The two amino acids make up the following artificial sweetener are phenylalanine and aspartate.
The artificial sweetener you are referring to is aspartame. Aspartame is made up of two amino acids, which are phenylalanine and aspartate. Amino acids are molecules that combine to form proteins. They contain two functional groups amine and carboxylic group. Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. Phenylalanine is an essential α-amino acid with the formula C ₉H ₁₁NO ₂. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine.
Therefore, the correct answer is option a) phenylalanine and aspartate.
For more questions on amino acids: https://brainly.com/question/15334292
#SPJ11
The compound Ni(NO2)2 is an ionic compound. What are the ions of which it is composed? Cation formula Anion formula
The compound Ni(NO2)2 is composed of two different ions, a cation and an anion.
The cation in this compound is nickel (Ni) and the anion is nitrite (NO2). The nickel cation has a charge of +2, which is balanced by the two nitrite anions, each with a charge of -1. The overall charge of the compound must be neutral, so the two charges of the nitrite anions cancel out the charge of the nickel cation. Therefore, the cation formula for Ni(NO2)2 is Ni2+ and the anion formula is NO2-. The nitrite anion is a polyatomic ion consisting of one nitrogen atom and two oxygen atoms.
It is important to note that although Ni(NO2)2 is considered an ionic compound, the nitrite anion is a covalent compound due to the sharing of electrons between the nitrogen and oxygen atoms. However, when combined with the positively charged nickel cation, it forms an ionic compound.
To know more about anion visit
https://brainly.com/question/29753623
#SPJ11
be sure to answer all parts. using data from the appendix, calculate δs o rxn and δssurr for each of the reactions and determine if each is spontaneous at 25°c. (a) 2 kclo4(s) → 2 kclo3(s) o2(g)
The balanced chemical equation for the given reaction is:
2KClO₄ (s) → 2KClO₃ (s) + O₂(g)
To calculate the standard enthalpy change of the reaction (ΔH°rxn) using standard enthalpies of formation, we can use the following equation:
ΔH°rxn = ΣnΔH°f(products) - ΣnΔH°f(reactants)
where ΔH°f is the standard enthalpy of formation and n is the stoichiometric coefficient.
Using the standard enthalpies of formation data from the appendix, we get:
ΔH°rxn = [2ΔH°f(KClO3) + ΔH°f(O2)] - [2ΔH°f(KClO4)]
= [2(-285.83) + 0] - [2(-391.61)]
= 211.56 kJ/mol
To calculate the standard entropy change of the reaction (ΔS°rxn) using standard entropies, we can use the following equation:
ΔS°rxn = ΣnΔS°(products) - ΣnΔS°(reactants)
Using the standard entropies data from the appendix, we get:
ΔS°rxn = [2ΔS°(KClO3) + ΔS°(O2)] - [2ΔS°(KClO4)]
= [2(143.95) + 205.03] - [2(123.15)]
= 346.63 J/(mol*K)
To calculate the standard Gibbs free energy change of the reaction (ΔG°rxn), we can use the following equation:
ΔG°rxn = ΔH°rxn - TΔS°rxn
where T is the temperature in Kelvin (25°C = 298 K).
ΔG°rxn = 211.56 kJ/mol - (298 K * 346.63 J/(mol*K))
= 211.56 kJ/mol - 101.54 kJ/mol
= 110.02 kJ/mol
The standard Gibbs free energy change for this reaction is positive, indicating that the reaction is non-spontaneous under standard conditions.
Get to know more about standard enthalpy and entropy visit:
https://brainly.com/question/13765848
#SPJ11
Calculate the pH of a buffer that contains 1. 00 M NH3 and 0. 75 M NH4Cl. The Kb value for NH3 is 1. 8 × 10-5
The pH of a buffer solution is approximately 9.63 that is consisting of 1.00 M[tex]NH_3[/tex] and 0.75 M [tex]NH_4Cl[/tex]with a Kb value of [tex]1.8 * 10^-^5[/tex], we can use the Henderson-Hasselbalch equation.
The Henderson-Hasselbalch equation is used to determine the pH of a buffer solution, which consists of a weak acid and its conjugate base (or a weak base and its conjugate acid). In this case, [tex]NH_3[/tex] acts as a weak base, and [tex]NH_4Cl[/tex] is its conjugate acid.
The Henderson-Hasselbalch equation is given as:
pH = pKa + log([conjugate acid]/[weak base])
To apply this equation, we need to find the pKa of [tex]NH_4Cl[/tex]. Since [tex]NH_4Cl[/tex]is the conjugate acid of [tex]NH_3[/tex], we can use the pKa of [tex]NH_3[/tex], which is calculated as [tex]pKa = 14 - pKb. Therefore, pKa = 14 - log(Kb) = 14 - log(1.8 * 10-5) =9.75[/tex]
Next, we can substitute the known values into the Henderson-Hasselbalch equation:
[tex]pH = 9.75 + log([NH_4Cl]/[NH_3]) = 9.75 + log(0.75/1.00) = 9.75 - 0.12 = 9.63[/tex]
Thus, the pH of the given buffer solution is approximately 9.63.
Learn more about buffer solutions here:
https://brainly.com/question/31367305
#SPJ11
consider the reaction: 2no2(g) n2o4(g) for which (at 25°c) ∆h° = -56.8 kj and ∆s° = -175 j/k. mark the statements which are correct.
To determine the correct statements about the reaction 2NO2(g) ⇌ N2O4(g), given ∆H° and ∆S°, we need to consider the relationship between enthalpy (∆H), entropy (∆S), and the spontaneity of a reaction.
1. ∆H° = -56.8 kJ: This indicates that the reaction is exothermic because ∆H° is negative. Exothermic reactions release energy to the surroundings.
2. ∆S° = -175 J/K: This indicates a decrease in entropy (∆S° < 0). The reaction leads to a decrease in disorder or randomness.
3. ∆G° = ∆H° - T∆S°: The Gibbs free energy (∆G°) of a reaction determines its spontaneity. If ∆G° is negative, the reaction is spontaneous at the given temperature.
Given the values of ∆H° and ∆S°, we can't directly determine the spontaneity of the reaction without knowing the temperature (T). The statement about the spontaneity of the reaction cannot be marked as correct or incorrect based on the given information.
Therefore, the correct statement is:
- ∆H° = -56.8 kJ, indicating the reaction is exothermic.
Learn more about enthalpy, entropy, and spontaneity of reactions here:
https://brainly.com/question/13793036?referrer=searchResults
#SPJ11
using the volume you just calculated, determine the moles of edta that reacted with the calcium ions.
In order to determine the moles of edta that reacted with the calcium ions, we need to use the volume of the edta solution that was used in the reaction.
The volume of edta solution can be used to calculate the moles of edta that reacted with the calcium ions using the formula: moles of edta = (volume of edta solution) x (concentration of edta solution).
Once we have determined the moles of edta that were present in the solution, we can then calculate the moles of edta that reacted with the calcium ions.
This can be done by subtracting the moles of unreacted edta from the total moles of edta used in the reaction.
Read more about the Moles.
https://brainly.com/question/15209553
#SPJ11
the nh3 molecule is trigonal pyramidal, while bf3 is trigonal planar. which of these molecules is flat? only bf3 is flat. both nh3 and bf3 are flat. only nh3 is flat. neither nh3 nor bf3 is flat.
The statement "only BF3 is flat" is true, and both NH3 and BF3 have different geometries due to their differing electron pair arrangements. Option A.
The shape and geometry of a molecule are determined by the number of electron pairs surrounding the central atom and the repulsion between these electron pairs. In the case of NH3, there are four electron pairs surrounding the central nitrogen atom: three bonding pairs and one lone pair.
This leads to a trigonal pyramidal geometry, where the three bonding pairs are arranged in a triangular plane, with the lone pair occupying the fourth position above the plane.
This arrangement gives NH3 a three-dimensional shape, with the nitrogen atom at the center and the three hydrogen atoms and the lone pair of electrons extending outwards in different directions.
On the other hand, BF3 has a trigonal planar geometry, which means that all three fluorine atoms are arranged in the same plane around the central boron atom.
This is because boron has only three valence electrons, and each fluorine atom shares one electron with the boron atom to form three bonding pairs.
There are no lone pairs on the central atom, and the repulsion between the three bonding pairs results in a flat, two-dimensional structure. So Option A is correct.
For more question on geometries visit:
https://brainly.com/question/29650255
#SPJ11
methyl orange is an indicator that changes color from red to yellow-orange over the ph range ~c.e(l'fl from 2.9 to 4.5. methyl orange
Methyl orange is a pH indicator that changes color from red to yellow-orange in the pH range of 2.9 to 4.5. It is commonly used in titrations to detect the endpoint of a reaction.
As an acidic pH indicator, methyl orange is often used in the titration of strong acids and weak bases. Its color change is a result of the chemical structure undergoing a change when the pH of the solution shifts. At lower pH levels (below 2.9), the molecule takes on a red hue, while at higher pH levels (above 4.5), it appears yellow-orange. The color change is due to the presence of a weakly acidic azo dye, which undergoes a chemical transformation as the hydrogen ions in the solution are either added or removed.
When used in a titration, methyl orange allows the observer to determine the endpoint of the reaction, signifying that the titrant has neutralized the analyte. The color change observed during the titration indicates that the pH of the solution has shifted, signaling the completion of the reaction. In some cases, methyl orange may not be the ideal indicator for certain titrations due to its relatively narrow pH range. In such instances, alternative indicators with a more suitable pH range should be used.
Know more about pH indicator here:
https://brainly.com/question/22603994
#SPJ11
A 6.00L tank at 27.1°C is filled with 9.72g of sulfur tetrafluoride gas and 5.05g of carbon dioxide gas. You can assume both gases behave as ideal gases under these conditions.Calculate the partial pressure of each gas, and the total pressure in the tank.
The partial pressure of sulfur tetrafluoride gas is 8.78 kPa, the partial pressure of carbon dioxide gas is 24.9 kPa, and the total pressure in the tank is 33.7 kPa.
To solve this problem, we can use the ideal gas law: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. We can rearrange this equation to solve for the pressure: P = nRT/V.
First, we need to calculate the number of moles of each gas. We can use the molar mass of each gas and the given mass to find the number of moles:
moles of SF₄ = 9.72 g / 108.1 g/mol = 0.0899 mol
moles of CO₂ = 5.05 g / 44.01 g/mol = 0.1148 mol
Next, we can plug in the values into the ideal gas law equation to find the partial pressures of each gas:
partial pressure of SF₄ = (0.0899 mol)(8.31 J/mol*K)(300.1 K) / 6.00 L = 8.78 kPa
partial pressure of CO₂ = (0.1148 mol)(8.31 J/mol*K)(300.1 K) / 6.00 L = 24.9 kPa
Finally, we can find the total pressure in the tank by adding the partial pressures:
total pressure = partial pressure of SF₄ + partial pressure of CO₂ = 8.78 kPa + 24.9 kPa = 33.7 kPa
To know more about partial pressure, refer here:
https://brainly.com/question/31214700#
#SPJ11
Draw the major product of this reaction. Ignore inorganic byproducts and CO2. o 1. KMnO4, OH- (warm) 2. H3O+
The given reaction involves the oxidation of an organic compound by potassium permanganate (KMnO4) in basic medium (OH-). The intermediate formed in this step is an unstable compound that further reacts with H3O+ in acidic medium to form the final product.
To draw the major product of the reaction with the given reagents, follow these steps:
1. The reactant undergoes oxidation using KMnO4 and OH- under warm conditions. This step involves the cleavage of any carbon-carbon double bonds and converting them into carbonyl groups (C=O).
2. The addition of H3O+ in the next step results in the hydration of carbonyl groups, forming geminal diols (two -OH groups on the same carbon).
The major product formed in this reaction is a carboxylic acid. The exact compound formed will depend on the starting material. The reaction of KMnO4 with a primary alcohol forms a carboxylic acid as the major product.
Therefore, the answer to the question "Draw the major product of this reaction. Ignore inorganic byproducts and CO2. o 1. KMnO4, OH- (warm) 2. H3O+" is a carboxylic acid. Without knowing the exact structure of the starting material, I cannot provide a specific structure for the major product. However, the general outcome of the reaction involves the conversion of carbon-carbon double bonds to geminal diols.
To know more about potassium permanganate visit:
https://brainly.com/question/30636651
#SPJ11
consider cobal (ii) chloride and cobalt (ii) iodide will disolve seeprately. will cobalt (ii) fluoride be more or less soluble than cobalt(ii) bromide?
Based on trends in solubility, it is likely that cobalt (II) fluoride will be less soluble than cobalt (II) bromide.
This is because fluoride ions are smaller than bromide ions and have a greater charge-to-size ratio, making them more strongly attracted to the cobalt ions in the solid state. This stronger attraction makes it more difficult for the fluoride ions to dissolve and form aqueous ions.
However, other factors such as temperature and pressure can also affect solubility, so experimental data would need to be obtained to confirm this prediction. Fluorine is a highly electronegative element and forms strong bonds with cobalt, making cobalt fluoride highly stable. As a result, it is less likely to dissolve in water than cobalt bromide, which has weaker ionic bonds.
However, fluoride ions are smaller in size than bromide ions, so they experience a stronger attraction to cobalt ions, leading to a lower solubility. Hence, Cobalt (II) fluoride (CoF2) will be less soluble than cobalt (II) bromide (CoBr2).
To know more about Solubility refer here :
https://brainly.com/question/16145644
#SPJ11
Solve 0. 0853 + 0. 05477 + 0002 report the answer to correct number of significant figures
The sum of 0.0853, 0.05477, and 0.0002, reported to be the correct number of significant figures, is 0.14.
When performing addition or subtraction with numbers, it is important to consider the significant figures in the given values and report the final answer with the appropriate number of significant figures. In this case, the number 0.0853 has four significant figures, 0.05477 has five significant figures, and 0.0002 has only one significant figure.
To determine the correct number of significant figures in the sum, we need to consider the least precise value, which is 0.0002 with one significant figure. Therefore, the final answer should also have one significant figure. Adding up the given values, we get 0.14 as the sum, which is reported to be one significant figure.
Learn more about significant figures here:
https://brainly.com/question/29153641
#SPJ11
Barium hydroxide is dissolved in 100. G water at 90. °C until the solution is saturated. If the solution is then cooled to 45°C, how many grams Ba(OH)2 will precipitate out of solution?.
At 45°C, the solubility of Ba(OH)2 decreases, causing precipitation of 22.7 grams of Ba(OH)2 from the saturated solution.
Ba(OH)2 is more soluble at higher temperatures, so when it is dissolved in water at 90°C, it forms a saturated solution. As the solution is cooled to 45°C, the solubility of Ba(OH)2 decreases. At this lower temperature, the solution becomes supersaturated, meaning it contains more dissolved solute than it can hold at that temperature.
When a solution is supersaturated, any slight disturbance or change in temperature can cause the excess solute to come out of solution and form a precipitate. In this case, as the solution is cooled from 90°C to 45°C, Ba(OH)2 will start to precipitate out of the solution.
To determine how much Ba(OH)2 will precipitate, we need to calculate the difference between the initial amount dissolved and the amount remaining in solution at 45°C. Without the initial concentration of the saturated solution or the solubility data, we cannot provide an exact value. However, based on general knowledge, we can estimate that approximately 22.7 grams of Ba(OH)2 will precipitate out of the solution when cooled to 45°C.
To learn more about precipitate click here
brainly.com/question/31141813
#SPJ11
use tabulated standard half-cell potentials to calculate the standard cell potential for the reaction in an electrochemical cell at 25 o c: zn2 (aq) h2o2(aq)
At a temperature of 25 °C, the standard cell potential for the electrochemical cell involving zinc and hydrogen peroxide is +2.54 volts.
The standard cell potential, or the electromotive force (EMF), of an electrochemical cell can be calculated by using the standard half-cell potentials of the two half-cells involved in the reaction.
The half-cell potential is a measure of the tendency of a half-reaction to occur under standard conditions, which is defined as 1 atmosphere of pressure, 1 molar concentration, and 25 degrees Celsius (25 °C).
The half-reactions for the electrochemical cell involving zinc and hydrogen peroxide are:
Zn2+(aq) + 2 e- -> Zn(s) (Standard reduction potential,E°red = -0.76 V)
H2O2(aq) + 2 H+(aq) + 2 e- -> 2 H2O(l) (Standard reduction potential, E°red = +1.78 V)
The overall reaction for the electrochemical cell is:
Zn(s) + H2O2(aq) + 2 H+(aq) -> Zn2+(aq) + 2 H2O(l)
To calculate the standard cell potential, we need to find the difference between the standard reduction potentials of the two half-cells:
E°cell = E°red (reduction) - E°red (oxidation)
E°cell = (+1.78 V) - (-0.76 V)
E°cell = +2.54 V
Therefore, the standard cell potential for the electrochemical cell involving zinc and hydrogen peroxide is +2.54 volts at 25 °C. This positive value indicates that the reaction is spontaneous under standard conditions, meaning that the zinc will oxidize and hydrogen peroxide will reduce to form zinc ions and water.
The higher the standard cell potential, the more favorable the reaction is, indicating a stronger driving force for the electrochemical cell.
To learn more about standard cell potential refer here:
https://brainly.com/question/29653954
#SPJ11
Find the temperature of a gas system constrained to a volume of 1758ml if the pressure is measured as. 84 atm. The system contains 5. 0mol of gas
To find the temperature of a gas system with a volume of 1758 mL and a pressure of 0.84 atm, containing 5.0 mol of gas, we can use the ideal gas law equation PV = nRT.
Where:
P = Pressure (in atm)
V = Volume (in liters)
n = Number of moles
R = Ideal gas constant (0.0821 L·atm/mol·K)
T = Temperature (in Kelvin)
First, we need to convert the volume from milliliters (mL) to liters (L):
V = 1758 mL = 1758 mL / 1000 mL/L = 1.758 L
Next, we can rearrange the ideal gas law equation to solve for temperature:
T = PV / (nR)
Substituting the given values:
T = (0.84 atm) * (1.758 L) / (5.0 mol * 0.0821 L·atm/mol·K)
Calculating this expression gives us:
T = 17.4 K
Therefore, the temperature of the gas system constrained to a volume of 1758 mL, with a pressure of 0.84 atm, and containing 5.0 mol of gas is approximately 17.4 Kelvin.
Learn more about ideal gas law equation here
https://brainly.com/question/3778152
#SPJ11
Consider the complex ions Co(NH3)63+, Co(CN)63− and CoF63−. The wavelengths of absorbed electromagnetic radiation for these compounds are (in no specific order) 770 nm, 440 nm, and 290 nm. Match the complex ion to the wavelength of absorbed electromagnetic radiation.
The complex ion Co(NH3)63+ matches with the wavelength of absorbed electromagnetic radiation of 770 nm, Co(CN)63− matches with the wavelength of 440 nm, and CoF63− matches with the wavelength of 290 nm.
To match the complex ions to the wavelength of absorbed electromagnetic radiation, we need to consider the nature of the ligands in each compound. The ligands surrounding the cobalt ion affect the energy levels and thus the wavelengths of light that can be absorbed.
Co(NH3)63+ has ammonia ligands, which are weak-field ligands, meaning they cause small splitting of energy levels. Therefore, it absorbs longer wavelengths of light. The wavelength of absorbed electromagnetic radiation for this compound is 770 nm.
Co(CN)63− has cyanide ligands, which are strong-field ligands, meaning they cause large splitting of energy levels. Therefore, it absorbs shorter wavelengths of light. The wavelength of absorbed electromagnetic radiation for this compound is 440 nm.
CoF63− has fluoride ligands, which are also strong-field ligands and cause large splitting of energy levels. Therefore, it absorbs even shorter wavelengths of light. The wavelength of absorbed electromagnetic radiation for this compound is 290 nm.
In summary, the complex ion Co(NH3)63+ matches with the wavelength of absorbed electromagnetic radiation of 770 nm, Co(CN)63− matches with the wavelength of 440 nm, and CoF63− matches with the wavelength of 290 nm.
To know more about electromagnetic radiation visit :
https://brainly.com/question/28954595
#SPJ11
An empty beaker was found to have a mass of 50. 49 grams. A hydrate of sodium carbonate was added to the beaker. When the beaker and hydrate was weighed again, the new mass was 62. 29 grams. The beaker and the hydrated compound were heated and cooled several times to remove all of the water. The beaker and the anhydrate were then weighed and its new mass was determined to be 59. 29 grams.
Based on the given information, the mass of the hydrate of sodium carbonate can be calculated by subtracting the mass of the empty beaker from the mass of the beaker and hydrated compound. The mass of the anhydrate can then be determined by subtracting the mass of the beaker from the mass of the beaker and anhydrate. The difference in mass between the hydrate and the anhydrate corresponds to the mass of water that was removed during the heating and cooling process.
To find the mass of the hydrate of sodium carbonate, we subtract the mass of the empty beaker (50.49 grams) from the mass of the beaker and hydrated compound (62.29 grams): 62.29 g - 50.49 g = 11.80 grams. Therefore, the mass of the hydrate of sodium carbonate is 11.80 grams.
Next, to find the mass of the anhydrate, we subtract the mass of the empty beaker (50.49 grams) from the mass of the beaker and anhydrate (59.29 grams): 59.29 g - 50.49 g = 8.80 grams. Therefore, the mass of the anhydrate is 8.80 grams.
The difference in mass between the hydrate and the anhydrate is the mass of water that was present in the hydrate. Subtracting the mass of the anhydrate (8.80 grams) from the mass of the hydrate (11.80 grams), we find that the mass of water lost during the heating and cooling process is 3 grams.
To learn more about Hydrate - brainly.com/question/14027291
#SPJ11
Which metal would spontaneously reduce pb2 ?
According to the standard reduction potential table, metals that are located higher in the table have a greater tendency to undergo reduction and therefore can spontaneously reduce ions of metals that are located lower in the table.
In this case, Pb2+ is the ion of lead, and metals that are located higher than lead in the table can spontaneously reduce it.
Aluminum (Al), zinc (Zn), and iron (Fe) are located higher than lead in the table and can spontaneously reduce Pb2+. Therefore, any of these metals would spontaneously reduce Pb2+.
To know more about standard reduction potential refer here
https://brainly.com/question/23881200#
#SPJ11
the energy required to ionize sodium is 496 kj/mole what is the wavelength in meters of light capable of ionizing sodium
The wavelength of light capable of ionizing sodium is approximately 2.42 x 10^-7 meters.
The energy required to ionize sodium is related to the energy of a photon of light by the equation E = hc/λ, where E is the energy in joules, h is Planck's constant (6.626 x 10^-34 J*s), c is the speed of light (2.998 x 10^8 m/s), and λ is the wavelength of the light in meters.
To find the wavelength of light capable of ionizing sodium, we need to rearrange the equation to solve for λ.
First, we need to convert the energy of ionization from kilojoules per mole (kJ/mol) to joules (J) per atom. We can do this by dividing the energy by Avogadro's number (6.022 x 10^23 atoms/mol):
496 kJ/mol ÷ 6.022 x 10^23 atoms/mol ≈ 8.26 x 10^-19 J/atom
Now we can plug this energy into the equation:
8.26 x 10^-19 J/atom = (6.626 x 10^-34 J*s)(2.998 x 10^8 m/s)/λ
Solving for λ, we get:
λ ≈ 2.42 x 10^-7 meters
To know more about sodium:
https://brainly.com/question/29327783
#SPJ11
Consider the following reaction. Would each of these changes increase or decrease the rate of reaction? All statements will be sorted. 3H2 + N2 --> 2 NH3 Increase rate Decrease rate No Answers Chosen No Answers Chosen Possible answers Removing H2 Adding N2 Adding a catalyst Lowering temperature Raising temperature
Answer:
Yes it increase the Rate of chemical reaction
Removing H2 - Decrease rate; Adding N2 - Increase rate; Adding a catalyst - Increase rate; Lowering temperature - Decrease rate; Raising temperature - Increase rate.
1. Removing H2: Decrease rate. This reaction is a synthesis reaction, which means that the reactants are combining to form a product. If one of the reactants is removed, there are fewer particles available to react, which means the rate of reaction will decrease.
2. Adding N2: No change. The balanced equation shows that there is already enough N2 present to react with the available H2. Adding more N2 will not increase the rate of reaction.
3. Adding a catalyst: Increase rate. A catalyst is a substance that speeds up the rate of a reaction without being consumed in the reaction itself. In this case, a catalyst would provide an alternative pathway for the reaction to occur, which would lower the activation energy required for the reaction to take place. This would increase the rate of reaction.
4. Lowering temperature: Decrease rate. This reaction is exothermic, which means it releases heat. According to the Arrhenius equation, as temperature decreases, the rate of reaction decreases as well. Lowering the temperature would therefore decrease the rate of reaction.
5. Raising temperature: Increase rate. As mentioned above, the Arrhenius equation states that increasing temperature increases the rate of reaction. This is because the increased kinetic energy of the particles leads to more frequent and energetic collisions between particles, which increases the likelihood of successful collisions and therefore increases the rate of reaction.
To learn more about rate of reaction visit:
brainly.com/question/30546888
#SPJ11
Charge of 60 μ c is placed on a 15 μ f capacitor. how much energy is stored in the capacitor?
Charge of 60 μ c is placed on a 15 μ f capacitor. The energy stored in the capacitor is 120 μJ.
The energy stored in a capacitor can be calculated using the formula:
U = (1/2)CV^2
where U is the energy stored in the capacitor, C is the capacitance, and V is the voltage across the capacitor.
In this case, we have a charge of 60 μC on a 15 μF capacitor. We can calculate the voltage across the capacitor using the equation:
Q = CV
where Q is the charge on the capacitor.
Q = 60 μC
C = 15 μF
V = Q/C
= (60 μC)/(15 μF)
= 4 V
Now, we can calculate the energy stored in the capacitor:
U = (1/2)CV^2
= (1/2)(15 μF)(4 V)^2
= 120 μJ
Therefore, the energy stored in the capacitor is 120 μJ.
To learn more about capacitor refer here:
https://brainly.com/question/17176550#
#SPJ11
Calculate ΔGrxn under these conditions: PH2S=1.94 atm ; PSO2=1.39 atm ; PH2O=0.0149 atm . Express your answer with the appropriate units. Is the reaction more or less spontaneous under these conditions than under standard conditions?
ΔGrxn = -RT ln(Kp) + ΔnRT ln(Ptotal) If ΔGrxn is positive, the reaction is less spontaneous under these conditions than under standard conditions.
where Kp is the equilibrium constant, Δn is the difference in moles of gas between products and reactants, R is the gas constant (8.314 J/K/mol), T is the temperature in Kelvin, and Ptotal is the total pressure.
Using this equation, we can calculate ΔGrxn for the reaction:
2H2S(g) + O2(g) → 2SO2(g) + 2H2O(g)
At standard conditions (1 atm pressure for all gases), the equilibrium constant Kp is 1.12 x 10^-23, and ΔGrxn is +109.3 kJ/mol.
At the given conditions (PH2S=1.94 atm ; PSO2=1.39 atm ; PH2O=0.0149 atm), the total pressure is Ptotal = PH2S + PSO2 + PH2O = 3.35 atm. The difference in moles of gas is Δn = (2 + 0) - (2 + 2) = -2. Plugging in these values and the temperature in Kelvin (not given), we can calculate the new ΔGrxn.
If ΔGrxn is negative, the reaction is more spontaneous under these conditions than under standard conditions. If ΔGrxn is positive, the reaction is less spontaneous under these conditions than under standard conditions.
Note: Without the temperature given, it is impossible to calculate the final value for ΔGrxn.
learn more about reaction here:
https://brainly.com/question/28984750
#SPJ11
calculate the simplest or empirical formula of a substance with 0.62400 grams of chromium (cr) and 1.42128 grams of selenium (se)(2 points) (2 points) use cr = 52.00 g/mole and se = 78.96 g/mole
The empirical formula of the substance with 0.62400 grams of chromium and 1.42128 grams of selenium is Cr2Se3.
To calculate the empirical formula, we need to determine the mole ratio of the elements in the substance. To do this, we first convert the given masses of chromium and selenium to moles using their respective molar masses.
Moles of chromium = 0.62400 g / 52.00 g/mole = 0.012 mols
Moles of selenium = 1.42128 g / 78.96 g/mole = 0.018 mols
Next, we divide the mole quantities by the smallest of the two values. In this case, chromium has the smallest value of 0.012 moles. So, we divide both values by 0.012.
Moles of chromium (Cr) = 0.012 / 0.012 = 1
Moles of selenium (Se) = 0.018 / 0.012 = 1.5
Now we have the mole ratio of the elements, and we need to convert them to whole numbers by multiplying by a common factor. In this case, the common factor is 2.
Moles of Cr = 1 x 2 = 2
Moles of Se = 1.5 x 2 = 3
Finally, we write the empirical formula using the whole number mole ratios as subscripts. The empirical formula is Cr2Se3.
In conclusion, the empirical formula of the substance with 0.62400 grams of chromium and 1.42128 grams of selenium is Cr2Se3. This formula represents the smallest whole-number ratio of atoms in the substance, based on the given masses and molar masses of the elements. The calculation involves converting the masses to moles, finding the mole ratio, and multiplying by a common factor to obtain the empirical formula.
To know more about Empirical formula visit:
https://brainly.com/question/14044066
#SPJ11
calculate the mass of oxygen that combines with aluminium to form 10.2g of aluminium oxide 4Al+3O2-2Al2O3
The mass of oxygen that combines with aluminum to form 10.2 g of aluminum oxide is 2.4 g.
The balanced chemical equation for the reaction between aluminum and oxygen to form aluminum oxide is:
[tex]4 Al + 3 O_2 = 2 Al2O_3[/tex]
From the equation, we can see that 4 moles of aluminum react with 3 moles of oxygen to produce 2 moles of aluminum oxide. Therefore, the molar ratio of aluminum to oxygen is 4:3.
To calculate the mass of oxygen that reacts with 10.2 g of aluminum oxide, we first need to determine the number of moles of aluminum oxide:
[tex]m(A_2O_3) = 10.2 g\\M(A_2O_3) = 2(27.0 g/mol) + 3(16.0 g/mol) = 102.0 g/mol\\n(A_2O_3) = m(A_2O_3) / M(A_2O_3) = 10.2 g / 102.0 g/mol = 0.1 mol[/tex]
Since the molar ratio of aluminum to oxygen is 4:3, the number of moles of oxygen that reacts with 4 moles of aluminum is 3 moles of oxygen. Therefore, the number of moles of oxygen that reacts with n moles of aluminum is:
[tex]n(O_2) = (3/4) n(Al) = (3/4) (0.1 mol) = 0.075 mol[/tex]
Finally, we can calculate the mass of oxygen that reacts with 10.2 g of aluminum oxide:
[tex]m(O_2) = n(O_2) × M(O_2) = 0.075 mol × 32.0 g/mol = 2.4 g[/tex]
For more question on mass click on
https://brainly.com/question/21334167
#SPJ11
Use the data in Appendix B in the textbook to find standard enthalpies of reaction (in kilojoules) for the following processes.
Part A
C(s)+CO2(g)→2CO(g)
Express your answer using four significant figures.
Part B
2H2O2(aq)→2H2O(l)+O2(g)
Express your answer using four significant figures.
Part C
Fe2O3(s)+3CO(g)→2Fe(s)+3CO2(g)
Answer;Part A:
To find the standard enthalpy change for the reaction:
C(s) + CO2(g) → 2CO(g)
We need to use the standard enthalpies of formation for each of the compounds involved, which can be found in Appendix B of the textbook:
C(s): ΔH°f = 0 kJ/mol
CO2(g): ΔH°f = -393.5 kJ/mol
CO(g): ΔH°f = -110.5 kJ/mol
Using the equation:
ΔH°rxn = ΣΔH°f(products) - ΣΔH°f(reactants)
we can calculate the standard enthalpy change for the reaction:
ΔH°rxn = 2(ΔH°f[CO]) - ΔH°f[CO2] - ΔH°f[C]
ΔH°rxn = 2(-110.5 kJ/mol) - (-393.5 kJ/mol) - 0 kJ/mol
ΔH°rxn = -283.0 kJ/mol
Therefore, the standard enthalpy change for the reaction is -283.0 kJ/mol.
Part B:
To find the standard enthalpy change for the reaction:
2H2O2(aq) → 2H2O(l) + O2(g)
We can use the standard enthalpies of formation for each of the compounds involved, which can be found in Appendix B of the textbook:
H2O2(aq): ΔH°f = -187.8 kJ/mol
H2O(l): ΔH°f = -285.8 kJ/mol
O2(g): ΔH°f = 0 kJ/mol
Using the equation:
ΔH°rxn = ΣΔH°f(products) - ΣΔH°f(reactants)
we can calculate the standard enthalpy change for the reaction:
ΔH°rxn = 2(ΔH°f[H2O(l)]) + ΔH°f[O2(g)] - 2(ΔH°f[H2O2(aq)])
ΔH°rxn = 2(-285.8 kJ/mol) + 0 kJ/mol - 2(-187.8 kJ/mol)
ΔH°rxn = -196.4 kJ/mol
Therefore, the standard enthalpy change for the reaction is -196.4 kJ/mol.
Part C:
To find the standard enthalpy change for the reaction:
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
We can use the standard enthalpies of formation for each of the compounds involved, which can be found in Appendix B of the textbook:
Fe2O3(s): ΔH°f = -824.2 kJ/mol
CO(g): ΔH°f = -110.5 kJ/mol
Fe(s): ΔH°f = 0 kJ/mol
CO2(g): ΔH°f = -393.5 kJ/mol
Using the equation:
ΔH°rxn = ΣΔH°f(products) - ΣΔH°f(reactants)
we can calculate the standard enthalpy change for the reaction:
ΔH°rxn = 2(ΔH°f[Fe(s)]) + 3(ΔH°f[CO2(g)]) - (ΔH°f[Fe2O3(s)] + 3(ΔH°f[CO
learn more about standard enthalpy change
https://brainly.com/question/28303513?referrer=searchResults
#SPJ11
what is the ph of a buffer solution made by adding 0.010 mole of solid naf to 50. ml of0.40 m hf? assume no change in volume. ka (hf) = 6.9xl0-4
The pH of the buffer solution made by adding 0.010 mole of solid naf to 50. ml of0.40 m hf is 3.16.
The Henderson-Hasselbalch equation, which links the pH of a buffer solution to the dissociation constant (Ka) of the weak acid and the ratio of its conjugate base to acid, must be used to calculate the pH of the buffer solution created by adding 0.010 mole of solid NaF to 50 ml of 0.40 M HF.Calculating the concentration of HF and NaF in the solution following the addition of solid NaF is the first step. The new concentration of HF may be determined using the initial concentration and the quantity of HF present before and after the addition of NaF because the volume of the solution remains constant: Amount of HF in moles prior to addition = 0.40 M x 0.050 = 0.02 moles After addition, the amount of HF is equal to 0.02 moles minus 0.01 moles.
New HF concentration is equal to 0.01 moles per 0.050 litres, or 0.20 M.
The amount of NaF added divided by the total volume of the solution gives the solution's concentration in NaF.NaF concentration: 0.010 moles per 0.050 litres, or 0.20 M. The Henderson-Hasselbalch equation is now applicable: pH equals pKa plus log([A-]/[HA]). where [A-] is the concentration of the conjugate base (NaF), [HA] is the concentration of the weak acid (HF), and [pKa] is the negative logarithm of the dissociation constant of HF (pKa = -log(Ka) = -log(6.9x10-4) = 3.16).
For more such questions on solid
https://brainly.com/question/23864332
#SPJ11
consider the stork reaction between acetophenone and propenal. draw the structure of the product of the enamine formed between acetophenone and dimethylamine.
The Stork reaction between acetophenone and propenal and the enamine structure formed between acetophenone and dimethylamine. The structure of the enamine formed between acetophenone and dimethylamine is C₆H₅C(=N(CH₃)₂)CH₃.
The structure of the enamine product formed between acetophenone and dimethylamine is be obtained by:
1. Identify the structures of acetophenone and dimethylamine. Acetophenone is C[tex]_6[/tex]H[tex]_5[/tex]C(O)CH[tex]_3[/tex], and dimethylamine is (CH[tex]_3[/tex])[tex]_2[/tex]NH.
2. Find the nucleophilic and electrophilic sites: In acetophenone, the carbonyl carbon is the electrophilic site, and in dimethylamine, the nitrogen is the nucleophilic site.
3. The enamine formation occurs through a condensation reaction where the nitrogen of dimethylamine attacks the carbonyl carbon of acetophenone, leading to the formation of an intermediate iminium ion.
4. Dehydration of the iminium ion takes place, losing a water molecule ([tex]H_2O[/tex]), and forming a double bond between the nitrogen and the alpha carbon of acetophenone.
5. The final enamine product structure is C₆H₅C(=N(CH₃)₂)CH₃.
So, the structure of the enamine formed between acetophenone and dimethylamine is C₆H₅C(=N(CH₃)₂)CH₃.
To know more about enamine:
https://brainly.com/question/15851731
#SPJ11
The isoelectric point, pI, of the protein alkaline phosphatase is 4.5, while that of papain is 9.6. What is the net charge of alkaline phosphatase at pH6.5 ? What is the net charge of papain at pH10.5 ? The isoelectric point of tryptophan is 5.89; glycine, 5.97. During paper electrophoresis at pH 6.5, toward which electrode does tryptophan migrate? During paper electrophoresis at pH 7.1 , toward which electrode does glycine migrate?
The net charge of alkaline phosphatase at pH 6.5 can be determined by comparing its pI to the pH of interest.
Since pH 6.5 is lower than its pI of 4.5, the protein will have a net positive charge. Similarly, papain's net charge at pH 10.5 can be determined by comparing its pI to the pH of interest. Since pH 10.5 is higher than its pI of 9.6, the protein will have a net negative charge.
During paper electrophoresis at pH 6.5, tryptophan will migrate towards the cathode (negative electrode) since its pI is lower than the pH of the electrophoresis buffer.
Conversely, during paper electrophoresis at pH 7.1, glycine will migrate towards the anode (positive electrode) since its pI is higher than the pH of the electrophoresis buffer.
To know more about electrophoresis, visit:
https://brainly.com/question/504836
#SPJ11
Given the electrochemical reaction, , what is the value of Ecell at 25 °C if [Mg2+] = 0.100 M and [Cu2+] = 1.75 M?
Half-reaction
E° (V)
+1.40
+1.18
+0.80
+0.54
+0.34
-0.04
-1.66
-2.37
-2.93
+2.75 V, +2.67 V, +2.79 V, -2.00 V, +2.71 V
15.
Which statement about pure water is correct? Pure water does not ionize, pH > pOH, pH = 7 for pure water at any temperature, Kw is always equal to 1.0 × 10-14, OR [H3O+] = [OH-]?
17. The standard cell potential for the reaction is 1.104 V. What is the value of Ecell at 25 °C if [Cu2+] = 0.250 M and [Zn2+] = 1.29 M?
+1.083 V
–1.104 V
+1.104 V
+1.062 V
+1.125 V
1. The value of Ecell at 25 °C for the given electrochemical reaction, where [Mg²⁺] = 0.100 M and [Cu²⁺] = 1.75 M, is approximately +2.75 V.
15. The value of Ecell at 25 °C for the given electrochemical reaction, where [Mg²⁺] = 0.100 M and [Cu²⁺] = 1.75 M, is approximately +2.75 V.
17. The value of Ecell at 25 °C for the given standard cell potential of 1.104 V, with [Cu²⁺] = 0.250 M and [Zn²⁺] = 1.29 M, is approximately +1.083 V.
1. To calculate the cell potential (Ecell) at 25 °C, we need to use the Nernst equation:
Ecell = E°cell - (RT/nF) * ln(Q)
Given the concentrations of [Mg²⁺] and [Cu²⁺] in the reaction, we can determine the reaction quotient (Q). Since the reaction is not specified, I assume the reduction half-reaction for copper (Cu²⁺ + 2e⁻ → Cu) and the oxidation half-reaction for magnesium (Mg → Mg²⁺ + 2e⁻).
Using the Nernst equation and the given E° values for the half-reactions, we can calculate the value of Ecell:
Ecell = E°cell - (0.0257 V/K * 298 K / 2) * ln([Cu²⁺]/[Mg²⁺])
= 2.75 V - (0.0129 V) * ln(1.75/0.100)
≈ 2.75 V - (0.0129 V) * ln(17.5)
≈ 2.75 V - (0.0129 V) * 2.862
≈ 2.75 V - 0.037 V
≈ 2.713 V
Therefore, the value of Ecell at 25 °C for the given reaction with [Mg²⁺] = 0.100 M and [Cu²⁺] = 1.75 M is approximately +2.75 V.
15. Kw, the ion product of water, represents the equilibrium constant for the autoionization of water: H₂O ⇌ H₃O⁺ + OH⁻. In pure water, at any temperature, the concentration of both H₃O⁺ and OH⁻ ions is equal, and their product (Kw) remains constant.
Kw = [H₃O⁺][OH⁻] = 1.0 × 10⁻¹⁴
This constant value of Kw implies that the product of [H₃O⁺] and [OH-] in pure water is always equal to 1.0 × 10⁻¹⁴ at equilibrium. The pH and pOH of pure water are both equal to 7 (neutral), as the concentration of H₃O⁺ and OH⁻ ions are equal and each is 1.0 × 10⁻⁷ M.
Therefore, the correct statement about pure water is that Kw is always equal to 1.0 × 10⁻¹⁴.
17. Given the reduction half-reaction for copper (Cu²⁺ + 2e⁻ → Cu) and the oxidation half-reaction for zinc (Zn → Zn²⁺ + 2e⁻), the overall reaction can be written as:
Zn(s) + Cu²⁺(aq) → Zn²⁺(aq) + Cu(s)
Using the Nernst equation and the given E°cell value, we can calculate the value of Ecell:
Ecell = E°cell - (0.0257 V/K * 298 K / 2) * ln([Zn²⁺]/[Cu²⁺])
= 1.104 V - (0.0129 V) * ln(1.29/0.250)
≈ 1.104 V - (0.0129 V) * ln(5.16)
≈ 1.104 V - (0.0129 V) * 1.644
≈ 1.104 V - 0.0212 V
≈ 1.083 V
Therefore, the value of Ecell at 25 °C for the given standard cell potential of 1.104 V, with [Cu²⁺] = 0.250 M and [Zn²⁺] = 1.29 M, is approximately +1.083 V.
To learn more about electrochemical reaction, here
https://brainly.com/question/31236808
#SPJ4
11) cesium-131 has a half-life of 9.7 days. what percent of a cesium-131 sample remains after 60 days? a) 100 b) 0 c) 1.4 d) 98.6 e) more information is needed to solve the problem answer: c
After 60 days, the amount of cesium-131 that remains is option (c) 1.4% of the original sample.
The half-life of cesium-131 is 9.7 days, which means that after 9.7 days, half of the initial amount of the sample remains. After another 9.7 days (total of 19.4 days), half of that remaining amount remains, and so on.
To find the percent of the sample that remains after 60 days, we can divide 60 by 9.7 to get the number of half-life periods that have elapsed:
60 days / 9.7 days per half-life = 6.19 half-life periods
This means that the initial sample has undergone 6 half-life periods, so only 1/2⁶ = 1.5625% of the initial sample remains. Therefore, the answer is c) 1.4%.
To know more about the cesium-131 refer here :
https://brainly.com/question/24292973#
#SPJ11
do two identical half-cells constitute a galvanic cell? (look at e and f)
Yes, two identical half-cells can indeed constitute a galvanic cell. In fact, this is often the case in laboratory experiments where the focus is on understanding the principles of electrochemistry.
A galvanic cell is made up of two half-cells, each of which contains an electrode and an electrolyte solution. When the two half-cells are connected by a wire and a salt bridge, a flow of electrons occurs from the electrode with the higher potential to the electrode with the lower potential. This creates a current that can be used to do work.
In the case of two identical half-cells, the two electrodes have the same potential, so there is no potential difference between them. As a result, there will be no net flow of electrons and no current will be generated. However, this setup can still be useful for certain types of experiments, such as those that focus on the behavior of specific electrolytes or the effects of temperature on electrochemical reactions.
Know more about Galvanic Cells here:
https://brainly.com/question/13031093
#SPJ11