when adjusting an estimate for time and location, the adjustment
for location must be made first.
True or false

Answers

Answer 1

The given statement “when adjusting an estimate for time and location, the adjustment for location must be made first” is true.

Location, in the field of estimating, relates to the geographic location where the project will be built. The estimation of construction activities is influenced by location-based factors such as labor availability, productivity, and costs, as well as material accessibility, cost, and delivery.

When estimating projects in various geographical regions, location-based estimation adjustments are required to account for these variations. It is crucial to adjust the estimates since it aids in the determination of an accurate estimate of the project's real costs. The cost adjustment is necessary due to differences in productivity, labor costs, and availability, and other factors that vary by location.

Hence, the statement when adjusting an estimate for time and location, the adjustment for location must be made first is true.

Know more about the estimates

https://brainly.com/question/28416295

#SPJ11


Related Questions

Solve the following system by substitution. y=2x+5
4x+5y=123
​Select the correct choice below and, if necessary, fill in the answer box to A. The solution set is (Type an ordered pair.) B. There are infinitely many solutions. The solution set is C. The solution set is ∅.

Answers

The solution set is therefore found to be (7, 19) using the substitution method.

To solve the given system of equations, we need to find the values of x and y that satisfy both equations. The first equation is given as y = 2x + 5 and the second equation is 4x + 5y = 123.

We can use the substitution method to solve this system of equations. In this method, we solve one equation for one variable, and then substitute the expression we find for that variable into the other equation.

This will give us an equation in one variable, which we can then solve to find the value of that variable, and then substitute that value back into one of the original equations to find the value of the other variable.

To solve the system of equations by substitution, we need to substitute the value of y from the first equation into the second equation. y = 2x + 5.

Substituting the value of y into the second equation, we have:

4x + 5(2x + 5) = 123

Simplifying and solving for x:

4x + 10x + 25 = 123

14x = 98

x = 7

Substituting the value of x into the first equation to solve for y:

y = 2(7) + 5

y = 19

Know more about the substitution method

https://brainly.com/question/22340165

#SPJ11

If n>5, then in terms of n, how much less than 7n−4 is 5n+3? a. 2n+7 b. 2n−7 c. 2n+1 d. 2n−1

Answers

We should take the difference of the given expressions to get the answer.

Let's begin the solution to the given problem. We are given that If n>5, then in terms of n, how much less than 7n−4 is 5n+3?We are required to find how much less than 7n−4 is 5n+3. Therefore, we can write the equation as;[tex]7n-4-(5n+3)[/tex]To get the value of the above expression, we will simply simplify the expression;[tex]7n-4-5n-3[/tex][tex]=2n-7[/tex]Therefore, the amount that 5n+3 is less than 7n−4 is 2n - 7. Hence, option (b) is the correct answer.Note: We cannot say that 7n - 4 is less than 5n + 3, as the value of 'n' is not known to us. Therefore, we should take the difference of the given expressions to get the answer.

Learn more about Equation here,What is equation? Define equation

https://brainly.com/question/29174899

#SPJ11

Determine the inverse of the function \( f(x)=\log _{2}(3 x+4)-5 \) \( f^{-1}(x)=\frac{2^{x}+3}{3} \) \( f^{-1}(x)=\frac{(x+5)^{2}-4}{3} \) \( f^{-1}(x)=\frac{2^{x+5}-4}{3} \) \( f^{-1}(x)=\frac{2^{x-

Answers

The inverse of the function \( f(x) = \log_{2}(3x+4) - 5 \) is given by \( f^{-1}(x) = \frac{2^{x}+3}{3} \).

To find the inverse of a function, we interchange the roles of \( x \) and \( y \) and solve for \( y \). Let's start by writing the original function as an equation:

\[ y = \log_{2}(3x+4) - 5 \]

Interchanging \( x \) and \( y \):

\[ x = \log_{2}(3y+4) - 5 \]

Next, we isolate \( y \) and simplify:

\[ x + 5 = \log_{2}(3y+4) \]
\[ 2^{x+5} = 3y+4 \]
\[ 2^{x+5} - 4 = 3y \]
\[ y = \frac{2^{x+5} - 4}{3} \]

Therefore, the inverse of the function \( f(x) = \log_{2}(3x+4) - 5 \) is given by \( f^{-1}(x) = \frac{2^{x}+3}{3} \). This means that for any given value of \( x \), applying the inverse function will give us the corresponding value of \( y \).

learn more about inverse of the function here

  https://brainly.com/question/29141206

#SPJ11

 

 

Use Cramer's Rule to solve (if possible) the system of linear equations. (If not possible, enter IMPOSSIBLE.) 4x1 - x2 + x3 = -10 2X1 + 2x2 + 3x3 = 5 5x1 - 2x2 + 6x3 = -10 (x1, x2, x3) = ( )

Answers

The solution to the system of linear equations is:

(x1, x2, x3) = (-104/73, 58/73, -39/73)

To solve the system of linear equations using Cramer's rule, we need to compute the determinant of the coefficient matrix and the determinants of the matrices obtained by replacing each column of the coefficient matrix with the constants on the right-hand side of the equations. If the determinant of the coefficient matrix is non-zero, then the system has a unique solution given by the ratios of these determinants.

The coefficient matrix of the system is:

4  -1   1

2   2   3

5  -2   6

The determinant of this matrix can be computed as follows:

4  -1   1

2   2   3

5  -2   6

= 4(2*6 - (-2)*(-2)) - (-1)(2*5 - 3*(-2)) + 1(2*(-2) - 2*5)

= 72 + 11 - 10

= 73

Since the determinant is non-zero, the system has a unique solution. Now, we can compute the determinants obtained by replacing each column with the constants on the right-hand side of the equations:

-10  -1   1

 5   2   3

-10  -2   6

4  -10   1

2    5   3

5  -10   6

4  -1  -10

2   2    5

5  -2  -10

Using the formula x_i = det(A_i) / det(A), where A_i is the matrix obtained by replacing the i-th column of the coefficient matrix with the constants on the right-hand side, we can find the solution as follows:

x1 = det(A1) / det(A) = (-10*6 - 3*(-2) - 2*1) / 73 = -104/73

x2 = det(A2) / det(A) = (4*5 - 3*(-10) + 2*6) / 73 = 58/73

x3 = det(A3) / det(A) = (4*(-2) - (-1)*5 + 2*(-10)) / 73 = -39/73

Therefore, the solution to the system of linear equations is:

(x1, x2, x3) = (-104/73, 58/73, -39/73)

Learn more about linear equations here:

https://brainly.com/question/29111179

#SPJ11

Find the standard matricies A and A′ for T=T2∘T1 and T′=T1∘T2 if T1:R2→R3,T(x,y)=(−x+2y,y−x,−2x−3y)
T2:R3→R2,T(x,y,z)=(x−y,z−x)

Answers

The standard matrix A for T1: R2 -> R3 is: [tex]A=\left[\begin{array}{ccc}-1&2\\1&-1\\-2&-3\end{array}\right][/tex]. The standard matrix A' for T2: R3 -> R2 is: A' = [tex]\left[\begin{array}{ccc}1&-1&0\\0&1&-1\end{array}\right][/tex].

To find the standard matrix A for the linear transformation T1: R2 -> R3, we need to determine the image of the standard basis vectors i and j in R2 under T1.

T1(i) = (-1, 1, -2)

T1(j) = (2, -1, -3)

These image vectors form the columns of matrix A:

[tex]A=\left[\begin{array}{ccc}-1&2\\1&-1\\-2&-3\end{array}\right][/tex]

To find the standard matrix A' for the linear transformation T2: R3 -> R2, we need to determine the image of the standard basis vectors i, j, and k in R3 under T2.

T2(i) = (1, 0)

T2(j) = (-1, 1)

T2(k) = (0, -1)

These image vectors form the columns of matrix A':

[tex]\left[\begin{array}{ccc}1&-1&0\\0&1&-1\end{array}\right][/tex]

These matrices allow us to represent the linear transformations T1 and T2 in terms of matrix-vector multiplication. The matrix A transforms a vector in R2 to its image in R3 under T1, and the matrix A' transforms a vector in R3 to its image in R2 under T2.

Learn more about matrix here:

https://brainly.com/question/29273810

#SPJ11

8. Your patient is ordered 1.8 g/m/day to infuse for 90 minutes. The patient is 150 cm tall and weighs 78 kg. The 5 g medication is in a 0.5 L bag of 0.95NS Calculate the rate in which you will set the pump. 9. Your patient is ordered 1.8 g/m 2
/ day to infuse for 90 minutes, The patient is 150 cm tall and weighs 78 kg. The 5 g medication is in a 0.5 L bag of 0.9%NS. Based upon your answer in question 8 , using a megt setup, what is the flow rate?

Answers

The flow rate using a microdrip (megtt) setup would be 780 mL/hr. To calculate the rate at which you will set the pump in question 8, we need to determine the total amount of medication to be infused and the infusion duration.

Given:

Patient's weight = 78 kg

Medication concentration = 5 g in a 0.5 L bag of 0.95% NS

Infusion duration = 90 minutes

Step 1: Calculate the total amount of medication to be infused:

Total amount = Dose per unit area x Patient's body surface area

Patient's body surface area = (height in cm x weight in kg) / 3600

Dose per unit area = 1.8 g/m²/day

Patient's body surface area = (150 cm x 78 kg) / 3600 ≈ 3.25 m²

Total amount = 1.8 g/m²/day x 3.25 m² = 5.85 g

Step 2: Determine the rate of infusion:

Rate of infusion = Total amount / Infusion duration

Rate of infusion = 5.85 g / 90 minutes ≈ 0.065 g/min

Therefore, you would set the pump at a rate of approximately 0.065 g/min.

Now, let's move on to question 9 and calculate the flow rate using a microdrip (megtt) setup.

Given:

Rate of infusion = 0.065 g/min

Medication concentration = 5 g in a 0.5 L bag of 0.9% NS

Step 1: Calculate the flow rate:

Flow rate = Rate of infusion / Medication concentration

Flow rate = 0.065 g/min / 5 g = 0.013 L/min

Step 2: Convert flow rate to mL/hr:

Flow rate in mL/hr = Flow rate in L/min x 60 x 1000

Flow rate in mL/hr = 0.013 L/min x 60 x 1000 = 780 mL/hr

Therefore, the flow rate using a microdrip (megtt) setup would be 780 mL/hr.

Learn more about flow rate  here:

https://brainly.com/question/24560420

#SPJ11

Graphically determine the optimal solution, if it exists, and the optimal value of the objective function of the following linear programming problems. 1. 2. 3. maximize z = x₁ + 2x₂ subject to 2x1 +4x2 ≤6, x₁ + x₂ ≤ 3, x₁20, and x2 ≥ 0. maximize subject to z= X₁ + X₂ x₁-x2 ≤ 3, 2.x₁ -2.x₂ ≥-5, x₁ ≥0, and x₂ ≥ 0. maximize z = 3x₁ +4x₂ subject to x-2x2 ≤2, x₁20, and X2 ≥0.

Answers

The maximum value of the objective function z is 19, and it occurs at the point (5, 1).Hence, the optimal solution is (5, 1), and the optimal value of the objective function is 19.

1. Graphically determine the optimal solution, if it exists, and the optimal value of the objective function of the following linear programming problems.
maximize z = x₁ + 2x₂ subject to 2x1 +4x2 ≤6, x₁ + x₂ ≤ 3, x₁20, and x2 ≥ 0.

To solve the given linear programming problem, the constraints are plotted on the graph, and the feasible region is identified as shown below:

Now, To find the optimal solution and the optimal value of the objective function, evaluate the objective function at each corner of the feasible region:(0, 3/4), (0, 0), and (3, 0).

        z = x₁ + 2x₂ = (0) + 2(3/4)

                    = 1.5z = x₁ + 2x₂ = (0) + 2(0) = 0

                        z = x₁ + 2x₂ = (3) + 2(0) = 3

The maximum value of the objective function z is 3, and it occurs at the point (3, 0).

Hence, the optimal solution is (3, 0), and the optimal value of the objective function is 3.2.

maximize subject to z= X₁ + X₂ x₁-x2 ≤ 3, 2.x₁ -2.x₂ ≥-5, x₁ ≥0, and x₂ ≥ 0.

To solve the given linear programming problem, the constraints are plotted on the graph, and the feasible region is identified as shown below:

To find the optimal solution and the optimal value of the objective function,

        evaluate the objective function at each corner of the feasible region:

                                (0, 0), (3, 0), and (2, 5).

                          z = x₁ + x₂ = (0) + 0 = 0

                          z = x₁ + x₂ = (3) + 0 = 3

                           z = x₁ + x₂ = (2) + 5 = 7

The maximum value of the objective function z is 7, and it occurs at the point (2, 5).

Hence, the optimal solution is (2, 5), and the optimal value of the objective function is 7.3.

maximize z = 3x₁ +4x₂ subject to x-2x2 ≤2, x₁20, and X2 ≥0.

To solve the given linear programming problem, the constraints are plotted on the graph, and the feasible region is identified as shown below:

To find the optimal solution and the optimal value of the objective function, evaluate the objective function at each corner of the feasible region:(0, 1), (2, 0), and (5, 1).

                         z = 3x₁ + 4x₂ = 3(0) + 4(1) = 4

                      z = 3x₁ + 4x₂ = 3(2) + 4(0) = 6

                      z = 3x₁ + 4x₂ = 3(5) + 4(1) = 19

The maximum value of the objective function z is 19, and it occurs at the point (5, 1).Hence, the optimal solution is (5, 1), and the optimal value of the objective function is 19.

Learn more about linear programming

brainly.com/question/32634451

#SPJ11

Find a homogeneous linear differential equation with constant coefficients whose general solution is given.
1. y = c1 cos 6x + c2 sin 6x
2. y = c1e−x cos x + c2e−x sin x
3. y = c1 + c2x + c3e7x

Answers

Homogeneous linear differential equation with constant coefficients with given general solutions are :

1. y = c1 cos 6x + c2 sin 6x

2. y = c1e−x cos x + c2e−x sin x

3. y = c1 + c2x + c3e7x1.

Let's find the derivative of given y y′ = −6c1 sin 6x + 6c2 cos 6x

Clearly, we see that y'' = (d²y)/(dx²)

= -36c1 cos 6x - 36c2 sin 6x

So, substituting y, y′, and y″ into our differential equation, we get:

y'' + 36y = 0 as the required homogeneous linear differential equation with constant coefficients.

2. For this, let's first find the first derivative y′ = −c1e−x sin x + c2e−x cos x

Next, find the second derivative y′′ = (d²y)/(dx²)

= c1e−x sin x − 2c1e−x cos x − c2e−x sin x − 2c2e−x cos x

Substituting y, y′, and y″ into the differential equation yields: y′′ + 2y′ + 2y = 0 as the required homogeneous linear differential equation with constant coefficients.

3. We can start by finding the derivatives of y: y′ = c2 + 3c3e7xy′′

= 49c3e7x

Clearly, we can see that y″ = (d²y)/(dx²)

= 343c3e7x

After that, substitute y, y′, and y″ into the differential equation

y″−7y′+6y=0 we have:

343c3e7x − 21c2 − 7c3e7x + 6c1 + 6c2x = 0.

To know more about linear visit:

https://brainly.com/question/31510530

#SPJ11

victor chooses a code that consists of 4 4 digits for his locker. the digits 0 0 through 9 9 can be used only once in his code. what is the probability that victor selects a code that has four even digits?

Answers

The probability that Victor selects a code that has four even digits is approximately 0.0238 or 1/42.

To solve this problem, we can use the permutation formula to determine the total number of possible codes that Victor can choose. Since he can only use each digit once, the number of permutations of 10 digits taken 4 at a time is:

P(10,4) = 10! / (10-4)! = 10 x 9 x 8 x 7 = 5,040

Next, we need to determine how many codes have four even digits. There are five even digits (0, 2, 4, 6, and 8), so we need to choose four of them and arrange them in all possible ways. The number of permutations of 5 even digits taken 4 at a time is:

P(5,4) = 5! / (5-4)! = 5 x 4 x 3 x 2 = 120

Therefore, the probability that Victor selects a code with four even digits is:

P = (number of codes with four even digits) / (total number of possible codes)

= P(5,4) / P(10,4)

= 120 / 5,040

= 1 / 42

≈ 0.0238

Know more about probability here:

https://brainly.com/question/31828911

#SPJ11

pls help if you can asap!!

Answers

Answer:

Step-by-step explanation:

x=60

Here is your answer

x=15

Solve the given system of linear equations using Cramer's Rule. 4x+y=5
x−ky=2
Complete the ordered pair: (x,y) where
x=
y=
when k =

Answers

So, for any value of k other than 0, the ordered pair is (x, y) = ((-5k - 2) / (-4k - 1), 3 / (-4k - 1)).

To solve the given system of linear equations using Cramer's Rule, we need to find the values of x and y for different values of k.

Given system of equations:

4x + y = 5

x - ky = 2

We'll calculate the determinants of the coefficient matrix and the matrices obtained by replacing the x-column and y-column with the constant column.

Coefficient matrix (D):

| 4 1 |

| 1 -k |

Matrix obtained by replacing the x-column with the constant column (Dx):

| 5 1 |

| 2 -k |

Matrix obtained by replacing the y-column with the constant column (Dy):

| 4 5 |

| 1 2 |

Now, we can use Cramer's Rule to find the values of x and y.

Determinant of the coefficient matrix (D):

D = (4)(-k) - (1)(1)

D = -4k - 1

Determinant of the matrix obtained by replacing the x-column with the constant column (Dx):

Dx = (5)(-k) - (1)(2)

Dx = -5k - 2

Determinant of the matrix obtained by replacing the y-column with the constant column (Dy):

Dy = (4)(2) - (1)(5)

Dy = 3

Now, let's find the values of x and y for different values of k:

When k = 0:

D = -4(0) - 1

= -1

Dx = -5(0) - 2

= -2

Dy = 3

x = Dx / D

= -2 / -1

= 2

y = Dy / D

= 3 / -1

= -3

Therefore, when k = 0, the ordered pair is (x, y) = (2, -3).

When k is not equal to 0, we can find the values of x and y by substituting the determinants into the formulas:

x = Dx / D

= (-5k - 2) / (-4k - 1)

y = Dy / D

= 3 / (-4k - 1)

To know more about value,

https://brainly.com/question/32761915

#SPJ11

Chapter 5: (Ordinary Differential Equation & System ODE)
3) Given an ODE, solve numerically with RK-4 with 10 segments: (Choose one) a)y′sinx+ysinx=sin2x ; y(1)=2;findy(0) Actual value=2.68051443

Answers

Using the fourth-order Runge-Kutta (RK-4) method with 10 segments, the numerical solution for the ordinary differential equation (ODE) y′sin(x) + ysin(x) = sin(2x) with the initial condition y(1) = 2 is found to be approximately y(0) ≈ 2.68051443.

The fourth-order Runge-Kutta (RK-4) method is a numerical technique commonly used to approximate solutions to ordinary differential equations. In this case, we are given the ODE y′sin(x) + ysin(x) = sin(2x) and the initial condition y(1) = 2, and we are tasked with finding the value of y(0) using RK-4 with 10 segments.

To apply the RK-4 method, we divide the interval [1, 0] into 10 equal segments. Starting from the initial condition, we iteratively compute the value of y at each segment using the RK-4 algorithm. At each step, we calculate the slopes at various points within the segment, taking into account the contributions from the given ODE. Finally, we update the value of y based on the weighted average of these slopes.    

By applying this procedure repeatedly for all the segments, we approximate the value of y(0) to be approximately 2.68051443 using the RK-4 method with 10 segments. This numerical solution provides an estimation for the value of y(0) based on the given ODE and initial condition.  

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

if DEFG is a rectangle, mDEG=(4x-5) and mFGE= (6x-21) find mDGE

Answers

The measure of angle DGE, denoted as mDGE, in the rectangle DEFG can be determined by subtracting the measures of angles DEG and FGE. Thus, mDGE has a measure of 0 degrees.

In a rectangle, opposite angles are congruent, meaning that angle DEG and angle FGE are equal. Thus, we can set their measures equal to each other:

mDEG = mFGE

Substituting the given values:

(4x - 5) = (6x - 21)

Next, let's solve for x by isolating the x term.

Start by subtracting 4x from both sides of the equation:

-5 = 2x - 21

Next, add 21 to both sides of the equation:

16 = 2x

Divide both sides by 2 to solve for x:

8 = x

Now that we have the value of x, we can substitute it back into either mDEG or mFGE to find their measures. Let's substitute it into mDEG:

mDEG = (4x - 5)

= (4 * 8 - 5)

= (32 - 5)

= 27

Similarly, substituting x = 8 into mFGE:

mFGE = (6x - 21)

= (6 * 8 - 21)

= (48 - 21)

= 27

Therefore, mDGE can be found by subtracting the measures of angles DEG and FGE:

mDGE = mDEG - mFGE

= 27 - 27

= 0

Hence, mDGE has a measure of 0 degrees.

For more such questions on angles, click on:

https://brainly.com/question/25770607

#SPJ8

State whether the following categorical propositions are of the form A, I, E, or O. Identify the subject class and the predicate class. (1) Some cats like turkey. (2) There are burglars coming in the window. (3) Everyone will be robbed.

Answers

Statement 1: Some cats like turkey, the form is I, the subject class is Cats, and the predicate class is Turkey, statement 2: There are burglars coming in the window, the form is E, the subject class is Burglars, and the predicate class is Not coming in the window and statement 3: Everyone will be robbed, the form is A, the subject class is Everyone, and the predicate class is Being robbed.

The given categorical propositions and their forms are as follows:

(1) Some cats like turkey - Form: I:

Subject class: Cats,

Predicate class: Turkey

(2) There are burglars coming in the window - Form: E:

Subject class: Burglars,

Predicate class: Not coming in the window

(3) Everyone will be robbed - Form: A:

Subject class: Everyone,

Predicate class: Being robbed

In the first statement:

Some cats like turkey, the form is I, the subject class is Cats, and the predicate class is Turkey.

In the second statement:

There are burglars coming in the window, the form is E, the subject class is Burglars, and the predicate class is Not coming in the window.

In the third statement:

Everyone will be robbed, the form is A, the subject class is Everyone, and the predicate class is Being robbed.

To know more about categorical propositions visit:

https://brainly.com/question/29856832

#SPJ11

please identify spectra A. options are above. complete
the table and explain why the spectra belongs to the option you
selected.
methyl butanoate benzaldehyde 1-chlorobutane 1-chloro-2-methylpropane butan-2-one propan-2-ol propanal
rch Spectrum A 10 1.00 2.00 3.00 7 () T LO 5 4 8.1 8 7.9 7.8 7.7 7.6 7.5 6 (ppm) 3 d 2
Chemical

Answers

Spectrum A corresponds to the compound benzaldehyde based on the chemical shifts observed in the NMR spectrum.

In NMR spectroscopy, chemical shifts are observed as peaks on the spectrum and are influenced by the chemical environment of the nuclei being observed. By analyzing the chemical shifts provided in the table, we can determine the compound that corresponds to Spectrum A.

In the given table, the chemical shifts range from 0 to 10 ppm. The chemical shift value of 10 ppm indicates the presence of an aldehyde group (CHO) in the compound. Additionally, the presence of a peak at 7 ppm suggests the presence of an aromatic group, which further supports the identification of benzaldehyde.

Based on these observations, the spectrum is consistent with the NMR spectrum of benzaldehyde, which exhibits a characteristic peak at around 10 ppm corresponding to the aldehyde group and peaks around 7 ppm corresponding to the aromatic ring. Therefore, benzaldehyde is the most likely compound for Spectrum A.

Learn more about NMR spectrum here: brainly.com/question/30458554

#SPJ11

The length, breadth and height of Shashwat's classroom are 9 m, 6 m and 4.5 m respectively. It contains two windows of size 1.7 m x 2 m each and a door of size 1.2 m x 3.5 m. Find the area of four walls excluding windows and door. How many decorative chart papers are required to cover the walls at 2 chart paper per 8 sq. meters?​

Answers

The classroom has dimensions of 9m (length), 6m (breadth), and 4.5m (height). Excluding the windows and door, the area of the four walls is 124 sq. meters. Shashwat would need 16 decorative chart papers to cover the walls, assuming each chart paper covers 8 sq. meters.

To find the area of the four walls excluding the windows and door, we need to calculate the total area of the walls and subtract the area of the windows and door.

The total area of the four walls can be calculated by finding the perimeter of the classroom and multiplying it by the height of the walls.

Perimeter of the classroom = 2 * (length + breadth)

                            = 2 * (9m + 6m)

                            = 2 * 15m

                            = 30m

Height of the walls = 4.5m

Total area of the four walls = Perimeter * Height

                                 = 30m * 4.5m

                                 = 135 sq. meters

Next, we need to calculate the area of the windows and door and subtract it from the total area of the walls.

Area of windows = 2 * (1.7m * 2m)

                    = 6.8 sq. meters

Area of door = 1.2m * 3.5m

                = 4.2 sq. meters

Area of the four walls excluding windows and door = Total area of walls - Area of windows - Area of door

= 135 sq. meters - 6.8 sq. meters - 4.2 sq. meters

= 124 sq. meters

To find the number of decorative chart papers required to cover the walls at 2 chart papers per 8 sq. meters, we divide the area of the walls by the coverage area of each chart paper.

Number of chart papers required = Area of walls / Coverage area per chart paper

                                          = 124 sq. meters / 8 sq. meters

                                          = 15.5

Since we cannot have a fraction of a chart paper, we need to round up the number to the nearest whole number.

Therefore, Shashwat would require 16 decorative chart papers to cover the walls of his classroom.

For more such information on: dimensions

https://brainly.com/question/19819849

#SPJ8

An alien pilot of an intergalactic spaceship is traveling at 0.89c relative to a certain galaxy, in a direction parallel to its short axis. The alien pilot determines the length of the short axis of the galaxy to be 2.3×10^17 km. What would the length of this axis be as measured by an observer living on a planet within the galaxy? length of the axis: _____km

Answers

The length of the short axis of the galaxy, as measured by an observer within the galaxy, would be approximately 1.048×10¹⁷ km.

To determine the length of the short axis of the galaxy as measured by an observer within the galaxy, we need to apply the Lorentz transformation for length contraction. The equation for length contraction is given by:

L' = L / γ

Where:

L' is the length of the object as measured by the observer at rest relative to the object.

L is the length of the object as measured by an observer moving relative to the object.

γ is the Lorentz factor, defined as γ = 1 / √(1 - v²/c²), where v is the relative velocity between the observer and the object, and c is the speed of light.

In this case, the alien pilot is traveling at 0.89c relative to the galaxy. Therefore, the relative velocity v = 0.89c.

Let's calculate the Lorentz factor γ:

γ = 1 / √(1 - v²/c²)

  = 1 / √(1 - (0.89c)²/c²)

  = 1 / √(1 - 0.89²)

  = 1 / √(1 - 0.7921)

  ≈ 1 /√(0.2079)

  ≈ 1 / 0.4554

  ≈ 2.1938

Now, we can calculate the length of the short axis of the galaxy as measured by the observer within the galaxy:

L' = L / γ

  = 2.3×10¹⁷ km / 2.1938

  ≈ 1.048×10¹⁷ km

Therefore, the length of the short axis of the galaxy, as measured by an observer within the galaxy, would be approximately 1.048×10¹⁷ km.

Learn more about Lorentz transformation here:

https://brainly.com/question/30784090

#SPJ11

Find the sum: 3 + 9 + 15 +21+...+243.

Answers

Answer:

4920.

Step-by-step explanation:

To find the sum of the arithmetic series 3 + 9 + 15 + 21 + ... + 243, we can identify the pattern and then use the formula for the sum of an arithmetic series.

In this series, the common difference between consecutive terms is 6. The first term, a₁, is 3, and the last term, aₙ, is 243. We want to find the sum of all the terms from the first term to the last term.

The formula for the sum of an arithmetic series is:

Sₙ = (n/2) * (a₁ + aₙ)

where Sₙ is the sum of the first n terms, a₁ is the first term, aₙ is the last term, and n is the number of terms.

In this case, we need to find the value of n, the number of terms. We can use the formula for the nth term of an arithmetic series to solve for n:

aₙ = a₁ + (n - 1)d

Substituting the known values:

243 = 3 + (n - 1) * 6

Simplifying the equation:

243 = 3 + 6n - 6

240 = 6n - 3

243 = 6n

n = 243 / 6

n = 40.5

Since n should be a whole number, we can take the integer part of 40.5, which is 40. This tells us that there are 40 terms in the series.

Now we can substitute the known values into the formula for the sum:

Sₙ = (n/2) * (a₁ + aₙ)

= (40/2) * (3 + 243)

= 20 * 246

= 4920

Therefore, the sum of the series 3 + 9 + 15 + 21 + ... + 243 is 4920.

Answer:

5043

Step-by-step explanation:

to find the sum, add up all values.

the full equation is:

3+9+15+21+27+33+39+45+51+57+63+69+75+81+87+93+99+105+111+117+123+129+135+141+147+153+159+165+171+177+183+189+195+201+207+213+219+225+231+237+243

adding all of these together gives us a sum of 5043

A quadratic function has its vertex at the point (9,−4). The function passes through the point (8,−3). When written in vertex form, the function is f(x)=a(x−h) 2
+k, where: a= h=

Answers

A quadratic function has its vertex at the point (9, −4).The function passes through the point (8, −3).To find:When written in vertex form, the function is f(x)=a(x−h)2+k, where a, h and k are constants.

Calculate a and h.Solution:Given a quadratic function has its vertex at the point (9, −4).Vertex form of the quadratic function is given by f(x) = a(x - h)² + k, where (h, k) is the vertex of the parabola .

a = coefficient of (x - h)²From the vertex form of the quadratic function, the coordinates of the vertex are given by (-h, k).It means h = 9 and

k = -4. Therefore the quadratic function is

f(x) = a(x - 9)² - 4Also, given the quadratic function passes through the point (8, −3).Therefore ,f(8)

= -3 ⇒ a(8 - 9)² - 4

= -3⇒ a

= 1Therefore, the quadratic function becomes f(x) = (x - 9)² - 4Therefore, a = 1 and

h = 9.

To know more about function visit:
https://brainly.com/question/30721594

#SPJ11

Do the indicated calculation for the vectors
v=−3,7
and
w=−1,−4.
​|2w−v​|

Answers

To calculate the expression |2w - v|, where v = (-3, 7) and w = (-1, -4), we first need to perform the vector operations.  First, let's calculate 2w by multiplying each component of w by 2:

2w = 2(-1, -4) = (-2, -8).

Next, subtract v from 2w:

2w - v = (-2, -8) - (-3, 7) = (-2 + 3, -8 - 7) = (1, -15).

To find the magnitude or length of the vector (1, -15), we can use the formula:

|v| = sqrt(v1^2 + v2^2).

Applying this formula to (1, -15), we get:

|1, -15| = sqrt(1^2 + (-15)^2) = sqrt(1 + 225) = sqrt(226).

Therefore, |2w - v| = sqrt(226) (rounded to the appropriate precision).

Learn more about vector operations here: brainly.com/question/29007990

#SPJ11

James receives $6332 at the end of every month for 6.9 years and 3 months for money that he loaned to a friend at 7.3% compounded monthly. How many payments are there in this annuity? Round up to the next payment

Answers

James will receive payments for 85.8 months. Rounding up to the next payment, the final answer is 86 payments.

To calculate the number of payments in the annuity, we need to determine the total number of months over the period of 6.9 years and 3 months.

First, let's convert the years and months to months:

6.9 years = 6.9 * 12 = 82.8 months

3 months = 3 months

Next, we sum up the total number of months:

Total months = 82.8 months + 3 months = 85.8 months

Since James receives payments at the end of every month, the number of payments in the annuity would be equal to the total number of months.

Therefore, James will receive payments for 85.8 months. Rounding up to the next payment, the final answer is 86 payments.

Learn more about Rounding up here:

https://brainly.com/question/29238853

#SPJ11

Translate into a variable expression. Then simplify.
1. the sum of seven times a number n and twelve added to the product of thirteen and the number
2. two times the product of four and a number n
Translate into a variable expression.
3. 16 less than the product of q and −2

Answers

The sum of seven times a number n and twelve added to the product of thirteen and the number can be expressed as 7n + (12 + 13n). Two times the product of four and a number n can be expressed as 2 * (4n) or 8n. 16 less than the product of q and -2 can be expressed as (-2q) - 16.

To translate the given expression, we break it down into two parts. The first part is "seven times a number n," which is represented as 7n. The second part is "the product of thirteen and the number," which is represented as 13n. Finally, we add the result of the two parts to "twelve," resulting in 7n + (12 + 13n).

In this case, we have "the product of four and a number n," which is represented as 4n. We multiply this product by "two," resulting in 2 * (4n) or simply 8n.

We have "the product of q and -2," which is represented as -2q. To subtract "16" from this product, we express it as (-2q) - 16. The negative sign indicates that we are subtracting 16 from -2q.

To know more about number,

https://brainly.com/question/33015680

#SPJ11

Find the simple interest on a $1800 investment made for 2 years at an interest rate of 9%/year. What is the accumulated amount? (Round your answers to the nearest cent.)
simple interest $
accumulated amount $
How many days will it take for $2000 to earn $21 interest if it is deposited in a bank paying simple interest at the rate of 7%/year? (Use a 365-day year. Round your answer up to the nearest full day.)
____ days

Answers

Simple interest = $324, Accumulated amount = $2124, Days to earn $21 interest = 216 days (rounded up to the nearest day).

Simple Interest:

The formula for calculating the Simple Interest (S.I) is given as:

S.I = P × R × T Where,

P = Principal Amount

R = Rate of Interest

T = Time Accrued in years Applying the values, we have:

P = $1800R = 9%

= 0.09

T = 2 years

S.I = P × R × T

= $1800 × 0.09 × 2

= $324

Accumulated amount:

The formula for calculating the accumulated amount is given as:

A = P + S.I Where,

A = Accumulated Amount

P = Principal Amount

S.I = Simple Interest Applying the values, we have:

P = $1800

S.I = $324A

= P + S.I

= $1800 + $324

= $2124

Days for $2000 to earn $21 interest

If $2000 can earn $21 interest in x days,

the formula for calculating the time is given as:

I = P × R × T Where,

I = Interest Earned

P = Principal Amount

R = Rate of Interest

T = Time Accrued in days Applying the values, we have:

P = $2000

R = 7% = 0.07I

= $21

T = ? I = P × R × T$21

= $2000 × 0.07 × T$21

= $140T

T = $21/$140

T = 0.15 days

Converting the decimal to days gives:

1 day = 24 hours

= 24 × 60 minutes

= 24 × 60 × 60 seconds

1 hour = 60 minutes

= 60 × 60 seconds

Therefore: 0.15 days = 0.15 × 24 hours/day × 60 minutes/hour × 60 seconds/minute= 216 seconds (rounded to the nearest second)

Therefore, it will take 216 days (rounded up to the nearest day) for $2000 to earn $21 interest.

Answer: Simple interest = $324

Accumulated amount = $2124

Days to earn $21 interest = 216 days (rounded up to the nearest day).

To know more about Simple interest visit:

https://brainly.com/question/30964674

#SPJ11

1.Find the period of the following functions. a) f(t) = (7 cos t)² b) f(t) = cos (2φt²/m)

Answers

Period of the functions: The period of the function f(t) = (7 cos t)² is given by 2π/b where b is the period of cos t.The period of the function f(t) = cos (2φt²/m) is given by T = √(4πm/φ). The period of the function f(t) = (7 cos t)² is given by 2π/b where b is the period of cos t.

We know that cos (t) is periodic and has a period of 2π.∴ b = 2π∴ The period of the function f(t) =

(7 cos t)² = 2π/b = 2π/2π = 1.

The period of the function f(t) = cos (2φt²/m) is given by T = √(4πm/φ) Hence, the period of the function f(t) =

cos (2φt²/m) is √(4πm/φ).

The function f(t) = (7 cos t)² is a trigonometric function and it is periodic. The period of the function is given by 2π/b where b is the period of cos t. As cos (t) is periodic and has a period of 2π, the period of the function f(t) = (7 cos t)² is 2π/2π = 1. Hence, the period of the function f(t) = (7 cos t)² is 1.The function f(t) = cos (2φt²/m) is also a trigonometric function and is periodic. The period of this function is given by T = √(4πm/φ). Therefore, the period of the function f(t) = cos (2φt²/m) is √(4πm/φ).

The period of the function f(t) = (7 cos t)² is 1, and the period of the function f(t) = cos (2φt²/m) is √(4πm/φ).

To learn more about trigonometric function visit:

brainly.com/question/25618616

#SPJ11

Question (5 points): The set of matrices of the form [ a
0

b
d

c
0

] is a subspace of M 23

Select one: True False Question (5 points): The set of matrices of the form [ a
d

b
0

c
1

] is a subspace of M 23

Select one: True False The set W of all vectors of the form ⎣


a
b
c




where 2a+b<0 is a subspace of R 3
Select one: True False Question (5 points): Any homogeneous inconsistent linear system has no solution Select one: True False

Answers

First three parts are true and fourth is false as a homogeneous inconsistent linear system has only the  a homogeneous inconsistent linear system has only the trivial solution, not no solution.

1)This is True,The set of matrices of the form [ a 0 b d c 0] is a subspace of M23. The set of matrices of this form is closed under matrix addition and scalar multiplication. Hence, it is a subspace of M23.2. FalseThe set of matrices of the form [ a d b 0 c 1] is not a subspace of M23.

This set is not closed under scalar multiplication. For instance, if we take the matrix [ 1 0 0 0 0 0] from this set and multiply it by the scalar -1, then we get the matrix [ -1 0 0 0 0 0] which is not in the set. Hence, this set is not a subspace of M23.3.

2)True, The set W of all vectors of the form [a b c] where 2a+b < 0 is a subspace of R3. We need to check that this set is closed under addition and scalar multiplication. Let u = [a1, b1, c1] and v = [a2, b2, c2] be two vectors in W. Then 2a1 + b1 < 0 and 2a2 + b2 < 0. Now, consider the vector u + v = [a1 + a2, b1 + b2, c1 + c2]. We have,2(a1 + a2) + (b1 + b2) = 2a1 + b1 + 2a2 + b2 < 0 + 0 = 0.

Hence, the vector u + v is in W. Also, let c be a scalar. Then, for the vector u = [a, b, c] in W, we have 2a + b < 0. Now, consider the vector cu = [ca, cb, cc]. Since c can be positive, negative or zero, we have three cases to consider.Case 1: c > 0If c > 0, then 2(ca) + (cb) = c(2a + b) < 0, since 2a + b < 0. Hence, the vector cu is in W.Case 2:

c = 0If c = 0, then cu = [0, 0, 0]

which is in W since 2(0) + 0 < 0.

Case 3: c < 0If c < 0, then 2(ca) + (cb) = c(2a + b) > 0, since 2a + b < 0 and c < 0. Hence, the vector cu is not in W. Thus, the set W is closed under scalar multiplication. Since W is closed under addition and scalar multiplication, it is a subspace of R3.

4. False, Any homogeneous inconsistent linear system has no solution is false. Since the system is homogeneous, it always has the trivial solution of all zeros. However, an inconsistent system has no nontrivial solutions. Therefore, a homogeneous inconsistent linear system has only the trivial solution, not no solution.

To know more about trivial solution refer here:

https://brainly.com/question/21776289

#SPJ11

A white dwarf star of \( 1.2 \) solar masses and \( 0.0088 \) solar radii, will deflect light from a distance source by what angle (in aresecs)? Round to TWO places past the decimal

Answers

The deflection angle of light by the white dwarf star is approximately [tex]\(0.00108 \times 206,265 = 223.03\)[/tex]arcseconds (rounded to two decimal places).

To calculate the deflection angle of light by a white dwarf star, we can use the formula derived from Einstein's theory of general relativity:

[tex]\[\theta = \frac{4GM}{c^2R}\][/tex]

where:

[tex]\(\theta\)[/tex] is the deflection angle of light,

G is the gravitational constant [tex](\(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2}\)),[/tex]

M is the mass of the white dwarf star,

c is the speed of light in a vacuum [tex](\(299,792,458 \, \text{m/s}\)),[/tex] and

(R) is the radius of the white dwarf star.

Let's calculate the deflection angle using the given values:

Mass of the white dwarf star, [tex]\(M = 1.2 \times \text{solar mass}\)[/tex]

Radius of the white dwarf star, [tex]\(R = 0.0088 \times \text{solar radius}\)[/tex]

We need to convert the solar mass and solar radius to their respective SI units:

[tex]\(1 \, \text{solar mass} = 1.989 \times 10^{30} \, \text{kg}\)\(1 \, \text{solar radius} = 6.957 \times 10^8 \, \text{m}\)[/tex]

Substituting the values into the formula, we get:

[tex]\[\theta = \frac{4 \times 6.67430 \times 10^{-11} \times 1.2 \times 1.989 \times 10^{30}}{(299,792,458)^2 \times 0.0088 \times 6.957 \times 10^8}\][/tex]

Evaluating the above expression, the deflection angle [tex]\(\theta\)[/tex] is approximately equal to 0.00108 radians.

To convert radians to arcseconds, we use the conversion factor: 1 radian = 206,265 arcseconds.

Therefore, the deflection angle of light by the white dwarf star is approximately [tex]\(0.00108 \times 206,265 = 223.03\)[/tex]arcseconds (rounded to two decimal places).

Hence, the deflection angle is approximately 223.03 arcseconds.

Learn more about radius here:

https://brainly.com/question/14963435

#SPJ11

Consider the stiffness matrix for a two-point Euler-Bernoulli beam element along the x-axis, without consideration of the axial force effects
[k11 k12 k13 k14]
K = [..... ...... ...... ......]
[[..... ...... .... k14]
Sketch the element and show all of its degrees of freedom (displacements) numbered 1 to 4 and nodal forces, numbered correspondingly. Be very specific in calling out the forces or moments and displacements and rotations.

Answers

To sketch the two-point Euler-Bernoulli beam element and indicate the degrees of freedom (DOFs) and nodal forces, we consider the stiffness matrix as follows:

[K11  K12  K13  K14]

[K21  K22  K23  K24]

[K31  K32  K33  K34]

[K41  K42  K43  K44]

The stiffness matrix represents the relationships between the displacements and the applied forces at each node. In this case, the beam element has four DOFs numbered 1 to 4, which correspond to displacements and rotations at the two nodes.

To illustrate the element and the DOFs, we can represent the beam element as a straight line along the x-axis, with two nodes at the ends. The first node is labeled as 1 and the second node as 2.

At each node, we have the following DOFs:

Node 1:

- DOF 1: Displacement along the x-axis (horizontal displacement)

- DOF 2: Rotation about the z-axis (vertical plane rotation)

Node 2:

- DOF 3: Displacement along the x-axis (horizontal displacement)

- DOF 4: Rotation about the z-axis (vertical plane rotation)

Next, let's indicate the nodal forces corresponding to the DOFs:

Node 1:

- Nodal Force 1: Force acting along the x-axis at Node 1

- Nodal Force 2: Moment (torque) acting about the z-axis at Node 1

Node 2:

- Nodal Force 3: Force acting along the x-axis at Node 2

- Nodal Force 4: Moment (torque) acting about the z-axis at Node 2

Please note that the specific values of the stiffness matrix elements and the nodal forces depend on the specific problem and the boundary conditions.

Learn more about Matrix here : brainly.com/question/28180105

#SPJ11

4 . 2 points The barium ion is toxic to humans. However, barium sulfate is comnsoaly wed as an imnge enhancer for gastroiatestinal \( x \)-rays. What isoes this impty about tie poation of the equilibr

Answers

The use of barium sulfate as an image enhancer for gastrointestinal X-rays, despite the toxicity of the barium ion, implies that the equilibrium state of barium sulfate in the body.

Barium sulfate is commonly used as a contrast agent in gastrointestinal X-rays to enhance the visibility of the digestive system. This indicates that barium sulfate, when ingested, remains in a relatively stable and insoluble form in the body, minimizing the release of the toxic barium ion.

The equilibrium state of barium sulfate suggests that the compound has limited solubility in the body, resulting in a reduced rate of dissolution and a lower concentration of the barium ion available for absorption into the bloodstream. The insoluble nature of barium sulfate allows it to pass through the gastrointestinal tract without significant absorption.

By using barium sulfate as an imaging enhancer, medical professionals can obtain clear X-ray images of the digestive system while minimizing the direct exposure of the body to the toxic effects of the barium ion. This reflects the importance of considering the equilibrium state of substances when assessing their potential harm to humans and finding safer ways to utilize them for medical purposes.

Learn more about  gastrointestinal X-rays: brainly.com/question/14815519

#SPJ11

While the rate of growth of the world's population has actually been gradually decline over many years, assume it will not change from its current estimate of 1.1%. If the population of the world is estimated at 7.9 billion in 2022, how many years will it take to for it to reach 10 billion people? (There is sufficient information in this question to find the result.) 21.5 15.7 18.4 2.5

Answers

The population of the world is estimated to be 7.9 billion in 2022. Let's assume the current population of the world as P1 = 7.9 billion people.

Given, the rate of growth of the world's population has been gradually declined over many years. But, the population rate is assumed not to change from its current estimate of 1.1%.The population of the world is estimated to be 7.9 billion in 2022.

Let's assume the current population of the world as P1 = 7.9 billion people.After t years, the population of the world can be represented as P1 × (1 + r/100)^tWhere r is the rate of growth of the population, and t is the time for which we have to find out the population. The population we are looking for is P2 = 10 billion people.Putting the values in the above formula,P1 × (1 + r/100)^t = P2

⇒ 7.9 × (1 + 1.1/100)^t = 10

⇒ (101/100)^t = 10/7.9

⇒ t = log(10/7.9) / log(101/100)

⇒ t ≈ 18.4 years

So, it will take approximately 18.4 years for the world's population to reach 10 billion people if the rate of growth remains 1.1%.Therefore, the correct option is 18.4.

To know more about population visit:

https://brainly.com/question/15889243

#SPJ11

Suppose that a constraint is added to a cost minimization problem. Is it possible for the new optimal cost to be greater than the original optimal cost? Is it possible for the new optimal cost to be less than the original optimal cost?
Next, suppose that a constraint is removed from a profit maximization problem. Is it possible for the new optimal profit to be greater than the original optimal profit? Is it possible for the new optimal profit to be less than the original optimal profit?

Answers

2. The new optimal profit can be equal to the original optimal profit.

3. The new optimal profit can be less than the original optimal profit.

When a constraint is added to a cost minimization problem, it can affect the optimal cost in different ways:

1. The new optimal cost can be greater than the original optimal cost: This can happen if the added constraint restricts the feasible solution space, making it more difficult or costly to satisfy the constraints. As a result, the optimal cost may increase compared to the original problem.

2. The new optimal cost can be equal to the original optimal cost: In some cases, the added constraint may not impact the feasible solution space or may have no effect on the cost function itself. In such situations, the optimal cost will remain the same.

3. The new optimal cost can be less than the original optimal cost: Although it is less common, it is possible for the new optimal cost to be lower than the original optimal cost. This can happen if the added constraint helps identify more efficient solutions that were not considered in the original problem.

Regarding the removal of a constraint from a profit maximization problem:

1. The new optimal profit can be greater than the original optimal profit: When a constraint is removed, it generally expands the feasible solution space, allowing for more opportunities to maximize profit. This can lead to a higher optimal profit compared to the original problem.

2. The new optimal profit can be equal to the original optimal profit: Similar to the cost minimization problem, the removal of a constraint may have no effect on the profit function or the feasible solution space. In such cases, the optimal profit will remain unchanged.

3. The new optimal profit can be less than the original optimal profit: In some scenarios, removing a constraint can cause the problem to become less constrained, resulting in suboptimal solutions that yield lower profits compared to the original problem. This can occur if the constraint acted as a guiding factor towards more profitable solutions.

It's important to note that the impact of adding or removing constraints on the optimal cost or profit depends on the specific problem, constraints, and objective function. The nature of the constraints and the problem structure play a crucial role in determining the potential changes in the optimal outcomes.

Learn more about profit here:

https://brainly.com/question/21297845

#SPJ11

Other Questions
Which of the following is NOT known to be a post-translational modification required for the function of some proteins? a. Disulfide bond formation. Ob. Dehydration. W c. Phosphorylation. d. Glycosylation. Oe. N-terminal acetylation. Reaction of antigen with IgE antibodies attached to mast cells causes a. Complement fixation. b. Agglutination. c. Lysis of the cells. d. Release of chemical mediators. e. None of these Explain how the classic model of bank regulationoperates and then compare it to the behavior of U.S. banks leadingup to and during the Great Recession (For problems 8 - 10 rouesd monetary answers to nearest peniny.) 8. Margaret buys new stereo equipment for $500. The store agrees to finance the parchase price for 4 months at 12% annual interest rate compounded monthly, with approximately equal payments at the end of each month. Her first 3 monthly payments will be $128. 14. The amount of the fourth payment will be \$128.14 or less (depending on the balance after the third payment). Use this information to complete the amortiration schedule below. A female heterozygous for three genes (E, F, and G) was testcrossed and the 1000 progeny were classified in the table below based on the gamete contribution of the heterozygote parent. Three loci: E>e; F>f; G-g. What is the genetic distance between E and G? Progeny class Number of Progeny eFG 298 Efg 302 eFg 99 EfG 91 EFg 92 efG 88 EFG 14efg 16 a. 42 m.u.b. 43 m.u.c. 41 m.u.d. 44 m.u.e. 40 m.u. A flat electrical heater of 0.4 m x 0.4 m size is placed vertically in still air at 20C. The heat generated is 1200 W/m. Determine the value of convective heat transfer coefficient and the average plate temperature. Question 15 The ratio of current ages of two relatives who shared a birthday is 7 : 1. In 6 years' time the ratio of theirs ages will be 5: 2. Find their current ages. A. 7 and 1 B. 14 and 2 C. 28 and 4 D. 35 and 5 a. Describe in detail the process of C4 photosynthesis, including enzymes and cell types. b. Describe how 2 possible environmental changes could lead to a decrease in abundance of C4 plants in Missouri in the future. c. Describe in detail how CAM photosynthesis is different from C4 photosynthesis. d. Give examples of plants used for food production that have C4 and CAM photosynthetic pathways (one example for each). 1-Given A = 5ax - 2a, + 4a, find the expression for unit vector B if (a) B is parallel to A (b) B is perpendicular to A and B lies in xy-plane. A string of length 2 m is fixed at both ends. The speed of waves on the string, is 30 m/s. What is the lowest frequency of vibration for the string in Hz? O a. 0.067 O b. 7.5 O c. 0.033 O d. 0.13 O e. 92ml 3.0 fl oz what is the ratio Question 11For the 3-class lever systems the following data are given:L2=0.8L1 = 420 cm; = 4 deg; 0 = 12 deg; Fload = 1.2Determine the cylinder force required to overcome the load force (in Newton) a) sign a CMOS reference symmetrical inverter to provide a delay of 1 ns when driving a 2pF capacitor if V= 3V, K = 100A/V, K' = 40A/V, V = 0.6V, =0, y=0.5, 2 = 0.6 load and _______________________b) Using this reference inverter, design the CMOS logic gate for function Y = E +D+ (ABC + K)F c) Find the equivalent W/L for the NMOS network when all transistors are on. hydrogen peroxide is associated with a) phagocytosis and the phagosome b) signaling pathways c) physical barrier d) chemical barrier e) inflammation IL-6 is associated with a) phagocytosis and the phagosome Ob) chemical barrier Oc) physical barrier d) inflammation Superoxide anion is associated with a) inflammation Ob) chemical barrier Oc) physical barrier d) phagocytosis and the phagosome e) signaling pathways To find the number in a square, add the numbers in the two circlesconnected to it.Fill in the missing numbers. Problem 3.26 Suppose the position of an object is given by 7 = (3.0t2 -6.0tj)m. Where t in seconds.Y Y Part A Determine its velocity as a function of time t Express your answer using two significa The only way for a firm in monopolistic competition to avoid the long-run fate of zero economic profits is to: a. continually differentiate its product. b. produce where marginal cost equals marginal B. On the line provided, give meanings for the following abbreviations, then write each abbreviation next to its explanation below:Part One:1. AB _____________________________________________________________________________2. C-section _________________________________________________________________3. CIS _____________________________________________________________________________4. CVS ____________________________________________________________________________5. Cx ______________________________________________________________________________6. D & C ___________________________________________________________________________7. FSH ____________________________________________________________________________8. G ______________________________________________________________________________9. GYN ____________________________________________________________________________10. hCG or HCG _____________________________________________________________________a. _______ Pituitary gland secretion that stimulates the ovariesb. _______ Pregnancy hormonec. _______ Lower, neck-like portion of the uterusd. _______ Study of women and disorders of the female reproductive systeme. _______ Spontaneous or induced termination of pregnancyf. _______ Localized cancer growthg. _______ Sampling of placental tissue for prenatal diagnosish. _______ Surgical incision of the abdominal wall to deliver a fetusi. _______ A pregnant womanj. _______ Procedure to widen the cervix and scrap the lining of the uterusPart Two:1. HDN ____________________________________________________________________________2. HPV ____________________________________________________________________________3. HRT ____________________________________________________________________________4. HSG ____________________________________________________________________________5. IUD _____________________________________________________________________________6. IVF _____________________________________________________________________________7. LEEP ___________________________________________________________________________8. LH _____________________________________________________________________________9. multip __________________________________________________________________________10. OB ____________________________________________________________________________a. _______ X-ray imaging of the uterus and fallopian tubesb. _______ Egg and sperm are united outside the bodyc. _______ Use of heat to destroy tissued. _______ Contraceptive devicee. _______ Branch of medicine dealing with pregnancy, labor and delivery of infantsf. _______ a woman who has had more than one delivery of an infantg. _______ Erythroblastosis fetalis; Rh factor incompatibility between the mother and fetush. _______ Relieves symptoms of menopause and delays development of weak bonesi. _______ Pituitary hormone stimulates the ovary to promote ovulationj. _______ Cause of cervical cancer 4. You have a credit card with an APR of 22%. The card requires a minimum monthly payment of 14% of the balance. You have a balance of $7,400. You stop charging and make only minimum monthly payments. (a)Find a formula for the balance, B, after t monthly payments. Simplify the decay factor to 4 decimal places. (b)According to the formula you just created, what percentage of the credit cards balance is paid off each month? Give your answer as a percentage rounded to two decimal places. Write your result in a complete sentence. Genetic information is stored in DNA. DNA consists of four types of [A] joined through a sugar-phosphate backbone. In the process of [B] the information in DNA is copied into mRNA. During [C] the mRNA is a template for the synthesis of protein. A sequence of three bases, called a codon, specifies an [D]. The codons are read by the anti-codons of [E] molecules in the process of translation. Fill in the blanks A. B. C. D. E.