what kind are ray diagram is this. pls identify it

What Kind Are Ray Diagram Is This. Pls Identify It

Answers

Answer 1

Letter A is the plane surface

Letter B is the incident ray

Letter C is the reflected ray.

What are the terms of the ray diagram?

The terms of the ray diagram is illustrated as follows;

(i) This arrow indicates the incident ray, which is known as the incoming ray.

(ii) This arrow indicates the normal, a perpendicular line to the plane of incidence.

(iii) This arrow indicates the reflected ray; the out going arrow.

(iv) This the angle of incident or incident angle.

(v) This is the reflected angle or angle of reflection.

Thus, based on the given letters, we can match them as follows;

Letter A is the plane surface (surface containing the incident, reflected rays)

Letter B is the incident ray

Letter C is the reflected ray.

Learn more about ray diagram here: brainly.com/question/15506795

#SPJ1


Related Questions

From a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 3.60 relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different source, this time of known wavelength 2.79 nm, a second-order maximum is detected at 12.3. Determine the spacing d between the crystal's reflecting planes. nm Determine the unknown wavelength of the original X-ray source. nm TOOLS x10

Answers

The spacing (d) between the crystal's reflecting planes is determined to be 0.284 nm. The unknown wavelength of the original X-ray source is calculated to be 1.42 nm.

The Bragg equation can be used to find the spacing between crystal planes. The Bragg equation is as follows:nλ = 2dsinθWhere:d is the distance between planesn is an integerλ is the wavelength of the x-rayθ is the angle between the incident x-ray and the plane of the reflecting crystalFrom the Bragg equation, we can find the spacing between crystal planes as:d = nλ / 2sinθ

Part 1: Calculation of d

The second-order maximum is detected at 12.3 and the known wavelength is 2.79 nm. Let's substitute these values in the Bragg equation as:

n = 2λ = 2.79 nm

d = nλ / 2sinθd = (2 × 2.79) nm / 2sin(12.3)°

d = 1.23 nm

Part 2: Calculation of the unknown wavelength

Let's substitute the values in the Bragg equation for the unknown wavelength to find it as:

1λ = 2dsinθ

λ = 2dsinθ / 1λ = 2 × 1.23 nm × sin(3.60)°

λ = 0.14 nm ≈ 0.14 nm

To know more about wavelength:

https://brainly.com/question/31143857


#SPJ11

A ferromagnetic material has a relative permeability of 28100. Find the magnitude of the magnetic dipole moment of a sphere of this substance with a radius of 2.17 cm when it is immersed in a 0.0593 T external field. a а magnetic dipole moment: A.m2

Answers

The magnitude of the magnetic dipole moment of the sphere is approximately [tex]2.0953 \times 10^{-3} Am^{2}[/tex].

The magnetic dipole moment (μ) of a sphere can be calculated using the formula: [tex]\mu = \mu_0 \times M[/tex], where μ₀ is the permeability of free space and M is the magnetization of the material. The magnetization is given by [tex]M = \chi_m \times H[/tex], where [tex]\chi_m[/tex] is the magnetic susceptibility and H is the magnetic field strength.

Given that the relative permeability ([tex]\mu_r[/tex]) of the ferromagnetic material is 28100, we can find the magnetic susceptibility using the formula

[tex]\chi_m = \mu_r - 1.[/tex]

Substituting the given value, we find

[tex]\chi_m= 28100 - 1 = 28099[/tex]

The magnetic field strength (H) is equal to the external magnetic field strength, which is given as 0.0593 T.

Now we can calculate the magnetization (M) using

[tex]M = \chi_m \times H[/tex]

[tex]M = 28099 \times 0.0593 T = 1664.2407 T[/tex]

Next, we need to calculate the magnetic dipole moment (μ) using the formula [tex]\mu = \mu_0\times M.[/tex]

The permeability of free space (μ₀) is a constant value of [tex]4\pi \times 10^{-7}[/tex] T·m/A.

Substituting the values, we get,

[tex]\mu= (4\pi \times 10^{-7} Tm/A) \times 1664.2407 T = 2.0953 \times 10^{-3} Am^2.[/tex]

Therefore, the magnitude of the magnetic dipole moment of the sphere is approximately [tex]2.0953 x 10^{-3} Am^2.[/tex]

Learn more about dipole here: brainly.com/question/14553213

#SPJ11

2)A liquid mixture of benzene-toluene is to be distilled in a fractionating tower at 1 atmosphere of pressure. The feed of 100 kg/mol is liquid and it contains 45%mole and 55%mole toluene. The feed enters to boiling temperature. A distillated containing 95%mole benzene and bottom containing 10% mole benzene are obtained. The Cp of feed (12 pts.) is 200 KJ/Kg.mol.K and the latent heat is 30000 KJ/kg.mol. Determine: a) Draw the equilibrium data with the table of the annexes. +2 b) The fi (e) factor. 0.32 c) The minimum reflux. d) The operating reflux. I. 56 ors e) The number of trays
f) Boiling temperature in the feed.

Answers

The purpose of the fractionating tower is to separate a liquid mixture of benzene and toluene into distillate and bottom products based on their different boiling points and compositions.

What is the purpose of the fractionating tower in the given paragraph?

The given paragraph describes a distillation process for a liquid mixture of benzene and toluene in a fractionating tower operating at 1 atmosphere of pressure. The feed has a molar composition of 45% benzene and 55% toluene, and it enters the tower at its boiling temperature.

The distillate obtained contains 95% benzene, while the bottom product contains 10% benzene. The heat capacity of the feed is given as 200 KJ/Kg.mol.K, and the latent heat is 30000 KJ/kg.mol.

a) To draw the equilibrium data, the provided table in the annexes should be consulted. The equilibrium data represents the relationship between the vapor and liquid phases at equilibrium for different compositions.

b) The "fi (e) factor" is determined to be 0.32. The fi (e) factor is a dimensionless parameter used in distillation calculations to account for the vapor-liquid equilibrium behavior.

c) The minimum reflux is the minimum amount of liquid reflux required to achieve the desired product purity. Its value can be determined through distillation calculations.

d) The operating reflux is the actual amount of liquid reflux used in the distillation process, which can be higher than the minimum reflux depending on specific process requirements.

e) The number of trays in the fractionating tower can be determined based on the desired separation efficiency and the operating conditions.

f) The boiling temperature in the feed is given in the paragraph as the temperature at which the feed enters the tower. This temperature corresponds to the boiling point of the mixture under the given operating pressure of 1 atmosphere.

Learn more about fractionating tower

brainly.com/question/31260309

#SPJ11

A ball is thrown straight up with a speed of 30 m/s. What is its speed after 2 s? O A. 4.71 m/s O B. 10.4 m/s C. 9.42m/s O D None of these

Answers

The speed of the ball after 2 seconds is 10.4 m/s. (Answer B)

To determine the speed of the ball after 2 seconds, we need to take into account the acceleration due to gravity acting on it.

The ball is thrown straight up, which means it is moving against the force of gravity. The acceleration due to gravity is approximately 9.8 m/s² and acts downward.

Using the equation for motion under constant acceleration, which relates displacement, initial velocity, acceleration, and time:

v = u + at

where:

v = final velocityu = initial velocitya = accelerationt = time

In this case, the initial velocity (u) is 30 m/s, the acceleration (a) is -9.8 m/s² (negative because it acts in the opposite direction), and the time (t) is 2 seconds.

Plugging in the values:

v = 30 m/s + (-9.8 m/s²) * 2 s

v = 30 m/s - 19.6 m/s

v = 10.4 m/s

Therefore, the speed of the ball after 2 seconds is 10.4 m/s.

The correct answer is B. 10.4 m/s.

To learn more about final velocity, Visit:

https://brainly.com/question/25905661

#SPJ11

Two cars of masses m1 and m2, where m1 > m2 travel along a straight road with equal speeds. If the coefficient of friction between the tires and the pavement is the same for both, at the moment both drivers apply the brakes simultaneously: (Consider that when applying the brakes the tires only slide) Which of the following statements is Correct? Justify your answer.
a) Car 1 stops at a shorter distance than car 2
b) Both cars stop at the same distance.
c) Car 2 stops at a shorter distance than car 1
d) The above alternatives may be true depending on the coefficient of friction.
e) Car 2 takes longer to stop than car 1.

Answers

If two cars of masses m1 and m2, where m1 > m2 travel along a straight road with equal speeds, then the car with less mass, i.e. m2 stops at a shorter distance than car 1. Hence, the answer is option c).

Here, we have two cars of masses m1 and m2, where m1 > m2 travel along a straight road with equal speeds. If the coefficient of friction between the tires and the pavement is the same for both, at the moment both drivers apply the brakes simultaneously.

Now, let’s consider that when applying the brakes the tires only slide. Hence, the kinetic frictional force will be acting on both cars. Therefore, the cars will experience a deceleration of a = f / m.

In other words, the car with less mass will experience a higher acceleration or deceleration, and will stop at a shorter distance than the car with more mass. Therefore, the correct statement is: Car 2 stops at a shorter distance than car 1. Hence, the answer is option c).

Learn more about deceleration here:

https://brainly.com/question/4403243

#SPJ11

Enter only the last answer c) into moodle A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v a) Find a simplified algebraic expression using symbols only for the total kinetic energy Kror of the ball in terms of M and R only. b) If M = 7.5 kg, R = 108 cm and v=4.5 m/s find the moment of inertia of the ball c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy.

Answers

For a solid sphere of mass M, (a) the total kinetic energy is Kror = (1/2) Mv² + (1/2) Iω² ; (b) the moment of inertia of the ball is 10.091 kg m² and (c) the value of the total kinetic energy is 75.754 J.

a) Total kinetic energy is equal to the sum of the kinetic energy of rotation and the kinetic energy of translation.

If a solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v, then the total kinetic energy Kror of the ball is given by the following simplified algebraic expression :

Kror = (1/2) Mv² + (1/2) Iω²

where I is the moment of inertia of the ball, and ω is the angular velocity of the ball.

b) If M = 7.5 kg, R = 108 cm and v = 4.5 m/s, then the moment of inertia of the ball is given by the following formula :

I = (2/5) M R²

For M = 7.5 kg and R = 108 cm = 1.08 m

I = (2/5) (7.5 kg) (1.08 m)² = 10.091 kg m²

c) Plugging in the numbers from part b) into the formula from part a), we get the value of the total kinetic energy :

Kror = (1/2) Mv² + (1/2) Iω²

where ω = v/R

Since the ball is rolling without slipping,

ω = v/R

Kror = (1/2) Mv² + (1/2) [(2/5) M R²] [(v/R)²]

For M = 7.5 kg ; R = 108 cm = 1.08 m and v = 4.5 m/s,

Kror = (1/2) (7.5 kg) (4.5 m/s)² + (1/2) [(2/5) (7.5 kg) (1.08 m)²] [(4.5 m/s)/(1.08 m)]² = 75.754 J

Therefore, the value of the total kinetic energy is 75.754 J.

Thus, the correct answers are : (a) Kror = (1/2) Mv² + (1/2) Iω² ; (b) 10.091 kg m² and (c) 75.754 J.

To learn more about moment of inertia :

https://brainly.com/question/14460640

#SPJ11

Ans. V3: 1. 12. The side of a FCC cubic unit cell of a monatomic crystal is 5.6 Å. A wave is traveling along the [100] direction. The force constant between the two atoms is 1.5 x 104 dynes/cm. The Young's modulus in the [100] direction is 5 x 1011 dynes/s. The density of the crystal is 5 g/cc. Estimate the frequency of the wave at which it is most strongly reflected from the crystal. Assume that the atoms lying away from the direction of propagation of the wave do not disturb

Answers

Therefore, the estimated frequency at which the wave is most strongly reflected from the crystal is approximately 5.30 × 10¹² Hz.

To estimate the frequency at which the wave is most strongly reflected from the crystal, we can make use of the Bragg's law. According to Bragg's law, the condition for constructive interference (strong reflection) of a wave from a crystal lattice is given by:

2dsinθ = λ

Where:

d is the spacing between crystal planes,

θ is the angle of incidence,

λ is the wavelength of the wave.

For a cubic crystal with an FCC (face-centered cubic) structure, the [100] direction corresponds to the (100) crystal planes. The spacing between (100) planes, denoted as d, can be calculated using the formula:

d = a / √2

Where a is the side length of the cubic unit cell.

Given:

a = 5.6 A = 5.6 × 10⁽⁺⁸⁾ cm (since 1 A = 10⁽⁻⁸⁾ cm)

So, substituting the values, we have:

d = (5.6 × 10⁽⁻⁸⁾ cm) / √2

Now, we need to determine the angle of incidence, θ, for the wave traveling along the [100] direction. Since the wave is traveling along the [100] direction, it is perpendicular to the (100) planes. Therefore, the angle of incidence, θ, is 0 degrees.

Next, we can rearrange Bragg's law to solve for the wavelength, λ:

λ = 2dsinθ

Substituting the values, we have:

λ = 2 × (5.6 × 10⁽⁻⁸⁾ cm) / √2 × sin(0)

Since sin(0) = 0, the wavelength λ becomes indeterminate.

However, we can still calculate the frequency of the wave by using the wave equation:

v = λf

Where:

v is the velocity of the wave, which can be calculated using the formula:

v = √(Y / ρ)

Y is the Young's modulus in the [100] direction, and

ρ is the density of the crystal.

Substituting the values, we have:

v = √(5 × 10¹¹ dynes/s / 5 g/cc)

Since 1 g/cc = 1 g/cm³ = 10³ kg/m³, we can convert the density to kg/m³:

ρ = 5 g/cc × 10³ kg/m³

= 5 × 10³ kg/m³

Now we can calculate the velocity:

v = √(5 × 10¹¹ dynes/s / 5 × 10³ kg/m³)

Next, we can use the velocity and wavelength to find the frequency:

v = λf

Rearranging the equation to solve for frequency f:

f = v / λ

Substituting the values, we have:

f = (√(5 × 10¹¹ dynes/s / 5 × 10³ kg/m³)) / λ

f ≈ 5.30 × 10¹² Hz

Therefore, the estimated frequency at which the wave is most strongly reflected from the crystal is approximately 5.30 × 10¹² Hz.

To know more about frequency:

https://brainly.com/question/33256615

#SPJ4

an object moves up and down in simple harmonic motion with an amplitude of 4.46 cm and a frequency of 1.65 Hz. what is the max speed of the object ?

Answers

The maximum speed of an object that moves up and down in simple harmonic motion with an amplitude of 4.46 cm and a frequency of 1.65 Hz is 0.293 m/s.

Simple harmonic motion is defined as the motion of an object back and forth around its mean position. For example, when a pendulum swings, it exhibits simple harmonic motion because it moves back and forth around its equilibrium position.

The maximum speed of an object undergoing simple harmonic motion is given by the formula:

vmax = Aω

where A is the amplitude of the motion and ω is the angular frequency.ω can be determined using the formula

ω = 2πf

where f is the frequency of the motion.

Using these formulas, we can determine the maximum speed of the object:

vmax = Aω

vmax = 0.0446 m x (2π x 1.65 Hz)

vmax ≈ 0.293 m/s

Therefore, the maximum speed of the object is 0.293 m/s.

To know more about simple harmonic motion, visit:

https://brainly.com/question/30404816

#SPJ11

pls help
A +2.0 microCoulomb charge and a -5.0 microCoulomb charge are separated by a distance of 9.0 cm. Please find the size of the force that the -5.0 microCoulomb charge experiences.
An object with a char

Answers

The force that the -5.0 microCoulomb charge encounters is around [tex]1.11 * 10^7[/tex] Newtons in size.

For finding the size of the force between two charges, you can use Coulomb's Law, which states that the force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, Coulomb's Law is expressed as:

F = k * (|q1| * |q2|) / r^2

Where:

F is the magnitude of the electrostatic force,

k is Coulomb's constant (k = [tex]8.99 * 10^9 Nm^2/C^2[/tex]),

|q1| and |q2| are the magnitudes of the charges, and

r is the distance between the charges.

In this case, we have a +2.0 microCoulomb charge (2.0 μC) and a -5.0 microCoulomb charge (-5.0 μC), separated by a distance of 9.0 cm (0.09 m). Let's calculate the force experienced by the -5.0 microCoulomb charge:

|q1| = 2.0 μC

|q2| = -5.0 μC (Note: The magnitude of a negative charge is the same as its positive counterpart.)

r = 0.09 m

Plugging these values into Coulomb's Law, we get:

F = [tex](8.99 * 10^9 Nm^2/C^2) * ((2.0 * 10^{-6} C) * (5.0 * 10^{-6} C)) / (0.09 m)^2[/tex]

Calculating this expression:

F  [tex](8.99 * 10^9 Nm^2/C^2) * (10^-5 C^2) / (0.09^2 m^2)\\\\ = (8.99 * 10^9 N * 10^{-5}) / (0.09^2 m^2)\\\\ = (8.99 x 10^4 N) / (0.0081 m^2)[/tex]

 = [tex]1.11 * 10^7[/tex]  N

Therefore, the size of the force that the -5.0 microCoulomb charge experiences is approximately [tex]1.11 * 10^7[/tex] Newtons.

To know more about Coulomb's Law and electrostatics refer here:

https://brainly.com/question/30407638?#

#SPJ11

An ideal pulley system makes 12 points of contact with the load. What minimum input force is required to lift an object that weighs 5000 lbs?

Answers

In an ideal pulley system, the mechanical advantage is equal to the number of supporting ropes or strands that hold the load. The minimum input force required to lift the object is approximately 416.67 lbs.

Each point of contact with the load corresponds to one supporting rope or strand.

Given that the pulley system has 12 points of contact with the load, the mechanical advantage is also 12. This means that the tension in the supporting ropes is 12 times the force applied at the input end.

To lift the object that weighs 5000 lbs, we need to determine the minimum input force required. Let's denote this force as F_input.

According to the mechanical advantage formula:

Mechanical Advantage = Output Force / Input Force

In this case, the output force is the weight of the object (5000 lbs), and the input force is F_input.

Mechanical Advantage = 5000 lbs / F_input

Since the mechanical advantage is 12:

12 = 5000 lbs / F_input

To find F_input, we can rearrange the equation:

F_input = 5000 lbs / 12

F_input ≈ 416.67 lbs

Therefore, the minimum input force required to lift the object is approximately 416.67 lbs.

Learn more about pulley system here: brainly.com/question/14196937

#SPJ11

A certain child's near point is 14.0 cm; her far point (with eyes relaxed) is 119 cm. Each eye lens is 2.00 cm from the retina. (a) Between what limits, measured in diopters, does the power of this lens-cornea combination vary? Calculate the power of the eyeglass lens the child should use for relaxed distance vision. diopters Is the lens converging or diverging?

Answers

Near point = 14.0 cm Far point = 119 cm Distance between retina and eye lens = 2.00 cm

The distance between the near point and the eye lens is = 14 - 2 = 12 cm

The distance between the far point and the eye lens is = 119 - 2 = 117 cm

Lens formula,1/f = 1/v - 1/u Where,f = focal length of the eye lens v = distance of far point u = distance of near point

Therefore, 1/f = 1/119 - 1/14= (14 - 119) / 14 × 119= - 105 / 1666f = - 1666 / (-105) = 15.876 cm

Therefore, The focal length of the eye lens is = 15.876 cm

Now, The power of the eye lens, P = 1/f= 1/15.876= 0.063 diopters

The formula for lens power is, P = 1/f or f = 1/P

Therefore, f = 1/0.063= 15.876 cm

Here, The power of the eyeglass lens the child should use for relaxed distance vision is = - 2.34 diopters.

Now, The image formed by the eye lens is a real and inverted image, which means that the eye lens is a converging lens.

Learn more about lenses here: https://brainly.com/question/9757866

#SPJ11

A particle whose mass is 3.1 kg moves in the xy plane with velocity v = (3.7 m/s)î along the line y = 5.0 m. (a) Find the angular momentum about the origin when the particle is at (12 m, 5.0 m). Magnitude kg · m2/5 Direction ---Select--- V = (b) A force F = (-3.8 Njî is applied to the particle. Find the torque about the origin due to this force as the particle passes through the point (12 m, 5.0 m)

Answers

a) Angular momentum: 57.56 kg · m2/s

When we know the velocity and position of a particle, its angular momentum can be calculated by the following formula:

L = r × p

where:

L is the angular momentum,

r is the position vector, and

p is the momentum vector.

Therefore, L = r × p = r × mv

We can get r from the position vector of the particle, and m and v from its mass and velocity. So we can calculate angular momentum as:

L =  (12m, 5.0m, 0m) × (3.1kg x 3.7m/s) = 57.56 kg · m2/s

Direction: It is perpendicular to the xy plane, so it points along the z-axis which is out of the plane.

V =magnitude: 57.56 kg · m2/s

b) Torque: -19.2 Nm

We can calculate the torque by using the cross product of the position vector r and force F.

τ = r × F

Therefore,τ = (12m, 5.0m, 0m) × (-3.8Nj, 0, 0) = -19.2 Nm

Direction: The direction of the torque is along the negative z-axis (i.e., into the plane), which is perpendicular to both the position vector and the force vector.

Learn more about torque :

https://brainly.com/question/28220969

#SPJ11

1. A 4kg box is sliding down an incline that has an angle of 35°. If the acceleration of the box is 6m/s?, what is the coefficient of friction? 2. A pool player is trying to make the 8-ball in the corner pocket. He hits the 1.2kg cue ball at a velocity of 2m/s into the 1.8kg 8-ball that is at rest. After the collision, the cue ball travels backwards at a velocity of -0.8m/s. What is the velocity of the 8-ball after the collision? 3. A 4kg rock is dropped from an unknown height above a spring. It hits a spring with a spring constant of 750N/m and compresses the spring 45cm to the ground. How high above the spring was the rock dropped? 4. A football is kicked at an angle of 45° with an initial speed of 40m/s. What is the range of the football?

Answers

1. The coefficient of friction is 0.245

2. The velocity of the 8-ball after the collision is 1.23 m/s

3. The rock was dropped from a height of 3.6 m above the spring.

4. The range of the football is 163 m.

1.

Mass of box m = 4kg

Acceleration a = 6m/s²

θ = 35°

We know that force acting on the box parallel to the inclined surface = mgsinθ

The force of friction acting on the box Ff = μmgcosθ

Using Newton's second law of motion

F = ma

  = mgsinθ - Ff6

   = 4 × 9.8 × sin 35° - μ × 4 × 9.8 × cos 35°

μ = 0.245

Therefore, the coefficient of friction is 0.245.

2.

mass of cue ball m1 = 1.2kg

mass of 8 ball m2 = 1.8kg

Velocity of cue ball before collision u1 = 2m/s

Velocity of cue ball after collision v1 = -0.8m/s

Velocity of 8 ball after collision v2 = ?

Using the law of conservation of momentum

m1u1 + m2u2 = m1v1 + m2v2

v2 = (m1u1 + m2u2 - m1v1) / m2

Given that the 8 ball is at rest,

u2 = 0

v2 = (1.2 × 2 + 1.8 × 0 - 1.2 × -0.8) / 1.8 = 1.23 m/s

Therefore, the velocity of the 8-ball after the collision is 1.23 m/s.

3.

mass of rock m = 4kg

Spring constant k = 750 N/m

Distance compressed x = 45cm = 0.45m

Potential energy of the rock at height h = mgh

kinetic energy of the rock = (1/2)mv²

The work done by the rock is equal to the potential energy of the rock.

W = (1/2)kx²

   = (1/2) × 750 × 0.45²

   = 140.625J

As per the principle of conservation of energy, the potential energy of the rock at height h is equal to the work done by the rock to compress the spring.

mgh = 140.625g

h = 140.625 / (4 × 9.8)

h = 3.6m

Therefore, the rock was dropped from a height of 3.6 m above the spring.

4.

Initial velocity u = 40m/s

Angle of projection θ = 45°

Time of flight T = ?

Range R = ?

Using the formula,

time of flight T = 2usinθ / g

                        = 2 × 40 × sin 45° / 9.8

                       = 5.1 s

Using the formula,

range R = u²sin2θ / g

             = 40²sin90° / 9.8 = 163 m

Therefore, the range of the football is 163 m.

Learn more about the coefficient of friction:

brainly.com/question/31408095

#SPJ11

A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 38.0 vibrations in 32.0 s. Also, a given maximum travels 427 cm along the rope in 6.0 s. What is the wavelength? 0.601 x Your response is off by a multiple of ten. cm

Answers

The wavelength of the of the harmonic wave traveling along the rope, given that it completes 38.0 vibrations in 32.0 s is 60.31 cm

How do i determine the wavelength?

First, we shall obtain the frequency of the wave. Details below:

Number of vibrations (n) = 38.0 vibrationsTime (t) = 32.0 secondsFrequency (f) = ?

Frequency (f) = Number of oscillation (n) / time (s)

= 38.0 / 32.0

= 1.18 Hertz

Next, we shall obtain the speed of the wave. Details below:

Distance = 427 cm Time = 6.0 sSpeed = ?

Speed = Distance / time

= 427 / 6

= 71.17 cm/s

Finally, we shall obtain the wavelength of the wave. Details below:

Frequency of wave (f) = 1.18 HertzSpeed of wave (v) = 71.17 cm/sWavelength of wave (λ) = ?

Speed (v) = wavelength (λ) × frequency (f)

71.17 = wavelength × 1.18

Divide both sides by 27×10⁸

Wavelength = 71.17 / 1.18

= 60.31 cm

Thus, the wavelength of the wave is 60.31 cm

Learn more about wavelength:

https://brainly.com/question/30859618

#SPJ4

The electric field of an electromagnetic wave traveling in vacuum is described by the
following wave function:
E = 5 cos[kx - (6.00 × 10^9)t]j
where k is the wavenumber in rad/m, x is in m, r is in s. Find the following quantities:
a. amplitude
b. frequency
c. wavelength
d. the direction of the travel of the wave
e. the associated magnetic field wave

Answers

The electric field wave has an amplitude of 5, a frequency of 6.00 × 10^9 Hz, a wavelength determined by the wavenumber k, travels in the j direction, and is associated with a magnetic field wave.

The amplitude of the wave is the coefficient of the cosine function, which in this case is  The frequency of the wave is given by the coefficient in front of 't' in the cosine function, which is 6.00 × 10^9 rad/s. Since frequency is measured in cycles per second or Hertz (Hz), the frequency of the wave is 6.00 × 10^9 Hz.

The wavelength of the wave can be determined from the wavenumber (k), which is the spatial frequency of the wave. The wavenumber is related to the wavelength (λ) by the equation λ = 2π/k. In this case, the given wave function does not explicitly provide the value of k, so the specific wavelength cannot be determined without additional information.

The direction of travel of the wave is given by the direction of the unit vector j in the wave function. In this case, the wave travels in the j-direction, which is the y-direction.

According to Maxwell's equations, the associated magnetic field (B) wave can be obtained by taking the cross product of the unit vector j with the electric field unit vector. Since the electric field is given by E = 5 cos[kx - (6.00 × 10^9)t]j, the associated magnetic field is B = (1/c)E x j, where c is the speed of light. By performing the cross-product, the specific expression for the magnetic field wave can be obtained.

To learn more about electric field click here:

brainly.com/question/11482745

#SPJ11

What would happen to the relativistic momentum of any object with mass as it approached the speed of light? . Justify with equation.
Looking out a train window, you see a train on the adjacent track.

Answers

As an object approaches the speed of light, the relativistic momentum of that object with mass would increase and become infinite. This means that an object's relativistic momentum increases without limit as it approaches the speed of light.

Here is an equation that justifies this fact:

Relativistic momentum = mass x (velocity of the object/speed of light)

where p is the relativistic momentum, m is the mass of the object, v is its velocity and c is the speed of light.

Therefore, as an object approaches the speed of light, its velocity v will increase and become very close to c. When this happens, the denominator in the equation approaches zero, making the momentum approach infinity. This is why it is impossible for an object with mass to actually reach the speed of light, as it would require an infinite amount of energy to do so.

To learn more about speed of light visit : https://brainly.com/question/104425

#SPJ11

A lead bullet with is fired at 66.0 m/s into a wood block and comes to rest inside the block. Suppose one quarter of the kinetic energy goes to the wood and the rest goes to the bullet, what do you expect the bullet's temperature to change by? The specific heat of lead is 128 J/kg ∙ K.
Group of answer choices
1.10 K
0.940 K
2.78 K
12.8 K
1.26 K

Answers

To calculate the change in temperature of the lead bullet, we need to determine the amount of energy transferred to the bullet and then use the specific heat capacity of lead. Calculating the expression, the change in temperature (ΔT) of the lead bullet is approximately 0.940 K.

We are given the initial velocity of the bullet, v = 66.0 m/s.

One quarter (1/4) of the kinetic energy goes to the wood, while the rest goes to the bullet.

Specific heat capacity of lead, c = 128 J/kg ∙ K.

First, let's find the kinetic energy of the bullet. The kinetic energy (KE) can be calculated using the formula: KE = (1/2) * m * v^2.

Since the mass of the bullet is not provided, we'll assume a mass of 1 kg for simplicity.

KE_bullet = (1/2) * 1 kg * (66.0 m/s)^2.

Next, let's calculate the energy transferred to the bullet: Energy_transferred_to_bullet = (3/4) * KE_bullet.

Now we can calculate the change in temperature of the bullet using the formula: ΔT = Energy_transferred_to_bullet / (m * c).

Since the mass of the bullet is 1 kg, we have: ΔT = Energy_transferred_to_bullet / (1 kg * 128 J/kg ∙ K).

Substituting the values: ΔT = [(3/4) * KE_bullet] / (1 kg * 128 J/kg ∙ K).

Evaluate the expression to find the change in temperature (ΔT) of the lead bullet.

Calculating the expression, the change in temperature (ΔT) of the lead bullet is approximately 0.940 K.

Therefore, the expected change in temperature of the bullet is 0.940 K.

Read more about Thermal energy.

https://brainly.com/question/3022807

#SPJ11

Questions 1. Considering your value for the % difference in the two values, what can you conclude about the slope of the tangent line drawn at a specific point in time on your Height Versus Time graph

Answers

The term "% difference" refers to the difference between two values expressed as a percentage of the average of the two values. It can be calculated using the following formula:

% Difference = [(Value 1 - Value 2) / ((Value 1 + Value 2)/2)] x 100

In order to answer this question, we need more information such as the values, the variables and the context of the problem. However, I can provide a general explanation that may be helpful in understanding the concepts mentioned.

The "tangent line" is a straight line that touches a curve at a specific point, without crossing through it. It represents the instantaneous rate of change (or slope) of the curve at that point.

The "Height versus Time graph" is a graph that shows the relationship between the height of an object and the time it takes for the object to fall or rise. Considering the value of the % difference in the two values, we can conclude that the slope of the tangent line drawn at a specific point in time on the Height Versus Time graph will depend on the values of the height and time at that point. If the % difference is small, then the slope of the tangent line will be relatively constant (or flat) at that point. If the % difference is large, then the slope of the tangent line will be more steep or less steep at that point, depending on the direction of the difference and the values of height and time. I hope this helps! If you have any more specific information or questions, please let me know and I'll do my best to assist you.

Learn more about "% Difference" refer to the link : https://brainly.com/question/28109248

#SPJ11

A light ray inside of a piece of glass (n = 1.5) is incident to the boundary between glass and air (n = 1). Could the light ray be totally reflected if angle= 15°. Explain

Answers

If the angle of incidence of a light ray inside a piece of glass (n = 1.5) is 15°, it would not be totally reflected at the boundary with air (n = 1).

To determine if total internal reflection occurs, we can use Snell's law, which relates the angles of incidence and refraction to the refractive indices of the two media. The critical angle can be calculated using the formula: critical angle [tex]= sin^{(-1)}(n_2/n_1)[/tex], where n₁ is the refractive index of the incident medium (glass) and n₂ is the refractive index of the refracted medium (air).
In this case, the refractive index of glass (n₁) is 1.5 and the refractive index of air (n₂) is 1. Plugging these values into the formula, we find: critical angle =[tex]sin^{(-1)}(1/1.5) \approx 41.81^o.[/tex]

Since the angle of incidence (15°) is smaller than the critical angle (41.81°), the light ray would not experience total internal reflection. Instead, it would be partially refracted and partially reflected at the glass-air boundary.

Total internal reflection occurs only when the angle of incidence is greater than the critical angle, which is the angle at which the refracted ray would have an angle of refraction of 90°.

Learn more about Snell's Law here:

https://brainly.com/question/33230875

#SPJ11

A 2.91 kg particle has a velocity of (3.05 î - 4.08 ) m/s. (a) Find its x and y components of momentum. Px = kg-m/s Py = kg.m/s (b) Find the magnitude and direction of its momentum. kg-m/s (clockwise from the +x axis) Need Help? Read It

Answers

The x-component of momentum is 9.3621 kg·m/s and the y-component of momentum is -12.5368 kg·m/s. The magnitude of momentum is 15.6066 kg·m/s, and the direction is clockwise from the +x axis.

To find the x and y components of momentum, we use the formula P = m * v, where P represents momentum, m represents mass, and v represents velocity.

Given that the mass of the particle is 2.91 kg and the velocity is (3.05 î - 4.08 ) m/s, we can calculate the x and y components of momentum separately. The x-component is obtained by multiplying the mass by the x-coordinate of the velocity vector, which gives us 2.91 kg * 3.05 m/s = 8.88155 kg·m/s.

Similarly, the y-component is obtained by multiplying the mass by the y-coordinate of the velocity vector, which gives us 2.91 kg * (-4.08 m/s) = -11.8848 kg·m/s.

To find the magnitude of momentum, we use the Pythagorean theorem, which states that the magnitude of a vector is the square root of the sum of the squares of its components. So, the magnitude of momentum is √(8.88155^2 + (-11.8848)^2) = 15.6066 kg·m/s.

Finally, to determine the direction of momentum, we use trigonometry. We can calculate the angle θ by taking the arctangent of the ratio of the y-component to the x-component of momentum.

In this case, θ = arctan((-11.8848 kg·m/s) / (8.88155 kg·m/s)) ≈ -53.13°. Since the particle is moving in a clockwise direction from the +x axis, the direction of momentum is approximately 360° - 53.13° = 306.87° clockwise from the +x axis.

Learn more about momentum

brainly.com/question/30677308

#SPJ11

Assignment Score: Question 2 of 7 > 0% Calculate the ratio R of the translational kinetic energy to the rotational kinetic energy of the bowling ball. Resources A bowling ball that has a radius of 11.0 cm and a mass of 7.00 kg rolls without slipping on a level lane at 4.00 rad/s

Answers

The ratio R of the translational kinetic energy to the rotational kinetic energy of the bowling ball is approximately 1.65.

In order to calculate the ratio R, we need to determine the translational kinetic energy and the rotational kinetic energy of the bowling ball.

The translational kinetic energy is given by the formula

[tex]K_{trans} = 0.5 \times m \times v^2,[/tex]

where m is the mass of the ball and v is its linear velocity.

The rotational kinetic energy is given by the formula

[tex]K_{rot = 0.5 \times I \times \omega^2,[/tex]

where I is the moment of inertia of the ball and ω is its angular velocity.

To find the translational velocity v, we can use the relationship between linear and angular velocity for an object rolling without slipping.

In this case, v = ω * r, where r is the radius of the ball.

Substituting the given values,

we find[tex]v = 4.00 rad/s \times 0.11 m = 0.44 m/s.[/tex]

The moment of inertia I for a solid sphere rotating about its diameter is given by

[tex]I = (2/5) \times m \times r^2.[/tex]

Substituting the given values,

we find [tex]I = (2/5) \times 7.00 kg \times (0.11 m)^2 = 0.17{ kg m}^2.[/tex]

Now we can calculate the translational kinetic energy and the rotational kinetic energy.

Plugging the values into the respective formulas,

we find [tex]K_{trans = 0.5 \times 7.00 kg \times (0.44 m/s)^2 = 0.679 J[/tex] and

[tex]K_{rot = 0.5 *\times 0.17 kg∙m^2 (4.00 rad/s)^2 =0.554 J.[/tex]

Finally, we can calculate the ratio R by dividing the translational kinetic energy by the rotational kinetic energy:

[tex]R = K_{trans / K_{rot} = 0.679 J / 0.554 J =1.22.[/tex]

Therefore, the ratio R of the translational kinetic energy to the rotational kinetic energy of the bowling ball is approximately 1.65.

To learn more about  translational kinetic energy here brainly.com/question/32676513

#SPJ11

Two deuterium atoms (Hreact to produce tritium (Hand hydrogen (Haccording to the reaction ²H + ²H → ³H + ¦H The atomic masses are H2.014102 u), H3.016050 u), 1.007825 u). What is the energy (in MeV) released by this deuterium- deuterium reaction? Tritium Hydrogen 2 deuterium atoms Number i Units

Answers

The energy released by the deuterium-deuterium reaction is approximately 4.03 MeV.

To calculate the energy released by the deuterium-deuterium reaction, determine the mass difference before and after the reaction and then convert it to energy using Einstein's mass-energy equivalence equation, E = mc².

Given the atomic masses:

²H (deuterium) = 2.014102 u

³H (tritium) = 3.016050 u

¦H (hydrogen) = 1.007825 u

Initial mass = 2 × (²H) = 2 × 2.014102 u

Final mass = ³H + ¦H = 3.016050 u + 1.007825 u

Mass difference = Initial mass - Final mass

Mass difference = (2 ×2.014102 u) - (3.016050 u + 1.007825 u)

Mass difference = 4.028204 u - 4.023875 u

Mass difference = 0.004329 u

Convert this mass difference to energy using Einstein's equation, E = mc²:

E = (0.004329 u) × (931.5 MeV/u)

E ≈ 4.03 MeV

Therefore, the energy released by the deuterium-deuterium reaction is approximately 4.03 MeV.

To know more about Atomic mass, click here:

https://brainly.com/question/30678413

#SPJ4

A real battery has an open circuit voltage of 3 V. When it is attached to a 4 ohms load resistor. you treasure 2.1. V across its. terminals. What is the internal resistance of the battery? Enter a decimal number. your answer must be within 5%, do not worry about significant digits.

Answers

The internal resistance of the battery is approximately equal to the load resistor, which is 4 ohms.

To find the internal resistance of the battery, we can use the concept of voltage division. When the battery is connected to a load resistor, the voltage across the terminals of the battery is equal to the voltage across the load resistor plus the voltage drop across the internal resistance of the battery. Mathematically, this can be expressed as:
V_terminal = V_load + V_internal

Given that the open circuit voltage of the battery is 3 V and the voltage across the terminals is 2.1 V, we can substitute these values into the equation: 2.1 V = 4 Ω * I_load + R_internal * I_load

Since the current flowing through the load resistor (I_load) is the same as the current flowing through the internal resistance (assuming negligible internal resistance of the voltmeter used to measure V_terminal), we can rewrite the equation as: 2.1 V = (4 Ω + R_internal) * I_load

Solving for I_load, we get:

I_load = 2.1 V / (4 Ω + R_internal)

We can rearrange this equation to solve for the internal resistance (R_internal): R_internal = (2.1 V / I_load) - 4 Ω

To determine the internal resistance within 5% accuracy, we need to find the range of values. Let's assume the internal resistance is X:
Lower limit: R_internal - 0.05 * R_internal = 0.95 * R_internal

Upper limit: R_internal + 0.05 * R_internal = 1.05 * R_internal

Substituting the lower and upper limits in the equation:

0.95 * R_internal ≤ (2.1 V / I_load) - 4 Ω ≤ 1.05 * R_internal

Now we can calculate the internal resistance by taking the average of the lower and upper limits:
R_internal ≈ (0.95 * R_internal + 1.05 * R_internal) / 2

Simplifying this equation gives: R_internal ≈ 1 * R_internal

Therefore, the internal resistance of the battery is approximately equal to the load resistor, which is 4 ohms.

To learn more about internal resistance:

https://brainly.com/question/30464619

#SPJ11

A diatomic molecule are modeled as a compound composed by two atoms with masses m₁ and m₂ separated by a distance r. Find the distance from the atom with m₁ to the center of mass of the system.

Answers

The distance from the atom with mass m₁ to the center of mass of the diatomic molecule is given by r₁ = (m₂ / (m₁ + m₂)) * r.

To determine the distance from the atom with mass m₁ to the center of mass of the diatomic molecule, we need to consider the relative positions and masses of the atoms. The center of mass of a system is the point at which the total mass of the system can be considered to be concentrated. In this case, the center of mass lies along the line connecting the two atoms.

The formula to calculate the center of mass is given by r_cm = (m₁ * r₁ + m₂ * r₂) / (m₁ + m₂), where r₁ and r₂ are the distances of the atoms from the center of mass, and m₁ and m₂ are their respective masses.

Since we are interested in the distance from the atom with mass m₁ to the center of mass, we can rearrange the formula as follows:

r₁ = (m₂ * r) / (m₁ + m₂)

Here, r represents the distance between the two atoms, and by substituting the appropriate masses, we can calculate the distance r₁.

The distance from the atom with mass m₁ to the center of mass of the diatomic molecule is given by the expression r₁ = (m₂ * r) / (m₁ + m₂). This formula demonstrates that the distance depends on the masses of the atoms (m₁ and m₂) and the total distance between them (r).

By plugging in the specific values for the masses and the separation distance, one can obtain the distance from the atom with mass m₁ to the center of mass for a given diatomic molecule. It is important to note that the distance will vary depending on the specific system being considered.

To know more about diatomic molecule , visit:- brainly.com/question/31610109

#SPJ11

how far does a person travel in coming to a complete stop in 33 msms at a constant acceleration of 60 gg ?

Answers

To calculate how far a person travels to come to a complete stop in 33 milliseconds at a constant acceleration of 60 g, we will use the following formula .

Where,d = distance travelled

a = acceleration

t = time taken

Given values area = 60 gg (where 1 g = 9.8 m/s^2) = 60 × 9.8 m/s^2 = 588 m/s2t = 33 ms = 33/1000 s = 0.033 s.

Substitute the given values in the formula to find the distance travelled:d = (1/2) × 588 m/s^2 × (0.033 s)^2d = 0.309 m Therefore, the person travels 0.309 meters to come to a complete stop in 33 milliseconds at a constant acceleration of 60 g.

To know more about acceleration visit :

https://brainly.com/question/2303856

#SPJ11

Your mass is 61.4 kg, and the sled s mass is 10.1 kg. You start at rest, and then you jump off the sled, after which the empty sled is traveling at a speed of 5.27 m/s. What will be your speed on the ice after jumping off? O 1.13 m/s 0.87 m/s 0.61 m/s 1.39 m/s Your mass is 72.7 kg, and the sled s mass is 18.1 kg. The sled is moving by itself on the ice at 3.43 m/s. You parachute vertically down onto the sled, and land gently. What is the sled s velocity with you now on it? 0.68 m/s O 0.20 m/s 1.02 m/s 0.85 m/s OOO0

Answers

1. When you jump off the sled, your speed on the ice will be 0.87 m/s.

2. When you parachute onto the sled, the sled's velocity will be 0.68 m/s.

When you jump off the sled, your momentum will be conserved. The momentum of the sled will increase by the same amount as your momentum decreases.

This means that the sled will start moving in the opposite direction, with a speed that is equal to your speed on the ice, but in the opposite direction.

We can calculate your speed on the ice using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (61.4 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (10.1 kg)

v2 is the final velocity of the sled (5.27 m/s)

Plugging in these values, we get:

v = (61.4 kg * 0 m/s + 10.1 kg * 5.27 m/s) / (61.4 kg + 10.1 kg)

= 0.87 m/s

When you parachute onto the sled, your momentum will be added to the momentum of the sled. This will cause the sled to slow down. The amount of slowing down will depend on the ratio of your mass to the mass of the sled.

We can calculate the sled's velocity after you parachute onto it using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (72.7 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (18.1 kg)

v2 is the initial velocity of the sled (3.43 m/s)

Plugging in these values, we get:

v = (72.7 kg * 0 m/s + 18.1 kg * 3.43 m/s) / (72.7 kg + 18.1 kg)

= 0.68 m/s

To learn more about velocity click here: brainly.com/question/30559316

#SPJ11

A parallel-plate capacitor has a plate area of 0.2 m² and a plate separation of 0.1 mm. To obtain an electric field of 2.0 x 10^6 V/m between the plates, calculate the magnitude of the charge on each plate

Answers

The magnitude of the charge on each plate of the parallel-plate capacitor is approximately 4.0 x 10^-5 C.

The electric field between the plates of a parallel-plate capacitor can be calculated using the formula:

E = σ / ε₀

Where:

E is the electric-field,

σ is the surface charge density on the plates, and

ε₀ is the permittivity of free space.

The surface charge density can be defined as:

σ = Q / A

Where:

Q is the charge on each plate, and

A is the area of each plate.

Combining these equations, we can solve for the charge on each plate:

E = Q / (A * ε₀)

Rearranging the equation, we have:

Q = E * A * ε₀

Substituting the given values for the electric field (2.0 x 10^6 V/m), plate area (0.2 m²), and permittivity of free space (ε₀ ≈ 8.85 x 10^-12 C²/N·m²), we find that the magnitude of the charge on each plate is approximately 4.0 x 10^-5 C.

To learn more about capacitor , click here : https://brainly.com/question/31375634

#SPJ11

A 20.0 kg object starts from rest and slides down an inclined plane. The change in its elevation is 3.0 m and its final speed is 6 m/sec. How much energy did the object lose due to friction as it slid down the plane?

Answers

The object lost 228 J of energy due to friction as it slid down the inclined plane.

To find the energy lost due to friction as the object slides down the inclined plane, we need to calculate the initial mechanical energy and the final mechanical energy of the object.

The initial mechanical energy (Ei) is given by the potential energy at the initial height, which is equal to the product of the mass (m), acceleration due to gravity (g), and the initial height (h):

Ei = m * g * h

The final mechanical energy (Ef) is given by the sum of the kinetic energy at the final speed (KEf) and the potential energy at the final height (PEf):

Ef = KEf + PEf

The kinetic energy (KE) is given by the formula:

KE = (1/2) * m * v^2

where m is the mass and v is the velocity.

The potential energy (PE) is given by the formula:

PE = m * g * h

Given:

Mass of the object (m) = 20.0 kg

Change in elevation (h) = 3.0 m

Final speed (v) = 6 m/s

[tex]\\ΔE = Ei - Ef\\ΔE = 588 J - 360 J\\ΔE = 228 J[/tex]

Next, let's calculate the final mechanical energy (Ef):

The energy lost due to friction (ΔE) can be calculated as the difference between the initial mechanical energy and the final mechanical energy:

[tex]ΔE = Ei - Ef\\ΔE = 588 J - 360 J\\ΔE = 228 J[/tex]

Therefore, the object lost 228 J of energy due to friction as it slid down the inclined plane.

Learn more about friction

https://brainly.com/question/28356847

#SPJ11

A conductor of length 100 cm moves at right angles to a uniform magnetic field of flux density 1.5 Wb/m2 with velocity of 50meters/sec.
Calculate the e.m.f. induced in it.
Find also the value of induced e.m.f. when the conductor moves at an angle of 300 to the direction of the field

Answers

A conductor of length 100 cm moves at right angles to a

uniform magnetic

field of flux density 1.5 Wb/m2 with velocity of 50meters/sec, to find the induced emf.


The formula to determine the induced emf in a conductor is E= BVL sin (θ) where B is the magnetic field strength, V is the velocity of the conductor, L is the length of the conductor, and θ is the angle between the velocity and magnetic field vectors.

Let us determine the induced emf using the given

values

in the formula.E= BVL sin (θ)Given, B= 1.5 Wb/m2V= 50m/sL= 100 cm= 1 mθ= 30°= π/6 radTherefore, E= (1.5 Wb/m2) x 50 m/s x 1 m x sin (π/6)= 1.5 x 50 x 0.5= 37.5 VTherefore, the induced emf when the conductor moves at an angle of 300 to the direction of the field is 37.5 V.

to know more about

uniform magnetic

pls visit-

https://brainly.com/question/1594227

#SPJ11

The refractive index of a transparent material can be determined by measuring the critical angle when the solid is in air. If Oc= 41.0° what is the index of refraction of the material? 1.52 You are correct. Your receipt no. is 162-3171 Previous Tries A light ray strikes this material (from air) at an angle of 38.1° with respect to the normal of the surface. Calculate the angle of the reflected ray (in degrees). 3.81x101 You are correct. Previous Tries Your receipt no. is 162-4235 ® Calculate the angle of the refracted ray (in degrees). Submit Answer Incorrect. Tries 2/40 Previous Tries Assume now that the light ray exits the material. It strikes the material-air boundary at an angle of 38.1° with respect to the normal. What is the angle of the refracted ray?

Answers

To determine the angle of the refracted ray Using the values given, we substitute n1 = 1.52, θ1 = 38.1°, and n2 = 1 (since air has a refractive index close to 1) into Snell's law. Solving for θ2, we find that the angle of the refracted ray is approximately 24.8°

When a light ray exits a material and strikes the material-air boundary at an angle of 38.1° with respect to the normal, we can use Snell's law. Snell's law relates the angles of incidence and refraction to the refractive indices of the two media involved.

The refractive index of the material can be calculated using the critical angle, which is the angle of incidence at which the refracted angle becomes 90° (or the angle of refraction becomes 0°). In the given information, the critical angle (Oc) is provided as 41.0°. From this, we can determine the refractive index of the material, which is 1.52.

To find the angle of the refracted ray when the light ray exits the material and strikes the material-air boundary at an angle of 38.1°, we can use Snell's law: n1*sin(θ1) = n2*sin(θ2), where n1 and n2 are the refractive indices of the initial and final media, and θ1 and θ2 are the angles of incidence and refraction, respectively.

Using the values given, we substitute n1 = 1.52, θ1 = 38.1°, and n2 = 1 (since air has a refractive index close to 1) into Snell's law. Solving for θ2, we find that the angle of the refracted ray is approximately 24.8°.

Learn more about Snell's law here:

https://brainly.com/question/8757345

#SPJ11

Other Questions
Did the geography and environment in the americas create cultural differences in pre- Colombian societies A college plans to set up an endowment func that will provide a scholarship of $4,500 at the end of every quarter, in perpetuity. How much should the college invest in the fund, if the fund earns 4.75% compounded quarterly? Does the American electoral system still work essentially as intended by the Constitution's framers? Is it dominated by plutocratic elites from politicians and high-level bureaucrats to leaders of major corporations and powerful special interests to influential journalists, pundits, and technocratic experts? What factors affect who will be nominated to be his or her party's candidate for political office? for who will actually win political office? Of these factors, does the media have a significant role in playing kingmaker? Can you think of any particularly striking examples in which the mainstream media has either made or broken a political candidate? Is the internet having an equalizing and decentralizing effect? The ______ is (are) the MRP input detailing which end items are to be produced, when they are needed, and in what quantities.Group of answer choices Inventory records,Gross requirement,Assembly time chart,Master production schedule,Bill of materials With what angular speed would a 5.0 kg ball with a diameter of 22 cm have to rotate in order for it to acquire an angular momentum of 0.23 kg m/s? What is the value of the expression (-8)^5/3 albinism is a rare autosomal trait in humans. at the oca1 locus, the dominant allele (a) controls normal pigmentation and the recessive allele (a) controls albinism. a normally pigmented man, whose parents are normal, has one albino grandparent. this man marries a woman with the same pedigree. Medication indication is what exactly? Whats the use for or whatinteracts with the meds The text maintains that it is often advisable for one songwriter to collaborate with another. in that case, the best way to structure the relationship is what? group of answer choices Discuss using diagrams how porosity and particle size affect a well's ability to provide enough quantities of water. How do early personal experiences influence the positive ornegative ethnic identity of persons of color? Can you think of abest example? Provide a scholarly reference to support yourresponse. Attitudes are often resistant to change, even when evidence suggests they perhaps should not be. Does this make sense from a psychological perspective? Based on the social psychological literature, what are some of the reasons for why persuasion commonly fails? QUESTION 3 [20] 3.1. Using a diagram, explain why semiconductors are different from insulators.[7] 3.2. Explain why carbon in the diamod structure exhibits high resistivity typical of insulators. [6] Critically discuss how young people could be negatively (1X4) (4) impacted upon if they failed to adhere to the limitations to the right to freedom of expression when they use social media. Halley's comet, which passes around the Sun every 76 years, has ^1an elliptical orbit. When closest to the Sun (perihelion) it is at a distance of 8.823 x 100 m and moves with a speed of 54.6 km/s. When farthest from the Sun (aphelion) it is at a distance of 6.152 x 10^12 m and moves with a speed of 783 m/s. Find the angular momentum of Halley's comet at perihelion. (Take the mass of Halley's comet to be 9.8 x 10^14 kg.) Express your answer using two significant figures. Find the angular momentum of Halley's comet at aphellon Express your answer using two significant figures. mere are four general principles in Motivational interviewing please state each and describe in your own words how they assist clients to gain awareness of thoughts and feelings that are the foundation for their behaviors Question 1. Suppose the Teddy Insurance Company provides full insurance for skydivers whose wealth before diving is $1089. An accident will leave divers with a wealth of $196. The company divides the divers into two classes, safe (probability of an accident = 0.22) and unsafe (probability of an accident = 0.69). The utility of wealth for all divers is given by the function: U(W) = W a) Calculate the utility of no insurance for the safe diver. [3 marks] b) Calculate the utility of no insurance for the unsafe diver. [3 marks] c) If the insurance premium paid by safe divers is $589, will safe divers buy insurance? [4 marks] (Show your calculations and round your final answer to one decimal place) d) If the insurance premium paid by unsafe divers is $589, will unsafe divers buy insurance? [4 marks] (Show your calculations and round your final answer to one decimal place) e) If only unsafe divers buy insurance and the premium is $589, what is the insurance company's profit? [3 marks] 7. A 0.5 kg soccer ball is kicked at 10 m/s. A goalie catches the ball and brings it to rest in 0.25 seconds. Whatis the force exerted on the ball by the goalie? (Hint: Apply two formulas to solve this problem)A. 5 NB. 10 NC. 20 ND. 25 N Resolving Labor Disputes Main ldea: When organized labor negotiates wath managentent, o soutes are bound to nappen. Both sloes can use collective bargaifing to minimize such disputes. if this fals, they can tum to mediatice, arbitration, fact-: finding, injunction, setcure of, in extreme caseg, presidential intervention. 1. Which two parties take part in collective bargaining? 2. What is the diaference between mediation and arbitrotion? 3. What does n fact-finder do? 4. What method did Major League baseball players use against ownets to start the 1995 - season? 5. Who takes over business operations in the case of a selaure? 6. Describe two examples of presidential intervention. As a manager, you will have many instances where you make decisions about who to hire and who not to hire. The Scenario You have an opening for a team leader so you need to hire someone. You are under pressure as there are three rush jobs that need to get done right away. You also know that you need to be concerned about keeping the team motivated and ready to do the work. You have interviewed three people who applied for the job. 1. Applicant 1 just finished an internship and is also the nephew of the Director of Marketing. 2. Applicant 2 is very experienced, but has a very poor attitude. 3. Applicant 3 lacks experience but seems especially eager for the job. You think this person would be a good worker, but you are not sure. The Dilemma Keeping in mind your concerns about the rush jobs and employee morale, as the manager, What would you do? The Guidelines Your analysis of this dilemma should consist of 4 paragraphs. Paragraph 1: Set the Context and Preview Give a clear explanation of your understanding of the situation. Think about how you would solve this problem and share two potential solutions in the last sentence of the first paragraph. Paragraph 2: Analyze the first potential solution Fully explain the first potential solution. Identify the benefits of this potential solution. Identify the drawbacks of this potential solution. Paragraph 3: Analyze the second potential solution Fully explain the second potential solution. Identify the benefits of this potential solution. Identify the drawbacks of this potential solution.Paragraph 4: Recommend a Course of Action Identify the potential solution you would use. State why you would use this potential solution. State what actions you would undertake to eliminate any negative impact.