Answer:
Thermodynamics is a branch of physics which deals with the energy and work of a system. It was born in the 19th century as scientists were first discovering how to build and operate steam engines. Thermodynamics deals only with the large scale response of a system which we can observe and measure in experiment.
Answer:
thermodynamics is the branch of physics which deals with the study of heat and other forms energy and their mutual relationship(relation ship between them)
Explanation:
i hope this will help you :)
Which jovian planet should have the most extreme seasonal changes? a. Saturn b. Neptune c. Jupiter d. Uranus
Answer:
D). Uranus.
Explanation:
Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.
As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, option D is the correct answer.
How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density
The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object
When a certain capacitor carries charge of magnitude Q on each of its plates, it stores energy Ep. In order to store twice as much energy, how much charge should it have on its plates
2Q
Explanation:
When a capacitor carries some certain charge, the energy stored in the capacitor is its electric potential energy E. The magnitude of this potential energy is given by;
E = [tex]\frac{1}{2}qV[/tex] ------------(i)
Where;
q = charge between the plates of the capacitor
V = potential difference between the plates of the capacitor
From the question;
q = Q
E = Ep
Therefore, equation (i) becomes;
Ep = [tex]\frac{1}{2} QV[/tex] ----------------(ii)
Make V subject of the formula in equation (ii)
V = [tex]\frac{2E_{p}}{Q}[/tex]
Now, when the energy is doubled i.e E = 2Ep, equation (i) becomes;
2Ep = [tex]\frac{1}{2}qV[/tex]
Substitute the value of V into the equation above;
2Ep = [tex]\frac{1}{2}[/tex]([tex]q *\frac{2E_{p}}{Q}[/tex])
Solve for q;
[tex]2E_{p}[/tex] = [tex]\frac{2qE_p}{2Q}[/tex]
[tex]2E_{p}[/tex] = [tex]\frac{qE_p}{Q}[/tex]
[tex]q = 2Q[/tex]
Therefore, the charge, when the energy stored is twice the originally stored energy, is twice the original charge. i.e 2Q
A current carrying wire is oriented along the y axis It passes through a region 0.45 m long in which there is a magnetic field of 6.1 T in the z direction The wire experiences a force of 15.1 N in the x direction.1. What is the magnitude of the conventional current inthe wire?I = A2. What is the direction of the conventional current in thewire?-y+y
Answer:
The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.
Explanation:
- To find the direction of the conventional current in the wire you use the following formula:
[tex]\vec{F}=i\vec{l}\ X\ \vec{B}[/tex] (1)
i: current in the wire = ?
F: magnitude of the magnetic force on the wire = 15.1N
B: magnitude of the magnetic field = 6.1T
l: length of the wire that is affected by the magnetic field = 0.45m
The direction of the magnetic force is in the x direction (+^i) and the direction of the magnetic field is in the +z direction (+^k).
The direction of the current must be in the +y direction (+^j). In fact, you have:
^j X ^k = ^i
The current and the magnetic field are perpendicular between them, then, you solve for i in the equation (1):
[tex]F=ilBsin90\°\\\\i=\frac{F}{lB}=\frac{15.1N}{(0.45m)(6.1T)}=5.5A[/tex]
The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.
An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?
Answer:
a
[tex]\theta = 0.0022 rad[/tex]
b
[tex]I = 0.000304 I_o[/tex]
Explanation:
From the question we are told that
The wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]
The distance of the slit separation is [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]
Generally the condition for two slit interference is
[tex]dsin \theta = m \lambda[/tex]
Where m is the order which is given from the question as m = 2
=> [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]
substituting values
[tex]\theta = 0.0022 rad[/tex]
Now on the second question
The distance of separation of the slit is
[tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]
The intensity at the the angular position in part "a" is mathematically evaluated as
[tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]
Where [tex]\beta[/tex] is mathematically evaluated as
[tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]
substituting values
[tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]
[tex]\beta = 0.06581[/tex]
So the intensity is
[tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]
[tex]I = 0.000304 I_o[/tex]
If 2 balls had the same volume but ball a has twice as much mass as babil which one will have the greater density
How much work will it take to lift a 2-kg pair of hiking boots 2 meters off the
ground and onto a shelf in your closet?
O A. 2.45 J
OB. 4J
C. 39.2 J
D. 20 J
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
Answer:39.2J
Explanation: I just answered this question and this was the correct answer. 4J is the wrong answer.
Two people play tug of war. The 100-kg person on the left pulls with 1,000 N, and the 70-kg person on the right pulls with 830 N. Assume that neither person releases their grip on the rope with either hand at any time, assume that the rope is always taut, and assume that the rope does not stretch. What is the magnitude of the tension in the rope in Newtons
Answer:
The tension on the rope is T = 900 N
Explanation:
From the question we are told that
The mass of the person on the left is [tex]m_l = 100 \ kg[/tex]
The force of the person on the left is [tex]F_l = 1000 \ N[/tex]
The mass of the person on the right is [tex]m_r = 70 \ kg[/tex]
The force of the person on the right is [tex]F_r = 830 \ N[/tex]
Generally the net force is mathematically represented as
[tex]F_{Net} = F_l - F_r[/tex]
substituting values
[tex]F_{Net} = 1000-830[/tex]
[tex]F_{Net} = 170 \ N[/tex]
Now the acceleration net acceleration of the rope is mathematically evaluated as
[tex]a = \frac{F_{net}}{m_I + m_r }[/tex]
substituting values
[tex]a = \frac{170}{100 + 70 }[/tex]
[tex]a = 1 \ m/s ^2[/tex]
The force [tex]m_i * a[/tex]) of the person on the left that caused the rope to accelerate by a is mathematically represented as
[tex]m_l * a = F_r -T[/tex]
Where T is the tension on the rope
substituting values
[tex]100 * 1 = 1000 - T[/tex]
=> T = 900 N
A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.
Answer:
8.7 m/s^2
82.15°
Explanation:
Given:-
- The initial speed of the car, vi = 25 m/s
- The radius of track, r = 129 m
- Car makes a circular " quarter turn "
- The constant tangential acceleration, at = 1.2 m/s^2
Solution:-
- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:
[tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]
- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:
at = r*α
α = ( 1.2 / 129 )
α = 0.00930 rad/s^2
- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).
- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:
[tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]
- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:
[tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]
- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:
[tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]
- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:
[tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]
- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:
[tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex]
Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .
An inquisitive physics student and mountain climber climbs a 47.0-m-high cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.00 s apart, and observes that they cause a single splash. The first stone has an initial speed of 2.12 m/s.
(a) How long after release of the first stone do the two stones hit the water?
(b) What initial velocity must the second stone have if the two stones are to hit the water simultaneously?
magnitude =
(c) What is the speed of each stone at the instant the two stones hit the water?
first stone =
second stone =
Answer:
a) Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds, b) The initial velocity of the second stone is -16.038 meters per second, c) The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.
Explanation:
a) The time after the release after the release of the first stone can be get from the following kinematic formula for the first rock:
[tex]y_{1} = y_{1,o} + v_{1,o} \cdot t +\frac{1}{2}\cdot g \cdot t^{2}[/tex]
Where:
[tex]y_{1}[/tex] - Final height of the first stone, measured in meters.
[tex]y_{1,o}[/tex] - Initial height of the first stone, measured in meters.
[tex]v_{1,o}[/tex] - Initial speed of the first stone, measured in meters per second.
[tex]t[/tex] - Time, measured in seconds.
[tex]g[/tex] - Gravity constant, measured in meters per square second.
Given that [tex]y_{1,o} = 47\,m[/tex], [tex]y_{1} = 0\,m[/tex], [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following second-order polynomial is built:
[tex]-4.984\cdot t^{2} - 2.12\cdot t + 47 = 0[/tex]
Roots of the polynomial are, respectively:
[tex]t_{1} \approx 2.866\,s[/tex] and [tex]t_{2}\approx -3.291\,s[/tex]
Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds.
b) As the second stone is thrown a second later than first one, its height is represented by the following kinematic expression:
[tex]y_{2} = y_{2,o} + v_{2,o}\cdot (t-t_{o}) + \frac{1}{2}\cdot g \cdot (t-t_{o})^{2}[/tex]
[tex]y_{2}[/tex] - Final height of the second stone, measured in meters.
[tex]y_{2,o}[/tex] - Initial height of the second stone, measured in meters.
[tex]v_{2,o}[/tex] - Initial speed of the second stone, measured in meters per second.
[tex]t[/tex] - Time, measured in seconds.
[tex]t_{o}[/tex] - Initial absolute time, measured in seconds.
[tex]g[/tex] - Gravity constant, measured in meters per square second.
Given that [tex]y_{2,o} = 47\,m[/tex], [tex]y_{2} = 0\,m[/tex], [tex]t_{o} = 1\,s[/tex], [tex]t = 2.866\,s[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following expression is constructed and the initial speed of the second stone is:
[tex]1.866\cdot v_{2,o}+29.926 = 0[/tex]
[tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex]
The initial velocity of the second stone is -16.038 meters per second.
c) The final speed of each stone is determined by the following expressions:
First stone
[tex]v_{1} = v_{1,o} + g \cdot t[/tex]
Second stone
[tex]v_{2} = v_{2,o} + g\cdot (t-t_{o})[/tex]
Where:
[tex]v_{1,o}, v_{1}[/tex] - Initial and final velocities of the first stone, measured in meters per second.
[tex]v_{2,o}, v_{2}[/tex] - Initial and final velocities of the second stone, measured in meters per second.
If [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex], the final speeds of both stones are:
First stone
[tex]v_{1} = -2.12\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (2.866\,s)[/tex]
[tex]v_{1} = -30.227\,\frac{m}{s}[/tex]
Second stone
[tex]v_{2} = -16.038\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (2.866\,s-1\,s)[/tex]
[tex]v_{2} = -34.338\,\frac{m}{s}[/tex]
The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.
1) A net force of 75.5 N is applied horizontally to slide a 225 kg crate across the floor.
a. Compute the acceleration of the crate?
Answer:
The acceleration of the crate is [tex]0.3356\,\frac{m}{s^2}[/tex]
Explanation:
Recall the formula that relates force,mass and acceleration from newton's second law;
[tex]F=m\,a[/tex]
Then in our case, we know the force applied and we know the mass of the crate, so we can solve for the acceleration as shown below:
[tex]F=m\,a\\75.5\,N=225\,\,kg\,\,a\\a=\frac{75.5}{225} \,\frac{m}{s^2} \\a=0.3356\,\,\frac{m}{s^2}[/tex]
Four point charges have the same magnitude of 2.4×10^−12C and are fixed to the corners of a square that is 4.0 cm on a side. Three of the charges are positive and one is negative. Determine the magnitude of the net electric field that exists at the center of the square.
Answer:
7.2N/C
Explanation:
Pls see attached file
If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will Group of answer choices
Answer:
P' = 4 P
Therefore, the power dissipated by the circuit will becomes four times of its initial value.
Explanation:
The power dissipation by an electrical circuit is given by the following formula:
Power Dissipation = (Voltage)(Current)
P = VI
but, from Ohm's Law, we know that:
Voltage = (Current)(Resistance)
V = IR
Substituting this in formula of power:
P = (IR)(I)
P = I²R ---------------- equation 1
Now, if we double the current , then the power dissipated by that circuit will be:
P' = I'²R
where,
I' = 2 I
Therefore,
P' = (2 I)²R
P' = 4 I²R
using equation 1
P' = 4 P
Therefore, the power dissipated by the circuit will becomes four times of its initial value.
Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.
Answer:
1.363×10^15 seconds
Explanation:
The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.
To calculate the time taken from Kepler's third Law :
T^2 = ( 4π^2/GMe ) r^3
Where Me is the mass of the earth
r is the average distance travel
G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2
π = 3.14
Me = mass of earth = 5.972×10^24kg
r =( r minimum + r maximum)/2 ......1
rmin = 6590km
rmax = 385000km
From equation 1
r = (6590+385000)/2
r = 391590/2
r = 195795km
From T^2 = ( 4π^2/GMe ) r^3
T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3
= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15
= 39.4384/ 3.983×10^14 ) × 7.5059×10^15
= (9.901×10^14) × 7.5059×10^15
T^2 = 7.4321× 10^30
T =√7.4321× 10^30
T = 2.726×10^15 seconds
The time for one way trip from Earth to the moon is :
∆T = T/2
= 2.726×10^15 /2
= 1.363×10^15 secs
Light in vacuum is incident on the surface of a glass slab. In the vacuum the beam makes an angle of 38.0° with the normal to the surface, while in the glass it makes an angle of 26.0° with the normal. What is the index of refraction of the glass?
Answer:
n_glass = 1.404
Explanation:
In order to calculate the index of refraction of the light you use the Snell's law, which is given by the following formula:
[tex]n_1sin\theta_1=n_2sin\theta_2[/tex] (1)
n1: index of refraction of vacuum = 1.00
θ1: angle of the incident light respect to normal of the surface = 38.0°
n2: index of refraction of glass = ?
θ2: angle of the refracted light in the glass respect to normal = 26.0°
You solve the equation (1) for n2 and replace the values of all parameters:
[tex]n_2=n_1\frac{sin\theta_1}{sin\theta_2}=(1.00)\frac{sin(38.0\°)}{sin(26.0\°)}\\\\n_2=1.404[/tex]
The index of refraction of the glass is 1.404
A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?
Explanation:
KE = q
½ mv² = mCΔT
ΔT = v² / (2C)
ΔT = (200 m/s)² / (2 × 236 J/kg/°C)
ΔT = 84.7°C
This question involves the concepts of the law of conservation of energy.
The temperature change of the bullet is "84.38°C".
What is the Law of Conservation of Energy?According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.
[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]
where,
ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/sTherefore,
[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]
ΔT = 84.38°C
Learn more about the law of conservation of energy here:
https://brainly.com/question/20971995
#SPJ2
A parallel-plate capacitor is charged by connecting it to a battery. If the battery is disconnected and then the separation between the plates is increased, what will happen to the charge on the capacitor and the electric potential across it
Answer:
The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)
Explanation:
The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other. [tex]Q[/tex], the amount of charge stored in this capacitor, will stay the same.
The formula [tex]\displaystyle Q = C\, V[/tex] relates the electric potential across a capacitor to:
[tex]Q[/tex], the charge stored in the capacitor, and[tex]C[/tex], the capacitance of this capacitor.While [tex]Q[/tex] stays the same, moving the two plates apart could affect the potential [tex]V[/tex] by changing the capacitance [tex]C[/tex] of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:
[tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex],
where
[tex]\epsilon[/tex] is the permittivity of the material between the two plates.[tex]A[/tex] is the area of each of the two plates.[tex]d[/tex] is the distance between the two plates.Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of [tex]\epsilon[/tex]. Neither will that change the area of the two plates.
However, as [tex]d[/tex] (the distance between the two plates) increases, the value of [tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex] will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.
On the other hand, the formula [tex]\displaystyle Q = C\, V[/tex] can be rewritten as:
[tex]V = \displaystyle \frac{Q}{C}[/tex].
The value of [tex]Q[/tex] (charge stored in this capacitor) stays the same. As the value of [tex]C[/tex] becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.
The first Leyden jar was probably discovered by a German clerk named E. Georg von Kleist. Because von Kleist was not a scientist and did not keep good records, the credit for the discovery of the Leyden jar usually goes to physicist Pieter Musschenbroek from Leyden, Holland. Musschenbroek accidentally discovered the Leyden jar when he tried to charge a jar of water and shocked himself by touching the wire on the inside of the jar while holding the jar on the outside. He said that the shock was no ordinary shock and his body shook violently as though he had been hit by lightning. The energy from the jar that passed through his body was probably around 1 J, and his jar probably had a capacitance of about 1 nF.A) Estimate the charge that passed through Musschenbroek's body.
B) What was the potential difference between the inside and outside of the Leyden jar before Musschenbroek discharged it?
Answer:
a) q = 4.47 10⁻⁵ C
b) ΔV = 4.47 10⁴ V
Explanation:
A Leyden bottle works as a condenser that accumulates electrical charge, so we can use the formula of the energy stored in a capacitor
U = Q² / 2C
Q = √ (2UC)
let's reduce the magnitudes to the SI system
c = 1 nF = 1 10⁻⁹ F
let's calculate
q = √ (2 1 10⁻⁹-9)
q = 0.447 10⁻⁴ C
q = 4.47 10⁻⁵ C
b) for the potential difference we use
C = Q / ΔV
ΔV = Q / C
ΔV = 4.47 10⁻⁵ / 1 10⁻⁹
ΔV = 4.47 10⁴ V
A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?
Answer:
0.087976 Nm
Explanation:
The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;
τ = NIAB sinθ --------- (i)
Where;
N = number of turns of the loop
I = current in the loop
A = area of each of the turns
B = magnetic field
θ = angle the loop makes with the magnetic field
From the question;
N = 200
I = 4.0A
B = 0.70T
θ = 30°
A = π d² / 4 [d = diameter of the coil = 2.0cm = 0.02m]
A = π x 0.02² / 4 = 0.0003142m² [taking π = 3.142]
Substitute these values into equation (i) as follows;
τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°
τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5
τ = 200 x 4.0 x 0.0003142 x 0.70
τ = 0.087976 Nm
Therefore, the torque on the coil is 0.087976 Nm
A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart?
Answer:
Yes the monkey will get hit and it will not avoid the dart.
Explanation:
Yes, the monkey will be hit anyway because the dart will follow a hyperbolic path and and will thus fall below the branches, so if the monkey jumps it will be hit.
No, the monkey will not avoid the dart because dart velocity doesn't matter. The speed of the bullet doesn’t even matter in this case because a faster bullet will hit the monkey at a higher height and while a slower bullet will simply hit the monkey closer to the ground.
The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)
Answer:
Increase of volume (F) = 8.01%
Explanation:
Given:
Density of fish = 1,080 kg/m³
Density of water = 1,000 kg/m³
density of air = 1.28 kg/m³
Find:
Increase of volume (F)
Computation:
1,080 kg/m³ + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³
1,080 + 1.28 F =1,000 F + 1,000
80 = 998.72 F
F = 0.0801 (Approx)
F = 8.01% (Approx)
a certain volume of dry air at NTP is allowed to expand five times of it original volume under adiabatic condition.calculate the final pressure.(air=1.4)
Answer:
Final pressure 0.105atm
Explanation:
Let V1 represent the initial volume of dry air at NTP.
under adiabatic condition: no heat is lost or gained by the system. This does not implies that the constant temperature throughout the system , but rather that no heat gained or loss by the system.
Adiabatic expansion:
[tex]\frac{T_1}{T_2} =(\frac{V_1}{V_2} )^{\gamma -1}[/tex]
273/T2=(5V1/V1)^(1.4−1)
273/T2=5^0.4
Final temperature T2=143.41 K
Also
P1/P2=(V2/V1)^γ
1/P2=(5V1/V1)^1.4
Final pressure P2=0.105atm
5) What is the weight of a body in earth. if its weight is 5Newton
in moon?
Answer:
8.167
Explanation:
A particle with charge q is to be brought from far away to a point near an electric dipole. Net nonzero work is done if the final position of the particle is on:__________
A) any point on the line through the charges of the dipole, excluding the midpoint between the two charges.
B) any point on a line that is a perpendicular bisector to the line that separates the two charges.
C) a line that makes an angle of 30 ∘ with the dipole moment.
D) a line that makes an angle of 45 ∘with the dipole moment.
Answer:
Net nonzero work is done if the final position of the particle is on options A, C and D
Explanation:
non zero work is done if following will be the final position of the charges :
A) Any point on the line through the charges of the dipole , excluding the midpoint between the two charges.
C) A line that makes an angle 30° with the dipole moment.
D) A line that makes an angle 45° with the dipole moment.
In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.
Answer:
Red light
Explanation:
This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)
According to the model in which active galactic nuclei are powered by supermassive black holes, the high luminosity of an active galactic nucleus primarily consists of
Answer:
the high luminosity of an active galactic nucleus primarily consists of light emitted by hot gas in an accretion disk that swirls around the black hole
An experiment is set up to test the angular resolution of an optical device when red light (wavelength ????r ) shines on an aperture of diameter D . Which aperture diameter gives the best resolution? D=(1/2)????r D=????r D=2????r
Explanation:
As per Rayleigh criterion, the angular resolution is given as follows:
[tex]\theta=\frac{1.22 \lambda}{D}[/tex]
From this expression larger the size of aperture, smaller will be the value of angular resolution and hence, better will be the device i.e. precision for distinguishing two points at very high angular difference is higher.
at the temperature at which we live, earth's core is solid or liquid?
Explanation:
The Earth has a solid inner core
Consider the Earth and the Moon as a two-particle system.
Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"
sorry but I don't understand
Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z
The question is not complete, the value of z is not given.
Assuming the value of z = 4.0m
Answer:
the magnitude of the electric field at any point having z(4.0 m) =
E = 5.65 N/C
Explanation:
given
σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²
z = 4.0 m
Recall
E =F/q (coulumb's law)
E = kQ/r²
σ = Q/A
A = 4πr²
∴ The electric field at point z =
E = σ/zε₀
E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)
E = 5.65 N/C