what kinds of attractive forces may exist between particles in molecular crystals? check all that apply. what kinds of attractive forces may exist between particles in molecular crystals?check all that apply. ionic bonds dipole-dipole interactions hydrogen bonding london dispersion forces

Answers

Answer 1

All the listed options (ionic bonds, dipole-dipole interactions, hydrogen bonding, and London dispersion forces) may exist between particles in molecular crystals.

The attractive forces that may exist between particles in molecular crystals include:

Ionic bonds: Ionic compounds, consisting of positively and negatively charged ions, can form crystal structures held together by strong electrostatic attractions.

Dipole-dipole interactions: Molecules with permanent dipole moments can interact with each other through the attraction of their positive and negative ends.

Hydrogen bonding: Hydrogen bonding occurs when a hydrogen atom is bonded to an electronegative atom (such as oxygen, nitrogen, or fluorine) and forms a weak bond with another electronegative atom in a neighboring molecule.

London dispersion forces: Also known as van der Waals forces, these forces arise from temporary fluctuations in electron density, resulting in the creation of temporary dipoles that induce dipole moments in neighboring molecules.

Hence, all of the listed options (ionic bonds, dipole-dipole interactions, hydrogen bonding, and London dispersion forces) may exist between particles in molecular crystals.

Learn more about molecular crystals here:

https://brainly.com/question/5253

#SPJ 4


Related Questions

Find the number of moles in 6120 ions of NaCl. Round your answer to two decimal places. Input your answer as 1. 03E23, which is the same as 1. 03 x 10^23

Answers

The number of moles in 6120 ions of NaCl is approximately 1.02 × 10^-20 moles,

To find the number of moles in 6120 ions of NaCl, we need to know the Avogadro's number, which represents the number of entities (atoms, ions, molecules) in one mole of a substance. The Avogadro's number is approximately 6.022 × 10^23 entities per mole.

Given that there are 6120 ions of NaCl, we can calculate the number of moles using the following steps:

Step 1: Determine the number of moles of NaCl ions.

Number of moles = (Number of ions) / (Avogadro's number)

Number of moles = 6120 / (6.022 × 10^23)

Step 2: Perform the calculation.

Number of moles ≈ 1.02 × 10^-20 moles

Rounding the answer to two decimal places as requested, the number of moles in 6120 ions of NaCl is approximately 1.02 × 10^-20 moles, which can be expressed in scientific notation as 1.02E-20.

learn more about NaCl here

https://brainly.com/question/32275922

#SPJ11

g choose the arrow that most closely describes each question. the absorption with the lowest energy?

Answers

The arrow that most closely describes the question "the absorption with the lowest energy" is a downward-pointing arrow ↓.

In spectroscopy, particularly in electronic transitions, absorption refers to the process where a molecule or atom absorbs electromagnetic radiation, typically in the form of photons, causing the promotion of an electron from a lower energy level to a higher energy level. The energy difference between the two levels determines the energy of the absorbed photon.

When considering the absorption with the lowest energy, it implies that the absorbed photons have the lowest energy among the available energy levels. In this context, the downward-pointing arrow (↓) is used to represent the absorption of lower energy photons.

In spectroscopic diagrams or energy level diagrams, the upward-pointing arrow (↑) is typically used to represent the absorption of higher energy photons. However, since the question specifically asks for the absorption with the lowest energy, the appropriate arrow would be a downward-pointing arrow (↓).

Therefore, the arrow that most closely describes the question "the absorption with the lowest energy" is a downward-pointing arrow ↓.

Learn more about spectroscopy: https://brainly.com/question/28457917

#SPJ11

Calculate the quantity of heat energy in kilojoules required to melt 20.0 g of ice to liquid water at exactly 0∘C.ΔHm​(H2​O)=3.35×105 J/kg. A. 6.70×103 J B. 6.70×106 J C. 1.675×104 J D. 3.35×102 J E. none of A to D

Answers

We need to calculate the quantity of heat energy in kilojoules required to melt 20.0 g of ice into liquid water at exactly 0∘C. The correct answer is option A.

In order to calculate the quantity of heat energy required to melt the ice, we will use the following formula:

Q=m×ΔHf

where Q is the quantity of heat energy,m is the mass of the substance, andΔHf is the latent heat of fusion of the substance.

Substituting the values in the above formula we get:

Q = 20.0 g × 3.35 × 105 J/kg = 6.7 × 103 J

The above equation gives the amount of heat energy required to melt 20.0 g of ice into liquid water at exactly 0∘C in Joules (J).

Converting J to kJ, we get:6.7 × 103 J = 6.7 kJ

Hence, the quantity of heat energy in kilojoules required to melt 20.0 g of ice to liquid water at exactly 0∘C is A. 6.70×103 J.

To know more about Heat Energy visit:

https://brainly.com/question/29210982

#SPJ11

True or false, explain the false
20. C Organic chemistry studies the structure, properties, synthesis and reactivity of chemical compounds foed mainly by carbon and hydrogen, which may contain other elements, generally in small amounts such as oxygen, sulfur, nitrogen, halogens, phosphorus, silicon.
21. Every reaction begins with the gain of energy for the breaking of the bonds of the reactants.
22. C The entropy of the reactants is greater than that of the products.
23. A reaction where the change in enthalpy is greater than the change in entropy can be classified as spontaneous.
24. The energy of inteediates is greater than that of reactants and products.
25. The breaking of the water molecule into hydrogen and oxygen is an endotheic process, that is, energy is required to break the bonds of oxygen with hydrogen. One way to achieve this breakdown, and the foation of the products, is by increasing the temperature (example: 100 °C)

Answers

First and last statements are true while rest of the statements are false and the reasons are given below.

20. True - Organic chemistry studies the structure, properties, synthesis and reactivity of chemical compounds foed mainly by carbon and hydrogen, which may contain other elements, generally in small amounts such as oxygen, sulfur, nitrogen, halogens, phosphorus, silicon.

21. False - Every reaction requires the gain or the release of energy for the formation or breaking of the bonds of the reactants.

22. False - The entropy of the products is greater than that of the reactants.

23. False - A reaction where the change in enthalpy is greater than the change in entropy can be classified as non-spontaneous.

24. False - The energy of intermediates is lesser than that of reactants and products.

25. True - The breaking of the water molecule into hydrogen and oxygen is an endothermic process, that is, energy is required to break the bonds of oxygen with hydrogen. One way to achieve this breakdown, and the formation of the products, is by increasing the temperature (example: 100 °C).

Organic chemistry is a branch of chemistry that studies the structure, properties, synthesis, and reactivity of organic compounds. It mainly deals with compounds containing carbon and hydrogen atoms. These organic compounds can also contain other elements such as nitrogen, sulfur, oxygen, halogens, phosphorus, silicon, and others.

Every reaction requires the gain or release of energy for the formation or breaking of the bonds of the reactants. The energy required for bond breaking is always more significant than that released during bond formation, and the difference between the two is known as the change in enthalpy.

The entropy is the measure of disorder or randomness of a system. In an exothermic reaction, the entropy of the products is greater than the entropy of the reactants. The change in entropy is related to the dispersal of matter and energy within a system and its surroundings.

A reaction where the change in enthalpy is greater than the change in entropy can be classified as non-spontaneous. This is because such a reaction requires energy to occur and is not spontaneous on its own.The energy of intermediates is lesser than that of reactants and products.

The intermediates are reactive species that exist in between the reactants and the products and are unstable in nature.The breaking of the water molecule into hydrogen and oxygen is an endothermic process, that is, energy is required to break the bonds of oxygen with hydrogen. One way to achieve this breakdown, and the formation of the products, is by increasing the temperature.

Learn more about change in enthalpy at https://brainly.com/question/32882904

#SPJ11

What volume of 0.55 {M} {NaOH} (in {mL} ) is needed to reach the equivalence point in a titration of 56.0 {~mL} of 0.45 {M} {HClO}_{4}

Answers

Volume of 0.55 M NaOH needed to reach the equivalence point in a titration of 56.0mL of 0.45 M HClO_4 is 45.8 mL

The balanced equation for the reaction between NaOH and HClO4 is:

HClO4 + NaOH -> NaClO4 + H2O

From the balanced equation, we can see that the stoichiometric ratio between HClO4 and NaOH is 1:1. This means that 1 mole of HClO4 reacts with 1 mole of NaOH.

First, let's calculate the number of moles of HClO4 in 56.0 mL of 0.45 M solution:

moles of HClO4 = volume (L) × concentration (M)

= 0.056 L × 0.45 M

= 0.0252 moles

Since the stoichiometric ratio between HClO4 and NaOH is 1:1, we need an equal number of moles of NaOH to reach the equivalence point. Therefore, we need 0.0252 moles of NaOH.

Now, we can calculate the volume of 0.55 M NaOH solution needed to provide 0.0252 moles:

volume (L) = moles / concentration (M)

= 0.0252 moles / 0.55 M

= 0.0458 L

Finally, we convert the volume from liters to milliliters:

volume (mL) = 0.0458 L × 1000 mL/L

= 45.8 mL

Therefore, approximately 45.8 mL of 0.55 M NaOH solution is needed to reach the equivalence point in the titration of 56.0 mL of 0.45 M HClO4.

To learn more about equivalence point :

https://brainly.com/question/30592456

#SPJ11

A 15. 20 g of nitrogen will react with 17. 37 g, 34. 74 g, or 43. 43 g of oxygen
to form three different compounds.

a)Calculate the mass of oxygen per gram of nitrogen in each compound.

b) How do the numbers in part (a) support the atomic theory?​

Answers

Answer:

To calculate the mass of oxygen per gram of nitrogen in each compound, we need to divide the mass of oxygen by the mass of nitrogen for each compound.

Compound 1:

Mass of nitrogen = 15.20 g

Mass of oxygen = 17.37 g

Oxygen per gram of nitrogen = 17.37 g / 15.20 g ≈ 1.14 g/g

Compound 2:

Mass of nitrogen = 15.20 g

Mass of oxygen = 34.74 g

Oxygen per gram of nitrogen = 34.74 g / 15.20 g ≈ 2.29 g/g

Compound 3:

Mass of nitrogen = 15.20 g

Mass of oxygen = 43.43 g

Oxygen per gram of nitrogen = 43.43 g / 15.20 g ≈ 2.86 g/g

Now, let's discuss how these numbers support the atomic theory.

The atomic theory proposes that elements are composed of individual particles called atoms. In a chemical reaction, atoms rearrange and combine to form new compounds. The ratios of the masses of elements involved in a reaction are consistent and can be expressed as whole numbers or simple ratios.

In this case, we observe that the ratios of oxygen to nitrogen in the three different compounds are not whole numbers but rather decimals. This supports the atomic theory as it indicates that the combining ratio of oxygen to nitrogen is not a simple whole number ratio. It suggests that atoms of oxygen and nitrogen combine in fixed proportions but not necessarily in simple whole number ratios.

Therefore, the numbers in part (a) support the atomic theory by demonstrating the consistent ratio of oxygen to nitrogen in each compound, even though the ratios are not whole numbers.

Explanation:

2. The amount of mercury in a polluted lake is 0.4μgHg/mL. If the lake has a volume of 6.0×10 10
ft 3
, what is the total mass in kilograms of mercury in the lake? (1 inch =2.54 cm;1ft=12 inch ) 7×10 5
kg
3×10 5
kg
2×10 5
kg
1×10 5
kg
6×10 5
kg

Answers

The given amount of mercury in the polluted lake is 0.4 μgHg/mL. Volume of the lake, V = 6.0 × 1010 ft3Density of lake, ρ = mass/volume There are 12 inches in one foot1 inch = 2.54 cm

1 foot = 12 inches = 12 × 2.54 = 30.48 cm = 0.3048 mTherefore,Volume of the lake = (6.0 × 1010 ft3) × (0.3048 m/ft)³= (6.0 × 1010) × (0.3048)³ m³= (6.0 × 1010) × (0.0277) m³= 1.66 × 109 m³Mass of mercury = density × volume = (0.4 μgHg/mL) × (1g/10³ mg) × (1 mg/10⁶ μg) × (1.66 × 10⁹ m³) × (10⁶ mL/m³) × (1 kg/10³ g) = 6.64 × 10⁵ kg

Therefore, the total mass of mercury in the lake is 6.64 × 10⁵ kg.

To know more about  amount visit:

brainly.com/question/32453941

#SPJ11

click on an arrow that represents one of the alpha decays in the decay series of u-235.

Answers

To select the arrow representing one of the alpha decays in the decay series of U-235, I need a visual representation or options to choose from.

How does the decay series of U-235 look like?

The decay series of U-235, also known as the uranium-235 decay chain, involves a series of alpha and beta decays leading to the formation of stable lead-207.

The initial step in the decay series is the alpha decay of U-235, where it emits an alpha particle (2 protons and 2 neutrons) to become Th-231.

Then Th-231 further undergoes alpha decay to become Pa-227, and the process continues through several intermediate isotopes until stable lead-207 is reached.

Learn more about: decay series

brainly.com/question/32114297

#SPJ11

: Identify H2SO4 (aq) as an acid or a base. . acid base Submit Previous Answers ✓ Correct Part B Write a chemical equation showing how this is an acid according to the Arrhenius definition. Express your answer as a balanced chemical equation. Identify all of the phases in your answer. Identify Sr(OH)2(aq) as an acid or a base. acid base Submit Previous Answers ✓ Correct Part D Write a chemical equation showing how this is a base according to the Arrhenius definition. Express your answer as a balanced chemical equation. Identify all of the phases in your answer. Identify HBr(aq) as an acid or a base. acid base Submit Previous Answers ✓ Correct Part F Write a chemical equation showing how this is an acid according to the Arrhenius definition. Express your answer as a balanced chemical equation. Identify all of the phases in your answer. Identify NaOH(aq) as an acid or a base. acid base Submit Previous Answers ✓ Correct Part 1 Write a chemical equation showing how this is a base according to the Arrhenius definition. Express your answer as a balanced chemical equation. Identify all of the phases in your answer.

Answers

The chemical equation for NaOH(aq) as a base according to the Arrhenius definition is shown below:

NaOH(aq) → Na+(aq) + OH-(aq)H2SO4(aq) is an acid. It is a strong acid and a dehydrating agent.

The chemical equation for H2SO4(aq) as an acid according to the Arrhenius definition is shown below:

H2SO4(aq) → 2H+(aq) + SO42-(aq)Sr(OH)2(aq) is a base.

The chemical equation for Sr(OH)2(aq) as a base according to the Arrhenius definition is shown below:

Sr(OH)2(aq) → Sr2+(aq) + 2OH-(aq)HBr(aq) is an acid. It is a strong acid and a corrosive liquid.

The chemical equation for HBr(aq) as an acid according to the Arrhenius definition is shown below:

HBr(aq) → H+(aq) + Br-(aq)NaOH(aq) is a base.

The chemical equation for NaOH(aq) as a base according to the Arrhenius definition is shown below:

NaOH(aq) → Na+(aq) + OH-(aq)H2SO4(aq) is an acid. It is a strong acid and a dehydrating agent.

Learn more about chemical equation from this link:

https://brainly.com/question/11574373

#SPJ11

what is the mass percentage of ar in a flask that contains 0.3 atm of n2 and 0.7 atm of ar? (molar mass of n2

Answers

The mass percentage of Ar in the flask can be calculated by dividing the partial pressure of Ar by the total pressure and multiplying by 100.

How can the mass percentage of Ar in the flask be determined?

To find the mass percentage of Ar in the flask, we need to consider the partial pressure of Ar and the total pressure.

The mass percentage can be calculated by dividing the partial pressure of Ar by the total pressure and multiplying by 100. In this case, the flask contains 0.3 atm of N2 and 0.7 atm of Ar.

Since we only need the partial pressure of Ar, we can use 0.7 atm as the numerator. To find the total pressure, we sum the partial pressures of N2 and Ar, which gives us 0.3 atm + 0.7 atm = 1 atm.

Plugging these values into the formula, we can calculate the mass percentage of Ar in the flask.

The mass percentage of a component in a mixture can be determined by considering the partial pressure or partial volume of that component and the total pressure or total volume of the mixture.

This calculation is particularly useful in gas mixtures, where each component contributes to the overall pressure.

By knowing the partial pressure of a specific gas and the total pressure, we can determine the proportion or percentage of that gas in the mixture.

It's important to note that the calculation of mass percentage assumes ideal gas behavior and that the gases in the mixture do not interact with each other.

Additionally, the molar mass of N2 is needed to convert the partial pressure of N2 to a mass percentage.

By understanding these concepts, we can accurately determine the mass percentage of Ar in the flask based on the given partial pressures.

Learn more about mass percentage

brainly.com/question/32197511

#SPJ11

Pls, help me
confoational
analysis for
n-butane,around the C2-C3 bond

Answers

Conformational analysis is a crucial concept in organic chemistry as it allows us to study the stability of different conformations of organic compounds. In this case, we will carry out a conformational analysis of n-butane, specifically around the C2-C3 bond.

The C2-C3 bond in n-butane is a single bond, which means that the rotation around this bond is free, as there is no barrier to rotation. We can, therefore, study different conformations of n-butane by rotating the C2-C3 bond and analyzing the resulting structures. The most stable conformation of n-butane is the anti-conformation, where the methyl groups are as far apart as possible from each other, leading to the lowest steric hindrance.

In contrast, the most unstable conformation is the gauche conformation, where the methyl groups are eclipsing each other, leading to the highest steric hindrance.

In summary, the stability of different conformations of n-butane around the C2-C3 bond can be explained based on the steric hindrance caused by the methyl groups. The anti-conformation is the most stable, while the gauche conformation is the least stable.

To know more about organic chemistry visit:

https://brainly.com/question/14623424

#SPJ11

(4pts) Finding the Mass of an Object in a Container You found the mass of an empty weigh boat to be 3.431 {~g} and the mass of the weigh boat with a gummy bear to be 6.311 {~g}

Answers

To find the mass of an object in a container, the following are necessary terms that can be included in the answer: Mass, container, weigh. The problem is a basic laboratory exercise in finding the mass of an object inside a container. Here is the solution:

Given: Mass of the empty weigh boat = 3.431 g Mass of the weigh boat with a gummy bear = 6.311 g To find the mass of the gummy bear, subtract the mass of the empty weigh boat from the mass of the weigh boat with the gummy bear: M = m_container + m_gummy bear - m_container M = m_gummy bear. Therefore: M = 6.311 g - 3.431 g M = 2.88 g The mass of the gummy bear is 2.88 g.

Learn more about Mass of an object:

https://brainly.com/question/26309309

#SPJ11

How many in { }^{3} are 247 {~cm}^{3} ?(2.54 {~cm}=1 {in} .)

Answers

Given:[tex]247 ${{cm}^{3}}$[/tex]. We need to convert it to in³ using the conversion factor [tex]$1~in=2.54~cm$[/tex] .Solution: We have been given that,[tex]1 $in = 2.54$ $cm$[/tex] Let the volume in cubic inches be cubic inches.

Then, 247 cubic centimeters will be converted to cubic inches by multiplying by[tex]$\frac{1~in}{2.54~cm}$[/tex] since 2.54 cm = 1 in. Therefore, we have:[tex]$$x~in^{3}= 247~cm^{3}\times\frac{1~in^{3}}{(2.54~cm)^{3}}$$[/tex]To simplify this, we can use the fact that [tex]$1~in=2.54~cm$ so that $(2.54~cm)^{3}=1~in^{3}$.$$x~in^{3}=\frac{247~cm^{3}}{(2.54~cm)^{3}}$$[/tex]Evaluate this on a calculator to obtain the value of in cubic inches. This is given as follows:[tex]$$x~in^{3} = 15.06~in^{3}$$[/tex]

Therefore, $247$ cubic centimeters is equivalent to $15.06$ cubic inches. We can verify this by reversing the conversion.

To know more about conversion factor  visit:

brainly.com/question/1014744

#SPJ11

A massive block of carbon that is used as an anode at Alcoa for
smelting aluminum oxide to aluminum weighs 154.40 pounds. When
submerged in water it weighs 78.28 pounds. What is its specific
gravity?

Answers

The specific gravity of the massive block of carbon used as an anode at Alcoa for smelting aluminum oxide to aluminum would be 2.21. The specific gravity is the weight of a given material compared to the weight of an equal volume of water.

The equation is:

specific gravity = weight in air ÷ (weight in air - weight in water).

Given that a massive block of carbon is used as an anode at Alcoa for smelting aluminum oxide to aluminum and weighs 154.40 pounds, the weight of the block in water is 78.28 pounds.

Hence, the specific gravity can be calculated by using the formula below:

specific gravity = weight in air ÷ (weight in air - weight in water)

The weight in air is equal to the mass of the block, which is 154.40 pounds.

Therefore, substituting the values into the formula,

specific gravity = 154.40 pounds ÷ (154.40 pounds - 78.28 pounds) = 2.21

Thus, the specific gravity of the massive block of carbon used as an anode at Alcoa for smelting aluminum oxide to aluminum is 2.21.

Learn more about specific gravity at https://brainly.com/question/9100428

#SPJ11

The proper handling procedures for substances such as chemical solvents are typically outlined in which of the following options?
A) Toxic Chemical Safety Procedure (TCSP)
B) Dangerous and Hazardous Waste Disposal Sheet (DHWDS)
C) Environmental Chemical Hazard Sheet (ECHS)
D) Material Safety Data Sheet (MSDS)

Answers

The correct option is D), Material Safety Data Sheet (MSDS)

The proper handling procedures for substances such as chemical solvents are typically outlined in the Material Safety Data Sheet (MSDS). MSDS is a comprehensive document prepared and provided by the manufacturer or supplier of hazardous chemicals to inform employees and the public about the properties of the chemicals, the associated hazards, and the safety measures necessary for their use, handling, storage, and transport. It contains information on the chemical's physical and chemical properties, health hazards, reactivity, environmental hazards, protective equipment, safe handling practices, and emergency procedures. The MSDS is a critical component of an organization's chemical management program as it helps reduce the risk of accidents, incidents, and injuries from exposure to hazardous chemicals. The information in the MSDS is presented in a standardized format to ensure consistency in the presentation of information across different products and manufacturers. The MSDS should be readily available to workers who use or handle hazardous chemicals, and it should be reviewed and updated regularly to reflect any changes in the properties or hazards of the chemical.

Learn more about Material Safety Data Sheet (MSDS)

https://brainly.com/question/33495323

#SPJ11

Determine whether the following compounds are acidic, neutral,
or basic. Justify your choice.
NaCl
KCN
NH4NO3
NH4F
Na3PO4

Answers

Compounds can be categorized as acidic, basic, or neutral depending on their pH. Here are the given compounds and their pH range

NaCl: Neutral

KCN: Basic

NH4NO3: Neutral

NH4F: Acidic

Na3PO4: Basic

NaCl: NaCl is the chemical symbol for sodium chloride, which is more commonly known as table salt. NaCl is a neutral compound. When dissolved in water, it does not increase or decrease the concentration of hydrogen ions (H+) or hydroxide ions (OH-), resulting in a neutral pH.

KCN: KCN is a basic compound. When dissolved in water, KCN increases the concentration of hydroxide ions (OH-), resulting in a basic pH.

NH4NO3: NH4NO3 is a neutral compound. When dissolved in water, it does not increase or decrease the concentration of hydrogen ions (H+) or hydroxide ions (OH-), resulting in a neutral pH.

NH4F: NH4F is an acidic compound. When dissolved in water, NH4F increases the concentration of hydrogen ions (H+), resulting in an acidic pH.

Na3PO4: Na3PO4 is a basic compound. When dissolved in water, Na3PO4 increases the concentration of hydroxide ions (OH-), resulting in a basic pH.

Learn more about Compounds at https://brainly.com/question/31477323

#SPJ11

What is the heat in {kJ} required to raise 1,290 {~g} water from 27^{\circ} {C} to 74^{\circ} {C} ? The specific heat capacity of water is 4.184

Answers

The heat in kJ required to raise 1,290 g of water from 27°C to 74°C is 236.69 kJ. Here's how it can be calculated:

First, we need to determine the heat energy required to raise 1 g of water by 1°C.

Given that the specific heat capacity of water is 4.184 J/g°C, we multiply this value by the mass of water (1,290 g) to obtain the heat energy required for a 1°C increase:

4.184 J/g°C × 1,290 g = 5,390.16 J

Next, we utilize the formula Q = mcΔT, where Q represents the heat energy, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature. Substituting the given values, we find:

Q = (1,290 g) × (4.184 J/g°C) × (74°C - 27°C)

Q = 236,689.76 J

To convert this value to kJ, we divide it by 1,000:

Q = 236,689.76 J ÷ 1,000 = 236.69 kJ

The heat in kJ required to raise 1,290 g of water from 27°C to 74°C is 236.69 kJ.

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ11

Calculate the amount of heat needed to boil 81.2g of ethanol ( CH3CH2OH ), beginning from a temperature of 31.4°C . Be sure your answer has a unit symbol and the correct number of significant digitsplease put the correct number of significant digits

Answers

The amount of heat needed to boil 81.2 g of ethanol from a temperature of 31.4°C is 9.19 kJ.

Specific heat is a physical property that quantifies the amount of heat energy required to raise the temperature of a substance by a certain amount. It is defined as the amount of heat energy needed to raise the temperature of one unit mass of a substance by one degree Celsius (or one Kelvin).

The specific heat capacity (often simply called specific heat) is expressed in units of joules per gram per degree Celsius (J/g°C) or joules per gram per Kelvin (J/gK). It represents the heat energy required to raise the temperature of one gram of the substance by one degree Celsius or one Kelvin.

Specific heat is unique to each substance and depends on its molecular structure, composition, and physical state. Substances with higher specific heat require more heat energy to raise their temperature compared to substances with lower specific heat.

The heat required to raise the temperature of the ethanol is given as -

Q = m × C × ΔT

Where:

Q is the heat (in joules),

m is the mass of ethanol (in grams),

C is the specific heat capacity of ethanol (2.44 J/g°C), and

ΔT is the change in temperature (in °C).

Q = 81.2 g × 2.44 J/g°C × (boiling point - 31.4°C)

Q = 81.2 g × 2.44 J/g°C × (78.4°C - 31.4°C)

= 81.2 g × 2.44 J/g°C × 47.0°C

= 9185.53 J

Q = 9.19 kJ

Learn more about Specific heat, here:

https://brainly.com/question/31608647

#SPJ4

3.1 Differentiate between the following tes: 5.2.1 weak acid 5.2.2 strong acid 3.2 In order to ensure growth of crops, it is vital to monitor the pH of the soil. Discuss how you would treat soil that is: 3.2.1 Too basic 3.2.2 Too acidic 3.3 Complete the following reaction by filling in the products foed: 5.6.1 H2​SO4​+CaCO3​→

Answers

3.1 Differentiation between weak and strong acid:Acids are classified into two types; strong acids and weak acids. The primary distinction between these two is their ability to dissociate in water.

Strong acids are those that can completely dissociate in water to produce H+ ions while weak acids only partially dissociate in water.5.2.1 Weak acid A weak acid is a type of acid that only partially ionizes in water to produce H+ ions. This means that in an aqueous solution, weak acids have a lower concentration of hydrogen ions and a higher concentration of acid molecules. As a result, weak acids have a lower pH than strong acids.

Examples of weak acids include acetic acid and formic acid.5.2.2 Strong acid Strong acid is an acid that is capable  in water to produce H+ ions. When these acids dissolve in water, they completely break apart into their respective ions, giving a higher concentration of hydrogen ions. Strong acids have a low pH because of the abundance of hydrogen ions present.

To know more about classified visit:

brainly.com/question/33446476

#SPJ11

Although we often show protons that evolve in chemical processes by using the notation Ht, "free" the conditions of ordinary organic reactions? Answe The kinetics of haloalkane solvolysis lead us to a three-step mechanism. The crucial, rate-deteining step is the initial dissociation of a leaving group from the starting material to fo a carbocation. Because only the substrate molecule participates in the rate-limiting step, this process is called_(blank)_ nucieophilic substitution, SN1. Any hydrogen positioned on any carbon next to the center bearing the leaving group can participate in the Gwanh. Strong - effect bimolecular elimination. Answer: Weakly _ nucleophiles give substitution. Answer.

Answers

The process of nucleophilic substitution in organic reactions is called SN1 (substitution nucleophilic unimolecular), where the rate-determining step involves the dissociation of a leaving group to form a carbocation.

Weakly nucleophilic species are more likely to participate in SN1 reactions.

In the kinetics of haloalkane solvolysis, the rate-determining step is the initial dissociation of the leaving group from the starting material, resulting in the formation of a carbocation. This step is crucial because it determines the overall rate of the reaction. Since only the substrate molecule is involved in this step, the process is referred to as SN1, which stands for substitution nucleophilic unimolecular.

The term "weakly nucleophilic" indicates that the nucleophilic species participating in the reaction are not highly reactive or potent. In SN1 reactions, weakly nucleophilic species are preferred over strongly nucleophilic ones because the rate-determining step primarily depends on the stability of the carbocation intermediate formed.

Weakly nucleophilic species, such as water or alcohols, are better suited for SN1 reactions as they can stabilize the carbocation through solvation or resonance effects.

On the other hand, strongly nucleophilic species are more commonly associated with nucleophilic substitution reactions of the SN2 (substitution nucleophilic bimolecular) type, where the nucleophile directly attacks the substrate in a concerted manner without the formation of a stable carbocation intermediate.

Learn more about Nucleophilic

brainly.com/question/32761121

#SPJ11

Schiff's reagent is used to test for the presence of aldehydes as well as a dye for staining biological tissue. You have been given a few tissue sample to stain, but first you need to make a stock of Schiff's reagent. You need to make 700mls of Schiff's reagent. Schiff's reagent is an aqueous solution containing: - 1.5. 10−3M Fuchsin (C20H20 N3HCl) - 8. 10−2M Hydrochloric acid ( HCl ) You have a stock of Fuchsin powder and Sodium Bisulfited powder. You also have a 3M stock solution of Hydrochloric acid. To make a 700mls of Benedict's solution, you will need: - grams of Fuchsin; grams of Sodium Bisulfited: mls of Hydrochloric acid.

Answers

From the question;

1) The mass of the Fuchsin is 0.35 g

2) The mass of the sodium bisulphite 6.3 g

3) The mass of the HCl is 2.2 g

What is the moles?

The mole allows chemists to relate the mass of a substance to the number of atoms or molecules it contains. The molar mass of a substance is the mass of one mole of that substance and is expressed in grams per mole.

We know that;

Number of moles = Concentration * volume

Number of moles = mass/Molar mass

Mass of fuchsin = 0.0015 * 0.7 * 338

= 0.35 g

Mass of the sodium bisulphite = 0.086 * 0.7 * 104

= 6.3 g

Mass of the Hydrochloric acid = 0.086 * 0.7 * 36.5

= 2.2 g

Learn more about moles:https://brainly.com/question/15209553

#SPJ4

11. Because the SN1 reaction goes through a flat carbocation, we might expect an optically active starting material to give a completely racemized product. In most cases, however, SN1 reactions actually give more of the inversion product. In general, as the stability of the carbocation increases, the excess inversion product decreases. Extremely stable carbocations give completely racemic products. Explain these observations. 12. Design an alkyl halide that will give only 2,4-diphenylpent-2-ene upon treatment with potassium tert-butoxide (a bulky base that promotes E2 elimination). 13. For each molecular foula below, draw all the possible cyclic constitutional isomers of alcohols. Give the IUPAC name for each of them. (a) C 3

H 4

O (b) C 3

H 6

O

Answers

The SN1 reaction proceeds through a carbocation intermediate; hence we may expect a completely racemized product to be produced by an optically active starting material.

The product will result from E2 elimination of HBr from the molecule.13. (a) C3H4O: This molecular formula represents an unsaturated molecule containing 3 carbon atoms and 1 oxygen atom. This molecule is called a ketene. The only possible cyclic alcohol isomer is a lactone since it has a carbonyl group that can be attacked by a hydroxyl group to form a cyclic ester. The name of the lactone is 2-oxacyclobutanone

This molecule is called a ketone. The possible cyclic alcohol isomers are cyclic ethers since they have a lone pair of electrons that can be attacked by a hydroxyl group to form a cyclic ether. There are two possible cyclic ethers:1,2-epoxypropane (ethylene oxide): 1,2-epoxypropane is the most commonly used industrial cyclic ether, used to produce other chemicals and solvents.2-oxetanone (b-propiolactone): 2-oxetanone is a cyclic ester with a 4-membered ring and a ketone group, and it is used in the production of polymers.

To know more about  reaction proceeds visit:

brainly.com/question/31142530

#SPJ11

A bottling plant has 169,350 bottles with a capacity of 355 mL, 123,000 caps, and 36,000 L of beverage.
(a) How many bottles can be filled and capped?
HopHelpCh3N9
(b) How much of each item is left over?
L of beverage
bottles
caps
(c) Which component limits the production?
number of capsvolume of beverage number of bottles

Answers

The number of bottles that can be filled and capped is 123,000. The initial number of caps is 123,000, and we used 123,000 caps. Therefore, the leftover caps are 123,000 - 123,000 = 0 caps.

(a) To determine how many bottles can be filled and capped, we need to find the limiting factor between the number of caps available and the volume of the beverage.

Number of bottles that can be filled and capped:

Since the plant has 123,000 caps, the maximum number of bottles that can be capped is limited by the number of caps available.

Therefore, the number of bottles that can be filled and capped is 123,000.

(b) To find out how much of each item is left over, we need to subtract the quantities used from the initial quantities.

Leftover volume of beverage:

The plant has 36,000 L of beverage, and each bottle has a capacity of 355 mL. So, the total volume of beverage used is (123,000 bottles) × (355 mL/bottle) = 43,665,000 mL = 43,665 L.

Therefore, the leftover volume of beverage is 36,000 L - 43,665 L = -7,665 L. This means that there is a deficit of 7,665 L of beverage.

Leftover bottles:

The initial number of bottles is 169,350, and we used 123,000 bottles. Therefore, the leftover bottles are 169,350 - 123,000 = 46,350 bottles.

Leftover caps:

The initial number of caps is 123,000, and we used 123,000 caps. Therefore, the leftover caps are 123,000 - 123,000 = 0 caps.

(c) The component that limits the production is the number of caps because it determines the maximum number of bottles that can be capped.

To know more about number visit :

https://brainly.com/question/14662142

#SPJ11

Recall that the threshold frequency (νthreshold) for a metal is related it the metal's work function (Φ) by Eminimum= Φ = hνthreshold. For a particular metal, Φ is 5.00×10-19 J. What is the longest wavelength of electromagnetic radiation that can eject an electron from the surface of a piece of the metal? What is the nm?

Answers

The given formula is Eminimum= Φ = hνthreshold where Eminimum represents the minimum energy required to eject an electron from a metal surface, Φ is the work function of the metal, h is Planck's constant and νthreshold is the threshold frequency of the metal.

Given, Φ = 5.00 × 10⁻¹⁹ J. Therefore, Eminimum = Φ = 5.00 × 10⁻¹⁹ J.

The energy of a photon, E can be calculated from E = hν where h is Planck's constant and ν is the frequency of the photon.

The minimum energy required to eject an electron from the surface of a metal is the same as the energy of a photon that has a frequency equal to the threshold frequency. For a photon to be able to eject an electron from the surface of the metal, its energy must be greater than or equal to the minimum energy required to eject an electron.

The frequency of a photon can be related to its wavelength (λ) using the formula c = λν where c is the speed of light. Rearranging this formula gives ν = c/λ.

Substituting ν into the formula E = hν gives E = hc/λ. Therefore, the minimum wavelength (λmin) of the electromagnetic radiation required to eject an electron is given by λmin = hc/Eminimum = hc/Φ.

The longest wavelength (λmax) of electromagnetic radiation that can eject an electron from the surface of a piece of metal is equal to twice the minimum wavelength, i.e., λmax = 2λmin. Therefore,

λmax = 2hc/Φ

Substituting the values of h, c and Φ, we get;

λmax = (2 × 6.626 × 10⁻³⁴ J s × 2.998 × 10⁸ m s⁻¹) / (5.00 × 10⁻¹⁹ J)

λmax = 2.66 × 10⁻⁷ m

Converting this value to nanometers gives,λmax = 266 nm

Therefore, the answer is 266 nm.

Learn more about electromagnetic radiation: https://brainly.com/question/29646884

#SPJ11

Express the rate of this reaction in tes of the change in concentration of each of the reactants and products: D(g)→ 3/2 E(g)+ 5/2 F( g) When [E] is increasing at 0.25 mol/L⋅s, how fast is [F] increasing?

Answers

When [E] is increasing at 0.25 mol/L⋅s, the rate at which [F] is increasing can be calculated as 0.4167 mol/L⋅s, using the stoichiometric ratio of the reaction.

The balanced chemical equation for the reaction is:

D(g) → (3/2)E(g) + (5/2)F(g)

The rate of the reaction can be expressed in terms of the change in concentration of each reactant and product.

From the balanced equation, we can see that for every 3 moles of E formed, 5 moles of F are formed. Therefore, the ratio of their rate of change is:

(d[E]/dt) : (d[F]/dt) = 3 : 5

Given that (d[E]/dt) = 0.25 mol/L⋅s, we can calculate the rate at which [F] is increasing:

(d[F]/dt) = (5/3) * (d[E]/dt)

= (5/3) * 0.25 mol/L⋅s

≈ 0.4167 mol/L⋅s

The rate at which [F] is increasing is 0.4167 mol/L⋅s.

When the concentration of reactant E is increasing at a rate of 0.25 mol/L⋅s in the reaction D(g) → (3/2)E(g) + (5/2)F(g), the rate at which product F is increasing can be calculated as  0.4167 mol/L⋅s using the stoichiometric ratio of the reaction.

To know more about stoichiometric ratio refer here

https://brainly.com/question/6907332#

#SPJ11

Use the References to access important values if needed for this question. 1. How many GRAMS of sulfur are present in 2.30 moles of sulfur dioxide, SO2​ ? grams 2. How many MOLES of oxygen are present in 3.62 grams of sulfur dioxide? moles

Answers

1. 72.92 grams of sulfur present in 2.30 moles of sulfur dioxide

2. 0.113 moles of oxygen present in 3.62 grams of sulfur dioxide.

1. To determine the number of grams of sulfur present in 2.30 moles of sulfur dioxide (SO2), we need to consider the molar mass of sulfur. The molar mass of sulfur (S) is approximately 32.06 grams per mole, and the molar mass of oxygen (O) is approximately 16.00 grams per mole. Since sulfur dioxide contains one sulfur atom and two oxygen atoms, its molar mass is 32.06 grams/mol (sulfur) + 2 * 16.00 grams/mol (oxygen) = 64.06 grams/mol.

To find the mass of sulfur in 2.30 moles of sulfur dioxide, we can use the following calculation:

Mass of sulfur = Moles of sulfur dioxide * Molar mass of sulfur dioxide * (Mass of sulfur / Molar mass of sulfur dioxide)

Mass of sulfur = 2.30 mol * 64.06 g/mol * (32.06 g/mol / 64.06 g/mol) = 72.92 grams

Therefore, there are approximately 72.92 grams of sulfur present in 2.30 moles of sulfur dioxide.

2. To determine the number of moles of oxygen present in 3.62 grams of sulfur dioxide, we can use the molar mass of sulfur dioxide mentioned above (64.06 grams/mol).

Moles of oxygen = Mass of sulfur dioxide / Molar mass of sulfur dioxide * (Moles of oxygen / Moles of sulfur dioxide)

Moles of oxygen = 3.62 g / 64.06 g/mol * (2 mol O / 1 mol SO2) = 0.113 mol

Therefore, there are approximately 0.113 moles of oxygen present in 3.62 grams of sulfur dioxide.

Know more about molar mass here:

https://brainly.com/question/837939

#SPJ8

for a first order reaction liquid phase reaction with volumetric flow rate of 1 lit/h and inlet concentration of 1 mol/lit and exit concentration of 0.5 mol/lit, v cstr/v pfr

Answers

The ratio of the volumes of a continuous stirred tank reactor (CSTR) to a plug flow reactor (PFR) for the given first-order liquid phase reaction is approximately 2.

In a continuous stirred tank reactor (CSTR), the reactants are well mixed, and the reaction takes place throughout the reactor with a uniform concentration. The volumetric flow rate of 1 lit/h means that 1 liter of the reactant solution is entering the reactor every hour. The inlet concentration of 1 mol/lit indicates that the concentration of the reactant entering the CSTR is 1 mole per liter.

In the CSTR, the reaction follows first-order kinetics, which means that the rate of reaction is directly proportional to the concentration of the reactant. As the reaction progresses, the concentration decreases. The exit concentration of 0.5 mol/lit indicates that the concentration of the reactant leaving the CSTR is 0.5 mole per liter.

On the other hand, in a plug flow reactor (PFR), the reactants flow through the reactor without any mixing. The reaction occurs as the reactants move through the reactor, and the concentration changes along the length of the reactor.

To calculate the ratio of the volumes of the CSTR to the PFR, we can use the concept of space-time, which is defined as the time required for a reactor to process one reactor volume of fluid. The space-time for a CSTR is given by the equation:

τ_cstr = V_cstr / Q

where τ_cstr is the space-time, V_cstr is the volume of the CSTR, and Q is the volumetric flow rate.

Similarly, the space-time for a PFR is given by:

τ_pfr = V_pfr / Q

where τ_pfr is the space-time and V_pfr is the volume of the PFR.

Since the space-time is inversely proportional to the concentration, we can write:

τ_cstr / τ_pfr = (V_cstr / Q) / (V_pfr / Q) = V_cstr / V_pfr

Given that the inlet concentration is 1 mol/lit and the exit concentration is 0.5 mol/lit, we can conclude that the average concentration inside the CSTR is 0.75 mol/lit. This means that the reaction has consumed half of the reactant in the CSTR.

From the rate equation for a first-order reaction, we know that the concentration at any point in the PFR can be calculated using the equation:

ln(C/C0) = -k * V_pfr

where C is the concentration at any point in the PFR, C0 is the initial concentration, k is the rate constant, and V_pfr is the volume of the PFR.

Substituting the values, we have:

ln(0.5/1) = -k * V_pfr

Simplifying, we get:

-0.693 = -k * V_pfr

Since ln(0.5/1) is equal to -0.693, we can deduce that the volume of the PFR is approximately twice the volume of the CSTR.

Learn more about liquid

brainly.com/question/20922015

#SPJ11

(1)Which of the following is consistent with the principles of green chemistry when comparing different methods for synthesizing a target compound? (Note: %AE is percent atom economy).
a) small %AE and large E-factor
b) large %AE and large E-factor
c) large %AE and small E-factor
d) small %AE and small E-factor

Answers

The option that is consistent with the principles of green chemistry when comparing different methods for synthesizing a target compound is small %AE and large E-factor. Correct answer of this question is Option A

This is because Green Chemistry is all about developing processes and techniques that are environmentally safe and sustainable. The %AE or the percent atom economy refers to the amount of atoms present in a product that are useful in making the target compound.

On the other hand, E-factor or the environmental factor measures the total amount of waste created in the process of making the target compound. So, it is evident that Green Chemistry focuses on the efficient use of materials and reducing waste.



When comparing different methods for synthesizing a target compound, a small %AE and a large E-factor is consistent with the principles of green chemistry. This is because a small %AE means that fewer reactants are wasted in the process. The E-factor, however, measures the amount of waste generated during the production of the target compound. A large E-factor means that more waste is produced, which is not sustainable.



Thus, Green Chemistry focuses on maximizing the atom economy and minimizing waste production during the synthesis of the target compound. Therefore, a small %AE and a large E-factor is the option that is consistent with the principles of green chemistry when comparing different methods for synthesizing a target compound. Correct answer of this question is Option A

Know more about green chemistry here:

https://brainly.com/question/31862654

#SPJ11

What is the total solubility of a weak acid (S) when pH of the solution equals to the pKa of the weak acid? It's S0 ( intrinsic solubility) is 0.02M.
I believe I'm supposed to use the weak acid equation in the picture but I am unsure of how to start. If you could just explain how to do it that would be great. Thanks!

Answers

When the pH of a solution equals the pKa of a weak acid, the concentration of the acid (HA) and its conjugate base (A-) are equal. This is known as the half-equivalence point. At this point, the acid is half-dissociated and half-undissociated.

The equation for the dissociation of a weak acid is:

HA ⇌ H+ + A-

The equilibrium constant for this reaction is known as the acid dissociation constant (Ka). The pKa is the negative logarithm of the Ka:

pKa = -log(Ka)

At the half-equivalence point, the concentration of HA and A- are equal. Let x be the concentration of HA and A-. Then:

[H+] = x

[HA] = S0 - x

[A-] = x

The Ka expression for the dissociation of HA is:

Ka = [H+][A-]/[HA]

Substituting the values above, we get:

Ka = x^2 / (S0 - x)

Taking the negative logarithm of both sides, we get:

-pKa = -log(Ka) = -log(x^2 / (S0 - x))

Simplifying, we get:

pKa = log(S0 - x) - 2log(x)

At the half-equivalence point, x = S0/2, so:

pKa = log(S0/2) - 2log(S0/2) = log(S0/2) - log(S0) = -log(2)

Therefore, the pKa of the weak acid is equal to -log(2) = 0.301. We can use this value and the given intrinsic solubility (S0 = 0.02 M) to calculate the total solubility of the weak acid:

pH = pKa

=> [H+] = 10^-pH = 10^-0.301 = 0.498 M

=> [A-] = [HA] = 0.02/2 = 0.01 M (at the half-equivalence point)

=> Total solubility = [HA] + [A-] = 0.01 + 0.01 = 0.02 M

Therefore, the total solubility of the weak acid is 0.02 M when the pH of the solution equals the pKa of the weak acid.

#SPJ11

For more such questions , visit https://brainly.com/question/28202068

The price of a popular soft drink is $0.98 for 24.0 fl. oz (fluid ounces) or $0.78 for 0.500 L. 1 qt. = 32 fl.oz 1 L = 33.814 fl. oz. 1 qt = 0.94635 L
1. What is the price per liter of the 24.0 oz bottle?
_ L ?
2. What is the price per liter of the 0.500 L bottle?
_ L ?
3. Which is a better buy? Choose one:
A. 24.0 oz. container
B. 0.500 L container

Answers

The price of the popular soft drink is more in 0.500 L container than in 24 oz. container.

The correct answer is option B. 0.500 L container.

The price of a popular soft drink is $0.98 for 24.0 fl. oz (fluid ounces) or $0.78 for 0.500 L.

Given that 1 qt. is equal to 32 fl.oz, 1 L is equal to 33.814 fl.oz, and 1 qt is equal to 0.94635 L.

In this case, the quantity of a particular soft drink in a 24 oz. container and a 0.500 L container is to be determined.

Let x be the amount of soft drink in the 24 oz container.

Then, the amount of soft drink in 0.500 L container can be given by 0.500 L * (33.814 fl.oz/1 L) = 16.907 fl.oz.

Thus, we have 32 fl.oz is equal to 0.94635 L or 1 qt.

Therefore, we can say 24.0 fl. oz is equal to (24/32) qt = 0.75 qt.

Hence, the amount of soft drink in the 24 oz. container is 0.75 qt.

Now we can calculate the price per qt as follows:Price of 24 oz. container = $0.98Price per qt. = $0.98/0.75 qt= $1.307/ qt.

Similarly, let y be the amount of soft drink in the 0.500 L container.

Then, the amount of soft drink in 0.500 L container is 0.500 L.

Now, we can calculate the price per qt for 0.500 L container as follows:Price of 0.500 L container = $0.78Price per qt. = $0.78/(0.500 L/0.94635 L/qt)= $1.483/qt.

The correct answer is option B. 0.500 L container.

For more such questions on soft drink

https://brainly.com/question/29992680

#SPJ8

Other Questions
the primary reason that businesses started by entrepreneurs fail is disagreements with business partners. True or False? For each legal problem question you are required toState the issue or issuesState the relevant rule or rulesCite the relevant case or casesAnswer yes or No to the question posed at the end of the problem and EXPLAIN the reasons for your answer. One week equals 7 days. The following program converts a quantity in days to weeks and then outputs the quantity in weeks. The code contains one or more errors. Find and fix the error(s). Ex: If the input is 2.0, then the output should be: 0.286 weeks 1 #include ciomanips 2. tinclude ecmath 3 #include ) f 8 We Madify the following code * 10 int lengthoays: 11 int lengthileeks; 12 cin > lengthDays: 13 Cin $2 tengthoays: 15 Lengthieeks - lengthosys /7; You are graduating in two years. You want to invest your current savings of $5,900 in bonds and use the proceeds to purchase a new car when you graduate and start to work. You can invest the money in either Bond A, a two-year bond with a 3.00 percent annual interest rate, or Bond B, an inflation-indexed two-year bond paying 1.0 percent real interest above the inflation rate (assume this bond makes annual interest payments). The inflation rate over the next two years is expected to be 1.4 percent. Assume that both bonds are default free and have the same market price. Which bond should you invest in? (Do not round intermediate calculations. Round answers to 2 decimal places, es 15.25%) Nominal interest rate for Bond A x Nominal interest rate for Bond B You should irvest in a client is admitted for a rhinoplasty. to monitor for hemorrhage after the surgery, the nurse should assess specifically for the presence of which response? a. Facial edemab. Excessive swallowingc. Pressure around the eyesd. Serosanguinous drainage on the dressing If sales = 100, rate = 0.10, and expenses = 50, which of the following expressions is true?(two of the above) nikolas and andrea are both 85 years old, have been married for over 50 years, and are extremely happy in their long-lasting relationship. according to the text, which behavior(s) would likely predict their happiness? Explain what you believe are two of the most important legal issues facing businesses looking to enter foreign markets and why. Minimum 3 pages double-spaced. All sources MUST be cited using APA format.Please provide your own content not just paraphrase someone else's work Prove:d2x 1 dr = ((d+ 2) (d-2)) dt2 m(a) Classify this ODE and explain why there is little hope of solving it as is.(b) In order to solve, let's assume (c) We want to expand the right-hand side function in an appropriate Taylor series. What is the "appropriate" Taylor series? Let the variable that we are expanding in be called z. What quantity is playing the role of z? And are we expanding around z = 0 (Maclaurin series) or some other value of z? [HINT: factor a d out of the denominator of both terms.] Also, how many terms in the series do we need to keep? [HINT: we are trying to simplify the ODE. How many terms in the series do you need in order to make the ODE look like an equation that you know how to solve?](d) Expand the right-hand side function of the ODE in the appropriate Taylor series you described in part (c). [You have two options here. One is the "direct" approach. The other is to use one series to obtain a different series via re-expanding, as you did in class for 2/3. Pick one and do it. If you feel up to the challenge, do it both ways and make sure they agree.](e) If all went well, your new, approximate ODE should resemble the simple harmonic oscillator equation. What is the frequency of oscillations of the solutions to that equation in terms of K, m, and d?(f) Finally, comment on the convergence of the Taylor series you used above. Is it convergent? Why or why not? If it is, what is its radius of convergence? How is this related to the very first step where you factored d out of the denominator? Could we have factored 2 out of the denominator instead? Explain. Let U be a uniform random variable on (0,1). Let V=U ,>0. a) Sketch a picture of the transformation V=U. Is the transformation monotone and one-to-one? b) Determine the CDF of V. Specify the possible values of v. c) Using the Inverse CDF Method give a formula that can be used to simulate values of V technology has two important dimensions impacting supply chain management: A number of restaurants feature a device that allows credit card users to swipe their cards at the table. It allows the user to specify a percentage or a dollar amount to leave as a tip. In an experiment to see how it works, a random sample of credit card users was drawn. Some paid the usual way, and some used the new device. The percent left as a tip was recorded in the table Data File.xlsx. Using a = 0.05, what can we infer regarding users of the device.a.There is statistically significant evidence to conclude that users of the device leave larger tips than customers who pay in the usual manner.b.There is statistically significant evidence to conclude that users of the device leave smaller tips than customers who pay in the usual manner.c.There is statistically significant evidence to conclude that users of the device and customers who pay in the usual manner do not differ in the percentage value of their tips.d.There is insufficient statistical evidence to make any conclusions from this data. Conduct secondary research to identify gaps in the distributionnetwork for Amazon Which of the following descriptions does not describe a function of the nephron loop?A) relies on countercurrent multiplicationB) creates high NaCl concentration in the renal medullaC) enables production of hypertonic urineD) enables production of hypotonic urineE) None of the answers is correct. in a concurrent schedule, the component schedules group of answer choices a) provide only punishers.b) are sequentially available. c) both a and b are correct.d) neither a nor b is correct. ____is arguably the most believe promotion tool and includes examples such as news stories, sponsorships, and events. Signal Processing ProblemIn MATLAB, let's write a function to taper a matrix and then a script to use the function and make a plot of the original and final matrix.1) Generate an NxN matrix (the command "rand" might be useful here.)2) Make another matrix that is the same size as the original and goes from 1 at the middle to 0 at the edges. This part will take some thought. There is more than one way to do this.3) Multiply the two matrices together elementwise.4) Make the plots (Take a look at the command "imagesc") When a brand becomes commonplace and identified with a category of goods rather than the unique product of a specific manufacturer, the brand may become a a generic name b. product liability issue. c. universal product code. d. trademark draw a diagram to show the linked list after each of the following statements is executed. mylinkedlist list = new mylinkedlist(); list.add(1.5); list.add(6.2); list.add(3.4); list.add(7.4); list.remove(1.5); list.remove(2); Design an Essay class that is derived from the GradedActivity class :class GradedActivity{private :double score;public:GradedActivity(){score = 0.0;}GradedActivity(double s){score = s;}void setScore(double s){score = s;}double getScore() const{return score;}char getLetterGrade() const;};char GradedActivity::getLetterGrade() const{char letterGrade;if (score > 89) {letterGrade = 'A';} else if (score > 79) {letterGrade = 'B';} else if (score > 69) {letterGrade = 'C';} else if (score > 59) {letterGrade = 'D';} else {letterGrade = 'F';}return letterGrade;}The Essay class should determine the grade a student receives on an essay. The student's essay score can be up to 100, and is made up of four parts:Grammar: up to 30 pointsSpelling: up to 20 pointsCorrect length: up to 20 pointsContent: up to 30 pointsThe Essay class should have a double member variable for each of these sections, as well as a mutator that sets the values of thesevariables . It should add all of these values to get the student's total score on an Essay.Demonstrate your class in a program that prompts the user to input points received for grammar, spelling, length, and content, and then prints the numeric and letter grade received by the student.