Answer:
49.87% of the population has a heart rate between 68 and 77.
Step-by-step explanation:
We are given that the mean of the data for the resting heart of adults is 68 beats per minute and the standard deviation is 3 beats per minute.
Let X = the data for the resting heart of adults
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean = 68 beats per minute
[tex]\sigma[/tex] = standard deviation = 3 beats per minute
Now, the percentage of the population that has a heart rate between 68 and 77 is given by = P(68 < X < 77)
P(68 < X < 77) = P(X < 77) - P(X [tex]\leq[/tex] 68)
P(X < 77) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{77-68}{3}[/tex] ) = P(Z < 3) = 0.9987
P(X [tex]\leq[/tex] 68) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{68-68}{3}[/tex] ) = P(Z [tex]\leq[/tex] 0) = 0.50
The above probability is calculated by looking at the value of x = 3 and x = 0 in the z table which has an area of 0.9987 and 0.50 respectively.
Therefore, P(68 < X < 77) = 0.9987 - 0.50 = 0.4987 or 49.87%
find the value of x and explain
Answer:
D
Step-by-step explanation:
The chord- chord angle 105° is half the sum of the arcs intercepted by the angle and its vertical angle, thus
[tex]\frac{1}{2}[/tex](120 + x) = 105 ( multiply both sides by 2 )
120 + x = 210 ( subtract 120 from both sides )
x = 90 → D
Find the value of x.
Answer:
8.8Option A is the correct option.
Step-by-step explanation:
As PW is the median.
PW = [tex] \frac{1}{2} [/tex] ( YZ + TM )
Plug the values
x = [tex] = \frac{1}{2} (5.5 + 12.1)[/tex]
Calculate the sum
x = [tex] = \frac{1}{2} \times 17.6[/tex]
Calculate the product
x = [tex] = 8.8[/tex]
Hope this helps...
Best regards!
Please help I don't understand this at all
Answer:
Since ΔABC is equilateral, ∠ACB = 60°. Since ΔCED is isosceles (we know this because CE = ED from the graph), ∠ECD = ∠EDC from Base Angles Theorem, and since the sum of angles in a triangle is 180°, they measure (180 - 32) / 2 = 74° each. Since BCD is a straight line, it measures 180° so we can write:
60 + x + 74 = 180
134 + x = 180
x = 46°
Answer:
46 degrees
Step-by-step explanation:
Since triangle ABC is equilateral that means each angle in that triangle is 60 degrees.
We also know that for triangle ECD angle C and angle D have to be 74 degrees, because a triangle has 180 degrees in total and the only unique angle is at the top which is 32. So it is 180-32=148, than 148/2=74.
We than know that a half circle is 180 degrees aswell, so we do 180-60=120
120-74=46
In how many ways can you put seven marbles in different colors into four jars? Note that the jars may be empty.
Answer: 16,384
Step-by-step explanation:
The seven marbles have different colours, so we can differentiate them.
Now, suppose that for each marble we have a selection, where the selection is in which jar we put it.
For the first marble, we have 4 options ( we have 4 jars)
For the second marble, we have 4 options.
Same for the third, for the fourth, etc.
Now, the total number of combinations is equal to the product of the number of options for each selection.
We have 7 selections and 4 options for each selection, then the total number of combinations is:
C = 4^7 = 16,384
Answer:
the answer is 16384
Step-by-step explanation:
have a nice day.
Susan purchased 9/10 of a pound of shrimp for a dinner party. Her plan is to serve 1/6 of a pound of shrimp to herself and each guest. Including herself, how many people can Susan serve at her dinner party? (Remember that you can't have a fraction of a person.)
Answer:
Susan and 4 quests
5 people
Step-by-step explanation:
Take 9/10 and divide by 1/6
9/10 ÷1/6
Copy dot flip
9/10 * 6/1
54/10
50/10 + 4/10
5 4/10
We can only serve whole numbers
5 people
Susan and 4 quests
Rectangle ABCDABCDA, B, C, D is graphed in the coordinate plane. The following are the vertices of the rectangle: A(2, 0), B(6, 0), C(6, 7), D(2, 7). What is the area of rectangle A, B, C, D? square units NEED ASAP 40 POINTS LIGIT
Answer:
[tex]\boxed{\sf \ \ 28 \ \ }[/tex]
Step-by-step explanation:
Hello,
Please find attached the graph
AB = 6-2 = 4
DA = 7-0 = 7
So the area of the rectangle is AB * DA = 4 * 7 = 28
Hope this helps
In the figure, m∠CED = m∠A. Complete the following proportions: ED/ A F= CE/? = CD/?
Answer:
The completed proportions are;
ED/A_F = CE/CA = CF/CD
Step-by-step explanation:
The given m∠CED = m∠A
∴ Angle ∠CDE = Angle ∠A_FC, (corresponding angles)
Angle ∠ECD = Angle ∠ACF (reflexive property)
Triangle ΔDCE is similar to triangle ΔACF (Angle Angle Angle (AAA) similarity)
In triangle ΔDCE and triangle ΔACF
m∠A is bounded by CA and A_F
m∠CED is bounded by CE and ED
∠DCE is bounded by CE and DE
∠C is bounded by CA and CF
Based on the orientation of the two triangles, we have
ED is the corresponding side to A_F, CD is the corresponding side to CF, CE is the corresponding side to CA
Therefore, we have;
ED/A_F = CE/CA = CF/CD.
3) In a paddling pool there are 30 floating ducks. Each duck is marked with a number on the underside. 15 are marked with the number 1, 9 are marked with the number 2 and 6 are marked with number 3. There are prizes for those who pick a duck with the number 3 on it. What is the probability of Molly picking a duck with the number 3 on it? Give your answer as a fraction in its lowest terms.
Answer: 1/5
Step-by-step explanation:
Given the following :
Total number of ducks in pool = 30
Mark 1 = 15 ducks
Mark 2 = 9 ducks
Mark 3 = 6 ducks
Probability of picking a duck with Mark 3:
Probability = (number of required outcomes / total possible outcomes)
Number of required outcomes = number of ducks with mark 3 = 6 ducks
P(picking a duck with Mark 3) = 6/30
6/30 = 1/5
= 1/5
PLSSSS HELP The area of a cylinder varies jointly with the radius and the height. When the radius is 3 and the height is 6 the area is 36π. Find the are when the radius is 4 and the height is 5
Answer:
167.55
Step-by-step explanation:
so it varies jointly so
A-area if cylinder
so
[tex]a \: \alpha \: \pi \: r \: ^{2} h[/tex]
so
[tex]a = k\pi \: r^{2}h[/tex]
where k is the constant
so apply the first set of values to get k=2/3
then substitute the k with the second set of values
Exit polling is a popular technique used to determine the outcome of an election prior to results being tallied. Suppose a referendum to increase funding for education is on the ballot in a large town (voting population over 100,000). An exit poll of 200 voters finds that 94 voted for the referendum. How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
Answer:
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
Step-by-step explanation:
From the information given :
An exit poll of 200 voters finds that 94 voted for the referendum.
How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
This implies that ;
the Sample size n = 200
the probability p = 0.52
Let X be the random variable
So; the Binomial expression can be represented as:
X [tex]\sim[/tex] Binomial ( n = 200, p = 0.52)
Mean [tex]\mu[/tex] = np
Mean [tex]\mu[/tex] = 200 × 0.52
Mean [tex]\mu[/tex] = 104
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{np(1-p)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(1-0.52)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(0.48)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{49.92}[/tex]
The standard deviation [tex]\sigma[/tex] = 7.065
However;
P(X ≤ 94) because the discrete distribution by the continuous normal distribution values lies in the region of 93.5 and 94.5 .
The less than or equal to sign therefore relates to the continuous normal distribution of X < 94.5
Now;
x = 94.5
Therefore;
[tex]z = \dfrac{x- \mu}{\sigma}[/tex]
[tex]z = \dfrac{94.5 - 104}{7.065}[/tex]
[tex]z = \dfrac{-9.5}{7.065}[/tex]
z = −1.345
P(X< 94.5) = P(Z < - 1.345)
From the z- table
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
On a ski lift, the distance between chairs is inversely proportional to the number of chairs. At a
ski resort, one lift has 80 chairs spaced 16 meters apart. What is the constant of variation.
A.1280 B.5 C.1/5 D.1/1280
Constant of variation = number of chairs/ spacing.
80/16 = 5
The answer is B.5
2/3 divided by 5?If she walks 2/3 by another 5.
Answer:
The answer is 0.133
Step-by-step explanation:
All you have to do is take 2/3 as if it was a whole number and divide it by 5, or if you are able to use a calculator, you can just but it in as 2 divided by 3 and then divide 5 by whatever answer you get.
Answer:
Hello! 2/3 divided by 5 in fraction will be 2/15
Step-by-step explanation:
Since we have a 5 we need to change that into a fraction
5 would turn into 1/5
Now you have to multiply both of the fractions to get your answer.
2/3 x 1/5
= 2/15
(So 2/15 will be your answer.)
Hope this helps! :)
no clue how to do this, someone pls help
Answer:
6π
Step-by-step explanation:
First we need to find the circumference of the circle. We know that the radius is 4 and the formula is πd or 2πr
Leaving it in terms of pi, the circumference is 8π
Now we need to find the length of the arc.
Since the missing part of the circle is labeled with a right angle, we know that it's exactly 1/4 of the whole circle. That means the arc we need to find is 3/4 of the circumference.
3/4 of 8π is 6π
Please answer it now in two minutes
Answer:
3.9
Step-by-step explanation:
Pythagorean theorem:
a^2 + b^2 = c^2
a^2 + 1^2 = 4^2
a^2 + 1 = 16
a^2 = 15
a = sqrt(15)
a = 3.9
Answer a = 3.9 yards
Answer:
[tex]\boxed{3.9}[/tex]
Step-by-step explanation:
The triangle is a right triangle.
Apply Pythagorean theorem.
[tex]a^2 + b^2 = c^2[/tex]
[tex]a^2 + 1^2 = 4^2[/tex]
[tex]a^2 + 1 = 16[/tex]
[tex]a^2 = 15[/tex]
[tex]a=\sqrt{15}[/tex]
[tex]a \approx 3.872983[/tex]
74 divided by 3 times 7 equals what?
Answer:
518 / 3.
Step-by-step explanation:
(74 / 3) * 7 = (74 * 7) / 3 = 518 / 3 = 172 and 2/3 = 172.6666666667.
Hope this helps!
given that sin x equals to a over b then what is tan x
Answer:
Hey there!
Sine is equal to opposite/hypotenuse
Tangent is equal to opposite/adjacent
opposite=a
hypotenuse=b
adjacent=c
Thus, tangent x= a/c.
Hope this helps :)
Answer:
tan x = a/sqrt(b^2 - a^2)
Step-by-step explanation:
sin x = a/b = opp/hyp
tan x = opp/adj
adj^2 + opp^2 = hyp^2
adj^2 + a^2 = b^2
adj = sqrt(b^2 - a^2)
tan x = a/sqrt(b^2 - a^2)
Evaluate 7m + 2n - 8p/n for m = –4, n = 2, and p = 1.5.
Answer:
-30
Step-by-step explanation:
7m + 2n - 8p/n
Let m = –4, n = 2, and p = 1.5
7(-4) + 2 ( 2) -8*(1.5)/2
-28 + 4 - 4*1.5
-28+ 4 - 6
-30
Answer:
-30
Step-by-step explanation:
Hey there!
Well given,
m = -4
n = 2
p = 1.5
We need to plug those number into,
7m + 2n - 8p/n
7(-4) + 2(2) - 8(1.5)/(2)
-28 + 4 - 12/2
-28 + 4 - 6
-24 - 6
-30
Hope this helps :)
Please answer this fast in two minutes now
Answer:
18.3Step-by-step explanation:
from cosines theorem:
t² = 11² + 14² - 2•11•14•cos87°
t² = 121 + 196 + 308•0.05236
t² = 333.12688
t = √333.12688
t = 18.2517... ≈ 18.3
A King wanted to replace his Prime-Minister but didn't want to upset him too much. So he called the Prime-Minister to his chamber and put two pieces of paper in his briefcase. He told the Prime-Minister that "On one piece of paper it says 'leave' and on the second piece of paper it says 'stay'". The piece of paper that you pull out of the briefcase will decide your fate." The Prime-Minister realized that both pieces of paper say 'leave'. What should the Prime-Minister do to be able to keep his position?
Answer: Ask the king to draw first and read it. Explain that if the king selects "leave" the PM's choice could only be "stay". It is then unnecessary for the PM to draw. It avoids embarrassing the king in his lie, demonstrates the PM's intelligence, and keeps his job.
Step-by-step explanation:
What is the slope of line m?
Answer:
2.
Step-by-step explanation:
The slope is calculated by doing rise over run.
The rise is: 6 - 0 = 6.
The run is: 0 - (-3) = 0 + 3 = 3.
6 / 3 = 2 / 1 = 2.
Hope this helps!
a car is driving at a speed of 40mi/h.what is the speed of the car in feet per minute
Answer:
[tex]\boxed{3520\ ft/min}[/tex]
Step-by-step explanation:
1 miles per hour = 88 feet per minute
Multiplying both sides by 40
40 miles per hour = 88*40 ft/min
40 mi./hr = 3520 ft/min
Answer:
3520 feet/min
Step-by-step explanation:
the speed of the car in feet per minute:
first convert miles to feet ( 1 mile =5280 feet) and hours to minutes(1hr=60min.)
(40*5280)/1*60=3520 feet/min
What is the diameter of the circle whose center is at (6, 0) and that passes through the point (2, -3)?
Answer:
10
Step-by-step explanation:
[tex]\left(x-h\right)^{2}+\left(y-k\right)^{2}=r^2[/tex]
[tex]\left(x-6\right)^{2}+\left(y-0\right)^{2}=r^2\\[/tex]
We used (2,-3)
[tex]\left(2-6\right)^{2}+\left(-3-0\right)^{2}=25[/tex]
[tex]r^2=25\\[/tex] , so [tex]r = 5[/tex]
But this one is asking for the diameter, and to find it. It's simply 2r.
2*5 = 10
Determine the value of x.
Answer:
B. 6sqrt(2).
Step-by-step explanation:
Since the two legs of the right triangle are congruent, this is a 45-45-90 triangle. That means that the hypotenuse will measure xsqrt(2) units, and each leg will measure x units.
In this case, x = 6.
So, the hypotenuse is B. 6sqrt(2).
Hope this helps!
Based on your work in Question 1 through 3, what is the relationship between the radius, AB , and the tangent line, BC ? What can you conclude about any tangent line to a circle and the radius of the circle? Explain.
Without further context I can't say much other than the radius is perpendicular to the tangent. In other words, the radius and tangent line form a 90 degree angle. This is one particular radius and its not just any radius. The radius in question must have the point of tangency as its endpoint.
The radius, AB is perpendicular to the tangent line, BC so their slopes are negative reciprocals of one another. Because I generated a circle at random for this activity, this conclusion likely applies to any tangent line to a circle. In other words, the tangent line to any circle is perpendicular to the radius at their point of intersection.
simplify (5 √2 - 1) ^2
Find the angle measures given the figure is a rhombus.
Answer:
1 = 90°, 2 = 66°
Step-by-step explanation:
Since the diagonals of a rhombus are perpendicular, ∠1 = 90°. Using the Exterior Angles Theorem (exterior angle = sum of remote interior angles, we see that ∠2 = 90 - 24 = 66°.
Let f(x) = 3x + 5 and g(x) = x2. Find g(x) − f(x).
Answer:
2x-(3x+5) = -x-5
Step-by-step explanation:
2x + 0
-
3x + 5
-———————-
-x - 5
The Acme Candy Company claims that 60% of the jawbreakers it produces weigh more than 0.4 ounces. Suppose that 800 jawbreakers are selected at random from the production lines. Would it be significant for this sample of 800 to contain 494 jawbreakers that weigh more than 0.4 ounces? Consider as significant any result that differs from the mean by at least 2 standard deviations. That is, significant values are either less than or equal to muminus2sigma or greater than or equal to muplus2sigma.
Answer:
Yes, it would be statistically significant
Step-by-step explanation:
The information given are;
The percentage of jawbreakers it produces that weigh more than 0.4 ounces = 60%
Number of jawbreakers in the sample, n = 800
The mean proportion of jawbreakers that weigh more than 0.4 = 60% = 0.6 = [tex]\mu _ {\hat p}[/tex] =p
The formula for the standard deviation of a proportion is [tex]\sigma _{\hat p} =\sqrt{\dfrac{p(1-p)}{n} }[/tex]
Solving for the standard deviation gives;
[tex]\sigma _{\hat p} =\sqrt{\dfrac{0.6 \cdot (1-0.6)}{800} } = 0.0173[/tex]
Given that the mean proportion is 0.6, the expected value of jawbreakers that weigh more than 0.4 in the sample of 800 = 800*0.6 = 480
For statistical significance the difference from the mean = 2×[tex]\sigma _{\hat p}[/tex] = 2*0.0173 = 0.0346 the equivalent number of Jaw breakers = 800*0.0346 = 27.7
The z-score of 494 jawbreakers is given as follows;
[tex]Z=\dfrac{x-\mu _{\hat p} }{\sigma _{\hat p} }[/tex]
[tex]Z=\dfrac{494-480 }{0.0173 } = 230.94[/tex]
Therefore, the z-score more than 2 ×[tex]\sigma _{\hat p}[/tex] which is significant.
Answer:
Step-by-step explanation:
min 452, max 507, so 494 is not unusual.
The researcher is interested to know if policy A (new) is more effective than policy B (old). Frame the hypothesis and describe what each error would represent in terms of reality and conclusion.
Answer:
Null hypothesis: Policy B remains more effective than policy A.
Alternate hypothesis: Policy A is more effective than policy B.
Step-by-step explanation:
Remember, a hypothesis is a usually tentative (temporary until tested) assumption about two variables– independent and the dependent variable.
We have two types of hypothesis errors:
1. A type I error occurs when the null hypothesis (H0) is wrongly rejected.
That is, rejecting the assumption that policy B remains more effective than policy A when it is actually true.
2. A type II error occurs when the null hypothesis H0, is not rejected when it is actually false. That is, accepting the assumption that policy B remains more effective than policy A when it is actually false.
Find the value of x. Round the length to the nearest tenth.
Answer:
x=6 and x=5.1
Step-by-step explanation: