What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 18.0 m/s in the same direction

Answers

Answer 1
Question:

What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 18.0 m/s in the same direction? Assume the deer remains on the car.

Answer:

28.29m/s

Explanation:

In this situation, linear momentum is conserved. And since the deer remains on the car after collision, the linear momentum is given as;

([tex]m_{C}[/tex] x [tex]u_{C}[/tex]) + ([tex]m_{D}[/tex] x [tex]u_{D}[/tex]) = ([tex]m_{C}[/tex] + [tex]m_{D}[/tex]) v            -----------------(i)

Where;

[tex]m_{C}[/tex] = mass of car

[tex]u_{C}[/tex] = initial velocity of car before collision

[tex]m_{D}[/tex] = mass of deer

[tex]u_{D}[/tex] = initial velocity of the deer before collision

v = common velocity with which the car and the deer move after collision

From the question;

[tex]m_{C}[/tex] = 900kg

[tex]u_{C}[/tex] = +30.0m/s    (direction of the motion of the car taken positive)

[tex]m_{D}[/tex] = 150kg

[tex]u_{D}[/tex] = +18.0m/s    (relative to the direction of the car, the velocity of the deer is also positive )

Substitute these values into equation (i) as follows;

(900 x 30.0) + (150 x 18.0) = (900 + 150)v

27000 + 2700 = 1050v

29700 = 1050v

v = [tex]\frac{29700}{1050}[/tex]

v = 28.29m/s

Therefore, the velocity of the car after hitting the deer is 28.29m/s. This is also the velocity of the deer after being hit by the car.


Related Questions

A d'Arsonal meter with an internal resistance of 1 kohm requires 10 mA to produce full-scale deflection. Calculate thew value of a series

Answers

Question:

A d’Arsonval meter with an internal resistance of 1 kΩ requires 10 mA to produce full-scale deflection. Calculate the value of a series resistance needed to measure 50 V of full scale.

Answer:

4kΩ

Explanation:

Given;

internal resistance, r = 1kΩ

current, I = 10mA = 0.01A

Voltage of full scale, V = 50V

Since there is full scale voltage of 50V, then the combined or total resistance (R) of the circuit is given as follows;

From Ohm's law

V = IR

R = [tex]\frac{V}{I}[/tex]                 [substitute the values of V and I]

R = [tex]\frac{50}{0.01}[/tex]

R = 5000Ω = 5kΩ

The combined resistance (R) is actually the total resistance of the series arrangement of the series resistance([tex]R_{S}[/tex]) and the internal resistance (r) in the circuit. i.e

R = [tex]R_{S}[/tex] + r

[tex]R_{S}[/tex] = R - r                 [Substitute the values of R and r]

[tex]R_{S}[/tex] = 5kΩ - 1kΩ

[tex]R_{S}[/tex] = 4kΩ

Therefore the series resistance is 4kΩ

The Huka Falls on the Waikato River is one of New Zealand's most visited natural tourist attractions. On average, the river has a flow rate of about 300,000 L/s. At the gorge, the river narrows to 20-m wide and averages 20-m deep.
(a) What is the average speed of the river in the gorge?
(b) What is the average speed of the water in the river downstream of the falls when it widens to 60 m and its depth increases to an average of 40 m?

Answers

Answer:

(a) V = 0.75 m/s

(b) V = 0.125 m/s

Explanation:

The speed of the flow of the river can be given by following formula:

V = Q/A

V = Q/w d

where,

V = Speed of Flow of River

Q = Volume Flow Rate of River

w = width of river

d = depth of river

A = Area of Cross-Section of River = w d

(a)

Here,

Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s

w = 20 m

d = 20 m

Therefore,

V = (300 m³/s)/(20 m)(20 m)

V = 0.75 m/s

(b)

Here,

Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s

w = 60 m

d = 40 m

Therefore,

V = (300 m³/s)/(60 m)(40 m)

V = 0.125 m/s

In a ballistic pendulum experiment, a small marble is fired into a cup attached to the end of a pendulum. If the mass of the marble is 0.0215 kg and the mass of the pendulum is 0.250 kg, how high h will the pendulum swing if the marble has an initial speed of 5.15 m/s? Assume that the mass of the pendulum is concentrated at its end so that linear momentum is conserved during this collision.

Answers

Answer:

h = 8.48*10^-3m

Explanation:

In order to calculate the height reached by the pendulum with the marble, you first take into account the momentum conservation law, to calculate the speed of both pendulum and marble just after the collision.

The total momentum of the system before the collision is equal to the total momentum after:

[tex]m_1v_1+m_2v_2=(m_1+m_2)v[/tex]        (1)

Here you used the fact that the pendulum has its total mass concentrated at the end of the pendulum.

m1: mass of the marble = 0.0215kg

m2: mass of the pendulum concentrated at its end = 0.250kg

v1: horizontal speed of the arble before the collision = 5.15m/s

v2: horizontal speed of the pendulum before the collision = 0m/s

v: horizontal speed of both marble and pendulum after the collision = ?

You solve the equation (1) for v, and replace the values of the other parameters:

[tex]v=\frac{m_1v_1+m_2v_2}{m_1+m_2}\\\\v=\frac{(0.0215kg)(5.15m/s)+(0.250kg)(0m/s)}{0.0215kg+0.250kg}=0.40\frac{m}{s}[/tex]

Next, you use the energy conservation law. In this case the kinetic energy of both marble and pendulum (just after the collision) is equal to the potential energy of the system when both marble and pendulum reache a height h:

[tex]U=K\\\\(m_1+m_2)gh=\frac{1}{2}(m_1+m_2)v^2\\\\h=\frac{v^2}{2g}[/tex]

v = 0.40m/s

g: gravitational acceleration = 9,8m/s^2

[tex]h=\frac{(0.40m/s)^2}{2(9.8m/s^2)}=8.48*10^{-3}m[/tex]

Then, the height reached by marble and pendulum is 8.48*10^-3m

Which of the following biotic organisms makes its own energy from inorganic substances?
producers
consumers
decomposers
minerals

Answers

Answer:

producers make its own energy frominorganic substances.

The resonance tube used in this experiment produced only one resonance tone. What length of tube would be required to produce a second tone under the same experimental conditions? Explain your answer.

Answers

Answer:

the length that would produce a sound tone under the same experimental contditions must be increased by  Δl = [tex]\frac{v}{2f}[/tex]

Explanation:

Recall

V = f ×λ

where λ is ⁴/₃l₂ for second resonance

f = [tex]\frac{3v}{4l_{2} }[/tex]

l₂ = [tex]\frac{3v}{4f}[/tex]

where λ is 4l₁ for 1st resonance

f = [tex]\frac{v}{4l_{1} }[/tex]

l₁ = [tex]\frac{v}{4f}[/tex]

∴ Δl = l₂ - l₁ =  [tex]\frac{3v}{4f}[/tex] ⁻  [tex]\frac{v}{4f}[/tex]

Δl=  [tex]\frac{2v}{4f}[/tex]

Δl = [tex]\frac{v}{2f}[/tex]

Therefore, the length should increase by [tex]\frac{v}{2f}[/tex]

A block is attached to a horizontal spring and it slides back and forth in simple harmonic motion on a frictionless horizontal surface. At one extreme end of the oscillation cycle, where the block comes to a momentary halt before reversing the direction of its motion, another block is placed on top of the first block without changing its zero velocity. The simple harmonic motion then continues. What happens to the amplitude and the angular frequency of the ensuing motion of the two-block system

Answers

Answer:

A = A₀ ,   w = w₀/√2

Explanation:

This is a problem that we must solve with Newton's second law. They indicate that at the end of the initial movement where the speed is zero, add a mass to the block, we assume that it has the same mass, therefore the total mass is m_total = 2 m. Let's write Newton's second law at this point

                   [tex]F_{e}[/tex] = m_total a

the elastic force is

                   F_{e} = - k x

acceleration is

                   a = d²x / dt²

we substitute

                   - k x = m_total   d²x / dt²

                     d²x / dt² + (k / m_total) x = 0

we substitute

                     d²x / dt² + (k /2m) x = 0

the solution to this differential equation is

                    x = A cos (wt + Ф)

where

                  w = √ (k / 2m)

to find the constant Ф we use the velocity

                    v = dx / dt = - Aw sin (wt + Ф)

                   

At the most extreme point and when the new movement begins (t = 0) they indicate that v = 0

                   0 = - A w sin Ф

for this expression to be zero the sine must be zero therefore Ф = 0

when replacing

                  x = A cos (wt)

                  w = 1 /√2  √ (k / m)

if we want to relate to the initial movement (before placing the block)

                 w₀ = √ (k / m)

                 w = w₀ /√ 2

The amplitude of the movement is the distance from the equilibrium point to where the movement begins, in this case it is the same as in the initial movement

                  A = A₀

the subscript is used to refer to the oscillations before placing the second block

we substitute to have the final equation

                 x = A₀ cos (w₀ t /√2)

                     

                 A = A₀

                 w = w₀/√2

What is meant civilized?

Answers

Answer:

at an advanced stage of social and cultural development. "a civilized society"

Explanation:

polite and well-mannered "I went to talk to them and we had a very civilized conversation" hope this helps you :)

To prevent damage to floors (and to increase friction) a crutch will often have a rubber tip attached to its end. If the end of the crutch is a circle of radius 0.95 cm without the tip, and the tip is a circle of radius 2.0cm, by what factor does the tip reduce the pressure exerted by the crutch

Answers

Answer:

By a factor of about 0.23

Explanation:

Pressure is force over an area: P=F/A

Let's call the pressure without the tip P₁ and the pressure with the rubber piece P₂.

-P₁ = F/A₁= F/(πr₁²)=F/(π0.95²)

-P₂=F/A₂=F/(πr₂²)=F/(π2²)

When they ask "by what factor" it signals that we should find a ratio between the two pressures. To do this, let's divide P₁ by P₂ (I'm going to mathematical step here):

P₁/P₂=[F/(π0.95²)]x[(π2²)/F]= 2²/0.95² = 4/0.9025

So with that we can say:

P₁=(4/0.9025)P₂=4.4P₂   or

P₂=(0.9025/4)P₁=0.23P₁

What this means is that the rubber tip reduced the pressure by almost one quarter, 0.25, of what it would have been without it. Note that because we took a ratio between the two pressures that the units reduce; meaning the ratio is unitless.

By a factor of about 0.23 the tip reduces the pressure exerted by the crutch.

Pressure

Friction exists as the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There exist several types of friction: Dry friction is a force that disagrees with the relative lateral motion of two solid surfaces in contact.

Pressure exists as force over an area: P=F/A

Let's name the pressure without the tip P₁ and the pressure with the rubber piece P₂.

-P₁ = F/A₁= F/(πr₁²)=F/(π0.95²)

-P₂=F/A₂=F/(πr₂²)=F/(π2²)

let's divide P₁ by P₂

P₁/P₂=[F/(π0.95²)]x[(π2²)/F]= 2²/0.95² = 4/0.9025

So with that, we can say:

P₁=(4/0.9025)P₂=4.4P₂ or

P₂=(0.9025/4)P₁=0.23P₁

Hence, By a factor of about 0.23 the tip reduces the pressure exerted by the crutch,

To learn more about Pressure refer to:

https://brainly.com/question/912155

#SPJ2

A hollow conducting spherical shell has radii of 0.80 m and 1.20 m, The radial component of the electric field at a point that is 0.60 m from the center is closest to

Answers

Complete Question

The complete question is  shown on the first uploaded image  

 

Answer:

The electric field at that point is  [tex]E = 7500 \ N/C[/tex]

Explanation:

From the question we are told that  

       The  radius of the inner circle is [tex]r_i = 0.80 \ m[/tex]

        The  radius of the outer circle is  [tex]r_o = 1.20 \ m[/tex]

       The  charge on the spherical shell [tex]q_n = -500nC = -500*10^{-9} \ C[/tex]

      The magnitude of the point charge at the center is  [tex]q_c = + 300 nC = + 300 * 10^{-9} \ C[/tex]

        The  position we are considering is  x =  0.60 m  from the center

Generally  the  electric field  at the distance x =  0.60 m  from the center  is mathematically represented as

                 [tex]E = \frac{k * q_c }{x^2}[/tex]

substituting values  

                  [tex]E = \frac{k * q_c }{x^2}[/tex]

where  k is  the coulomb constant with value [tex]k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}.[/tex]

     substituting values

                  [tex]E = \frac{9*10^9 * 300 *10^{-9}}{0.6^2}[/tex]

                 [tex]E = 7500 \ N/C[/tex]

Bromine, a liquid at room temperature, has a boiling point

Answers

Yes it does !  The so-called "boiling point" is the temperature at which Bromine liquid can change state and become Bromine vapor, if enough additional thermal energy is provided.  The boiling point is higher than room temperature.

A 1100 kg car pushes a 2200 kg truck that has a dead battery. When the driver steps on the accelerator, the drive wheels of the car push against the ground with a force of 5000 N . Rolling friction can be neglected. You may want to review (Pages 165 - 168) . Part A What is the magnitude of the force of the car on the truck

Answers

Answer:

a) 3344 N

b) 3344 N

Explanation:

This is the complete question

1100 kg car pushes a 2200 kg truck that has a dead battery. When the driver steps on the accelerator, the drive wheels of the car push against the ground with a force of 5000 N. Rolling friction can be neglected.  A. What is the magnitude of the force of the car on the truck? Express your answer to two significant figures and include the appropriate units.  B. What is the magnitude of the force of the truck on the car?

Mass of the car = 1100 kg

Mass of the truck = 2200 kg

Force exerted on the ground by the car = 5000 N

The total mass in the system = 1100 + 2200 = 3300 Kg

Total force in the system = 5000 N

Recall that the force in the system = mass x acceleration

therefore,

5000 = 3300 x a

Total acceleration in the system = 5000/3300 = 1.52 m/s^2

The force on the truck individually fro the car, will be the product of this acceleration and its mass

Force on the truck = 2200 x 1.52 = 3344 N

b) Force on the car From the truck will be equal to this force but will act in the opposite direction.

Force on the car from the truck is 3344 N

You walk into an elevator, step onto a scale, and push the "down" button to go directly from the tenth floor to the first floor. You also recall that your normal weight is w= 635 N. If the elevator has an initial acceleration of magnitude 2.45 m/s2, what does the scale read? Express your answer in newtons.

Answers

Answer: 479. 425 N

Explanation: the calculation of a body in an elevator obeys Newton law. When it is accelerating upward, the scale reading is greater than the true weight of the person.

It is given by N= m(g+a)

When it is accelerating downward, the scale reading is less than the true weight.

It so given by N = m(g-a)

The answer to the above questions is in the attached photo

Answer:

the scale will read 476.414 N

Explanation:

Weight = 635 N

mass = (weight) ÷ (acceleration due to gravity 9.81 m/^2)

mass m = 635 ÷ 9.81 = 64.729 kg

initial acceleration of the elevator a = 2.45 m/s^2

the force produced by the acceleration of the elevator downwards = ma

your body inertia force try to counteract this force, by a force equal and opposite to the direction of this force, leading to an apparent weight loss

apparent weight = weight - ma

apparent weight = 635 - (64.729 x 2.45)

apparent weight =  635 - 158.586  = 476.414 N

The pressure exerted by a phonograph needle on a record is surprisingly large. If the equivalent of 0.600 g is supported by a needle, the tip of which is a circle 0.240 mm in radius, what pressure is exerted on the record in N/m2?

Answers

Answer:

[tex]P=3.25x10^{4}\frac{N}{m^2}[/tex]

Explanation:

Hello,

In this case, since pressure is defined as the force applied over a surface:

[tex]P=\frac{F}{A}[/tex]

We can associate the force with the weight of the needle computed by using the acceleration of the gravity:

[tex]F=0.600g*\frac{1kg}{1000g}*9.8\frac{m}{s^2} =5.88x10^{-3}N[/tex]

And the area of the the tip (circle) in meters:

[tex]A=\pi r^2=\pi (0.240mm)^2=\pi (0.240mm*\frac{1m}{1000mm} )^2\\\\A=1.81x10^{-7}m^2[/tex]

Thus, the pressure exerted on the record turns out:

[tex]P=\frac{5.88x10^{-3}N}{1.81x10^{-7}m^2} \\\\P=3.25x10^{4}\frac{N}{m^2}[/tex]

Which is truly a large value due to the tiny area on which the pressure is exerted.

Best regards.

A student has made the statement that the electric flux through one half of a Gaussian surface is always equal and opposite to the flux through the other half of the Gaussian surface. This is:_______.

a. never true.

b. never false.

c. true whenever enclosed charge is symmetrically located at a center point, or on a center line or centrally placed plane

d. true whenever no charge is enclosed within the Gaussian surface.

e. true only when no charge is enclosed within the Gaussian surface.

Answers

Answer:

E.true only when no charge is enclosed within the Gaussian surface.

Explanation:

Because Gauss’s law states that the net flux of an electric field in a closed surface is directly proportional to the enclosed electric charge.

Check Your UnderstandingSuppose the radius of the loop-the-loop inExample 7.9is 15 cm and thetoy car starts from rest at a height of 45 cm above the bottom. What is its speed at the top of the loop

Answers

Answer:

v = 1.7 m/s

Explanation:

By applying conservation of energy principle in this situation, we know that:

Loss in Potential Energy of Car = Gain in Kinetic Energy of Car

mgΔh = (1/2)mv²

2gΔh = v²

v = √(2gΔh)

where,

v = velocity of car at top of the loop = ?

g = 9.8 m/s²

Δh = change in height = 45 cm - Diameter of Loop

Δh = 45 cm - 30 cm = 15 cm = 0.15 m

Therefore,

v = √(2)(9.8 m/s²)(0.15 m)

v = 1.7 m/s

what tools use cut wood

Answers

Answer:

hand saws

power saws

Circular Saw

Explanation:

that is all that i know


An ac circuit consist of a pure resistance of 10ohms is connected across an ae supply
230V 50Hz Calculate the:
(i)Current flowing in the circuit.

(ii)Power dissipated

Answers

Plz check attachment for answer.

Hope it's helpful

You illuminate a slit with a width of 77.7 μm with a light of wavelength 721 nm and observe the resulting diffraction pattern on a screen that is situated 2.83 m from the slit. What is the width, in centimeters, of the pattern's central maximum

Answers

Answer:

The width is  [tex]Z = 0.0424 \ m[/tex]

Explanation:

From the question we are told that

    The width of the slit is [tex]d = 77.7 \mu m = 77.7 *10^{-6} \ m[/tex]

    The wavelength of the light is  [tex]\lambda = 721 \ nm[/tex]

      The position of the screen is  [tex]D = 2.83 \ m[/tex]

Generally angle at which the first minimum  of the interference pattern the  light occurs  is mathematically  represented as

        [tex]\theta = sin ^{-1}[\frac{m \lambda}{d} ][/tex]

Where m which is the order of the interference is 1

substituting values

       [tex]\theta = sin ^{-1}[\frac{1 *721*10^{-9}}{ 77.7*10^{-6}} ][/tex]

      [tex]\theta = 0.5317 ^o[/tex]

 Now the width of first minimum  of the interference pattern is mathematically evaluated as

       [tex]Y = D sin \theta[/tex]

substituting values

       [tex]Y = 2.283 * sin (0.5317)[/tex]

       [tex]Y = 0.02 12 \ m[/tex]

 Now the width of  the  pattern's central maximum is mathematically evaluated as

        [tex]Z = 2 * Y[/tex]

substituting values

      [tex]Z = 2 * 0.0212[/tex]

     [tex]Z = 0.0424 \ m[/tex]

An accelerating voltage of 2.25 103 V is applied to an electron gun, producing a beam of electrons originally traveling horizontally north in vacuum toward the center of a viewing screen 36.4 cm away. (a) What is the magnitude of the deflection on the screen caused by the Earth's gravitational field

Answers

Answer:

s= 8.28×10⁻¹⁶m

Explanation:

given

V= 2.25×10³V

from conservation of energy

mv²/2=qΔV

v=√(2qΔV/m)

v= √(2×1.6×10⁻¹⁹×2.25×10³/9.1×10⁻³¹)

=√7.9×10¹⁴m/s

=2.8×10⁷m/s

the deflection of electron beam is

S= gt²/2

recall t= d/v

s=g([tex]\frac{d}{v}[/tex])²/2

s= [tex]\frac{1}{2}[/tex]×9.8×(0.364/2.8×10⁷)²

s= 8.28×10⁻¹⁶m

A 25.0 kg block is initially at rest on a horizontal surface. A horizontal force of 75 N is required to set the block in motion, after which a horizontal force of 60 N is required to keep the block in moving with constant speed. Find the coefficient of static and kinetic friction between the block and the surface.

Answers

Answer:

μs = 0.30

μk = 0.24

Explanation:

In order to calculate the kinetic friction and static friction between the block and the surface, you take into account that the kinetic friction is important when the block is moving and the static friction when the block is at rest.

You use the following formula to find the coefficient of static friction:

[tex]F_1=\mu_s Mg[/tex]       (1)

F1 = 75N

μs: coefficient of static friction = ?

M: mass of the block = 25.0kg

g: gravitational acceleration = 9.8m/s^2

You solve for μs in the equation (1):

[tex]\mu_s=\frac{F_1}{Mg}=\frac{75N}{(25.0kg)(9.8m/s^2)}=0.30[/tex]

For the coefficient of kinetic friction you have:

[tex]F_2=\mu_k Mg[/tex]       (2)

F2 = 60N

μk: coefficient of kinetic friction = ?

You solve for μk in the equation (2):

[tex]\mu_k=\frac{F_2}{Mg}=\frac{60N}{(25.0kg)(9.8m/s^2)}=0.24[/tex]

Then, you have:

coefficient of static friction = 0.30

coefficient of kinetic friction = 0.24

When moving to a new apartment, you rent a truck and create a ramp with a 244 cm long piece of plywood. The top of the moving ramp lies on the edge of the truck bed at a height of 115 cm. You load your textbooks into a wooden box at the bottom of the ramp (the coefficient of kinetic friction between the box and ramp is = 0.2). Then you and a few friends give the box a quick push and it starts to slide up the ramp. A) What angle is made by the ramp and the ground?B) Unfortunately, after letting go, the box only tables 80cm up the ramp before it starts coming back down! What speed was the box initially traveling with just after you stopped pushing it?

Answers

Answer:

A)    θ = 28.1º , B)         v = 2.47 m / s

Explanation:

A) The angle of the ramp can be found using trigonometry

         sin θ = y / L

         Φ = sin⁻¹ y / L

         θ = sin⁻¹ (115/244)

         θ = 28.1º

B) For this pate we can use the relationship between work and kinetic energy

       W =ΔK

where the work is

       W = -fr x

the negative sign is due to the fact that the friction force closes against the movement

Lavariacion of energy cineta is

         ΔEm = ½ m v² - mgh

        -fr x = ½ m v² - m gh

the friction force has the equation

         fr = very N

           

at the highest part there is no speed and we take the origin from the lowest part of the ramp

To find the friction force we use Newton's second law. Where one axis is parallel to the ramp and the other is perpendicular

             

Axis y . perpendicular

            N- Wy = 0

            cos tea = Wy / W

            Wy = W cos treaa

             N = mg cos tea

we substitute

   

- (very mg cos tea) x = ½ m v²2 - mgh

            v2 = m (gh- very g cos tea x)

   let's calculate

           v = Ra (9.8 0.80 - 0.2 9.8 0.0 cos 28.1)

           v = RA (7.84 -1.729)

           v = 2.47 m / s

A particle of charge = 50 µC moves in a region where the only force on it is an electric force. As the particle moves 25 cm, its kinetic energy increases by 1.5 mJ. Determine the electric potential difference acting on the partice​

Answers

Answer:

nvbnncbmkghbbbvvvvvvbvbhgggghhhhb

Based on what you know about electricity, hypothesize about how series resistors would affect current flow. What would you expect the effective resistance of two equal resistors in series to be, compared to the resistance of a single resistor?

Answers

Answer:

Effective resistance of two equal resistors in series is twice that of a single resistor and in essence will reduce the amount of current flowing in the circuit.

Explanation:

When two resistors are connected in series, their effective resistance is the sum of their individual resistances. For example, given two resistors of resistance values R₁ and R₂, their effective resistance, Rₓ is given by;

Rₓ = R₁ + R₂            --------------(1)

If these resistors have equal resistance values, say R, then equation 1 becomes;

Rₓ = R + R

Rₓ = 2R

This means that their effective resistance is twice of their individual resistances. In other words, when two equal resistors are in series, their effective resistance is twice the resistance of each single one of those resistors.

Now, according to Ohm's law, voltage(V) is the product of current (I) and resistance (R). i.e

V = IR

I = [tex]\frac{V}{R}[/tex]

We can deduce that current increases as resistance decreases and vice-versa.

So, if the two equal resistors described above are connected in series, the amount of current flowing will be reduced compared to having just a single resistor.

What is the relationship between the magnitudes of the collision forces of two vehicles, if one of them travels at a higher speed?

Answers

Explanation:

The collision forces are equal and opposite.  Therefore, the magnitudes are equal.

Approximately what applied force is needed to keep the box moving with a constant velocity that is twice as fast as before? Explain

Answers

Complete question:

A force F is applied to the block as shown (check attached image). With an applied force of 1.5 N, the block moves with a constant velocity.

Approximately what applied force is needed to keep the box moving with a constant velocity that is twice as fast as before? Explain

Answer:

The applied force that is needed to keep the box moving with a constant velocity that is twice as fast as before, is 3 N

Force is directly proportional to velocity, to keep the box moving at the double of initial constant velocity, we must also double the value of the initially applied force.

Explanation:

Given;

magnitude of applied force, F = 1.5 N

Apply Newton's second law of motion;

F = ma

[tex]F = m(\frac{v}{t} )\\\\F = \frac{m}{t} v\\\\Let \ \frac{m}{t} \ be \ constant = k\\F = kv\\\\k = \frac{F}{v} \\\\\frac{F_1}{v_1} = \frac{F_2}{v_2}[/tex]

The applied force needed to keep the box moving with a constant velocity that is twice as fast as before;

[tex]\frac{F_1}{v_1} = \frac{F_2}{v_2} \\\\(v_2 = 2v_1, \ and \ F_1 = 1.5N)\\\\\frac{1.5}{v_1} = \frac{F_2}{2v_1} \\\\1.5 = \frac{F_2}{2}\\\\F_2 = 2*1.5\\\\F_2 = 3 N[/tex]

Therefore, the applied force that is needed to keep the box moving with a constant velocity that is twice as fast as before, is 3 N

Force is directly proportional to velocity, to keep the box moving at the double of initial constant velocity, we must also double the value of the applied force.

C.
(11) in parallel
A potentiometer circuit consists of a
battery of e.m.f. 5 V and internal
resistance 1.0 12 connected in series with a
3.0 12 resistor and a potentiometer wire
AB of length 1.0 m and resistance 2.0 12.
Calculate:
(i) The total resistance of the circuit
The current flowing in the circuit
(iii) The lost volt from the internal
resistance of battery across the
battery terminals
(iv) The p.d. across the wire AB
(v) The e.m.f. of a dry cell which can be
balanced across 60 cm of the wire
AB.
Assume the wire has a uniform cross-
sectional area.​

Answers

Answer:

fggdfddvdghyhhhhggghh

A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 12.9 rad/s in 2.98 s.
(a) Find the magnitude of the angular acceleration of the wheel.
(b) Find the angle in radians through which it rotates in this time interval.

Answers

Explanation:

(a) Find the magnitude of the angular acceleration of the wheel.

angular acceleration = angular speed /timeangular acceleration = 12.9/2.98 = 4.329rad/s²

(b) Find the angle in radians through which it rotates in this time interval.

angular speed = 2x3.14xf12.9rad = 2 x3.14

rad = 6.28/12.9rad = 0.487

Now we convert rad to angle

1 rad = 57.296°0.487 = unknown angleunknown angle =57.296 x 0.487 = 27.9°

The angle in radians = 27.9°

When the charges in the rod are in equilibrium, what is the magnitude of the electric field within the rod?

Answers

Answer: If we have equilibrium, the magnitude must be zero.

Explanation:

If the charges are in equilibrium, this means that the total charge is equal to zero.

And as the charges must be homogeneously distributed in the rod, we can conclude that the electric field within the rod must be zero, so the magnitude of the electric field must be zero

Stress is a factor that contributes to heart disease risk.true or false

Answers

The answer for this question would be True

A passenger jet flies from one airport to another 1,233 miles away in 2.4 h. Find its average speed. = ____ m/s

Answers

Speed = (distance) / (time)

Speed = (1,233 mile) / (2.4 hour)

Speed = 513.75 mile/hour

Speed = (513.75 mi/hr) x (1609.344 meter/mi) x (1 hr / 3600 sec)

Speed = (513.75 x 1609.344 / 3600) (mile-meter-hour/hour-mile-second)

Speed = 229.7 meter/second

Other Questions
What fraction of the boys are red headed "Republicanism" in the eighteenth-century Anglo-American political world emphasized the importance of _______ as the essence of liberty. protecting the natural rights of all humans a strong central state supporting royal authority as opposed to parliamentary authority active participation in public life by property-owning citizens voting rights for all adult men If f(x) = 5x 2 and g(x) = 2x + 1, find (f - g)(x). A. 3 - 3x B. 3x-3 C. 7x-1 D. 7x-3 The function h(x)=12/x-1 is one to one. Algebraically find its inverse, h^-1(x). What does it mean to cut fundings for schools Please help me I will give BRAINLIST and a like :)))) A soccer player gets 2 points for a goal and 1 point for an assist. If the combined number of goals and assists that a player has is 24, and the total number of points that the player has is 42, which system of equations can be used to determine the number of goals and assists the player has? Assume g represents the number of goals and a represents the number of assists. A)g + a = 24. g + 2 a = 42.B)g + a = 24. 2 g + a = 42.C)g + a = 42. g + 2 a = 24.D)g + a = 42. 2 g + a = 24. which issue was central to the conflict between the North and the South durning the decades leading up to the Civil War?A. Political Party DivisionsB. States rights C. Foreign intervention D. Territorial Expansion Classify the following triangle. Check all that apply. Which table represents a linear function What is the explicit rule for the geometric sequence?600, 300, 150, 75, ... Determine the intercepts of the line. -5x+9y=-185x+9y=18minus, 5, x, plus, 9, y, equals, minus, 18 xxx-intercept: \Big((left parenthesis ,,comma \Big))right parenthesis yyy-intercept: \Big((left parenthesis ,,comma \Big)) An arrow is launched vertically upward at a speed of 50 m/s. What is the arrows speed at the highest point? Ignore air resistance This mural best conveys a mood ofThe mural shown in the image was painted on a housein Northern Ireland.compromiseOpeace,tensionneutralityPREPAREDFOR PEACEREADYFOR WAR I NEED HELP PLEASE, THANKS! :) A proud new Jaguar owner drives her car at a speed of 25 m/s into a corner. The coefficients of friction between the road and the tires are 0.70 (static) and 0.40 (kinetic) assuming the car is not skidding while traveling along the curve, what is the magnitude of the centripetal acceleration of the car Just after taking off, the aeroplane continues to accelerate as it gains height. State two forms of energy that increase during this time. simplify the expression (x - 2y) + (3x + 4y) Which factor contributes to the development of osteoporosis?geneticslack of calciumnaturally occurring exposureingestion of gluten products Complete the text with the verbs below. Use the Past Simple or Continuous.decide-give- go back - help - not get - not wake up - paint - sleep - stay - start - take - writeSally's parents were very concerned about their 13-year-old daughter. Sally often (1)...upall night. While her parents (2)....Sally (3)...emails orwatched television. Because she (4)enough sleep, Sally (5) ...on time for school. Finally, Sally's parents (6)to ask a doctor what to do. The doctor (7)them some simple tips to help Sally sleep and Sally's parents followed his advice. They(8).her room green because this colour helps people relax. They also (9)the television and computer out of Sally's room and Sally (10)a regularexercise programme. The doctor's advice (11)... and in no time at all, Sally (12)to sleeping like a baby again!Choose the correct answer.