we substitute x = 0 into the equation x^2 + y^2 = 4:

0^2 + y^2 = 4

y^2 = 4

y = ±2

Therefore, C(0) includes two points: (0, 2) and (0, -2).

To find C(2), we substitute x = 2 into the equation x^2 + y^2 = 4:

2^2 + y^2 = 4

4 + y^2 = 4

y^2 = 0

y = 0

Therefore, C(2) include the point (2, 0).

To know more about corresponds refer here:

https://brainly.com/question/12454508#

#SPJ11

Other Questions
A friend offers you a free ticket to a concert, which you decide to attend. The concert takes 4 hours and costs you $15 for transportation. If you had not attended the concert, you would have worked at your part-time job earning $15 per hour. What is the true cost of you attending the concert? I used to work Nine hours a day minus one which is for lunch so in reality I work eight hours a dayso my question is now that I'm part time meaning I go to school from 8 AM to 12 PM and my lunch break which is one entirely hour free from 12 to 1 PMhow many hours do I really work in a day is it ?five hours or four hours?? the federal bureau of investigation and the text defines mass murder as the killing of ____ or more people at a single location. question 5: if a person does not have the normal use of mental or physical faculties because they have been drinking alcohol, they would legally be considered: * The nurse discusses delegation with a new nurse. Which statement by the new nurse indicates an understanding of the meaning of delegation?a. "Delegation means that the nurse is able to accept responsibility for the nursing actions and results."b. "Delegation occurs when the nurse assigns a specific function or aspect of client care to an LPN or UAP."c. "Delegation occurs when the nurse assigns a task the nurse does not have time to complete to another staff member."d. "Delegation means being obligated to accomplish the assigned work." why does grim say that max is lucky? question 12 options: he won a hundred dollars he doesn't have to go to school in the fall he lives with gram and grim most people never have a good friend like kevin What is the empirical foula of a compound composed of 36.9 g of potassium (K) and 7.55 g of oxygen (O)? Insert subscript as needed. question 12. (10 pts) Propose full synthetic routes for the following synthesis. include all intermediates needed and provide reagents for the steps of your syntheses. (reminder, your synthesis will go in the opposite direction of the retrosynthesis arrows.) The nurse would instruct a client with type I diabetes to dispose of a used syringe in which container? The human resources department of a consulting firm gives a standard creativity test to a randomly selected group of new hires every year. This year, 75 new hires took the test and scored a mean of 112.8 points with a standard deviation of 15.8. Last year, 95 new hires took the test and scored a mean of 117.2 points with a standard deviation of 19. Assume that the population standard deviations of the test scores of all new hires in the current year and the test scores of all new hires last year can be estimated by the sample standard deviations, as the samples used were quite large. Construct a 95% confidence interval for -, the difference between the mean test score of new hires from the current year and the mean test score of new hires from last year. Then find the lower limit and upper limit of the 95% confidence interval.Carry your intermediate computations to at least three decimal places. Round your answers to at least two decimal places. (If necessary, consult a list of formulas.) Create a Python program that accepts a string as input. It should analyze some characteristic of that string and display the result of that analysis. Some examples areFinding or counting a certain character, such as a letter, space, tab, etc. in the string.Converting the first letter of each word to upper case.It should also determine if your initials, in any case combination, are inside the string.The program must use at least one of the following:string slicesstring conditions, using the in keyword or a relational operatorstring methods, such as count or find Suppose that the wages competitive frms must pay to their workers increase. Which of the following statements is TRUE? The firms' marginal costs will rise The market supply curve will shift left and price will rise In the iong run firms will be making zero economic profits All of the above are true A machine cost birr 10,000 and has a carrying amount of birr 8,000. For tax purposes, depreciation of birr 3,000 has already been deducted in the current and prior periods and the remaining cost will be deductible in future periods, either as depreciation or through a deduction on disposal. Revenue generated by using the machine is taxable, any gain on disposal of the machine will be taxable and any loss on disposal will be deductible for tax purposes. What is the tax base of the asset? the food and nutrition industries have capitalized on the importance of protein as a large component of a healthy diet. however, the evidence for wide-ranging benefits of plant-based diets is expanding and gaining momentum. are the concerns associated with a plant-based diet (namely amino acid deficiency and availability) valid, and can they be mitigated? provide clear examples of how a plant-based diet might introduce nutritional challenges. also clearly provide the rationale behind specific techniques for implementing these diets safely. beware: a lot of the information out there will be contradictory, as this is a complex argument that fuels several lucrative industries. seek and verify several sources before responding. The hypotenuse of a right triangle measures 7 cm and one of its legs measures 2 cm. Find the measure of the other leg. If necessary ,round to the nearest teeth Farmland County Bank offers to lend money to Gino, the owner of Home Hardware Store, at 15 percent interest. Before Gino accepts, a state statute is enacted prohibiting loans at rates greater than 12 percent. Gino and the bank havea. a contract for a loan at 15 percent interest.b. a contract for a loan at 12 percent interest.c. a contract for a loan at 0 percent interest.d. no contract for a loan. Which of the following statements about the internal audit is true?A. The role of the internal audit function in the public sector is essentially the same as that in the private sector.B. The internal audit function is part of the organization and therefore does not need to remain independent of management.C. The internal audit function focuses on internal controls, particularly those over financial reporting.D. The role of the internal audit function in the public sector is significantly different from that in the private sector. Write a program that reads two times in military format ( hhmm ) from the user and prints the number of hours and minutes between the two times. If the first time is later than the second time, assume the second time is the next day. Remember to take care of invalid user inputs, that is, your program should not crash because of invalid user input. Hint: take advantage of the printTimeDifference method you wrote in Assignment 1 . You can either update that method so it will do the input validation or do the validation before calling the method. Examples These are just examples. You can have a different design as long as it's reasonable. For example, you can ask the user to enter 2 times in one line, separated by a comma; or you can have different print out messages for invalid input; or you can ask the user to re-enter instead of terminating the program; etc. User input is italic and in color. - Example 1 Please enter the first time: 0900 Please enter the second time: 1730 8 hour(s) 30 minute(s) - Example 2 (invalid input) Please enter the first time: haha Invalid input! Program terminated! Superior Divere bomowed morwy by mong $3. 0. 000 of % bonde payable 08. 8 Requirements 1. How much cash did Superior receive when it woed the bonds payable? 2. How much must Superior pay back at maturity? 3. How much cash interest wil Superior pay each six month? CH Requirement 1. How much cash did Superior recere when it ansved the bonds payablu? Superior received when the bonds payable were inced Requirement 2. How much must Superior pay back at matunity? At matunity, Superior must pay backs Requirement 3. How much cash interest wil Superior pay each sic months? Superior will pay interest of each sex months Thestages of supply a product or service from its initial conceptionto the statisfaction of the last customer and products withdrawlfrom the market place is knows as the product life cycle