What is the unit vector in the direction of the vector A = A = i (58, -50, -61) cm?
Your drone sits at the origin of your chosen coordinate system, (0, 0, 0) m. You fly it from there in the same direction as the direction of a vector (39, 17, −28) for a distance of 8 m, where it hovers. From there you make the drone go in the same direction as the direction of a vector (-15, 27, 69) for a distance of 6 m, where it again hovers. What are its coordinates now?

Answers

Answer 1

The drone's coordinates after the two flights are (27.6, 18.2, 31.2) m.

The unit vector in the direction of vector A is:

u = A / |A| = (58/115, -50/115, -61/115)

Your drone sits at the origin of your chosen coordinate system, (0, 0, 0) m. You fly it from there in the same direction as the direction of a vector (39, 17, −28) for a distance of 8 m, where it hovers. From there you make the drone go in the same direction as the direction of a vector (-15, 27, 69) for a distance of 6 m, where it again hovers. What are its coordinates now

The drone's coordinates after the first 8 m flight are:

(0 + 8 * 39/115, 0 + 8 * 17/115, 0 - 8 * 28/115) = (31.2, 1.4, -22.4) m

The drone's coordinates after the second 6 m flight are:

(31.2 + 6 * (-15)/115, 1.4 + 6 * 27/115, -22.4 + 6 * 69/115) = (27.6, 18.2, 31.2) m

Therefore, the drone's coordinates after the two flights are (27.6, 18.2, 31.2) m.

Learn more about coordinates with the given link,

https://brainly.com/question/17206319

#SPJ11


Related Questions

A flat piece of diamond is 10.0 mm thick. How long will it take for light to travel across the diamond?

Answers

The time it takes for light to travel across the diamond is approximately 8.07 x 10^(-11) seconds.

To calculate the time it takes for light to travel across the diamond, we can use the formula:

Time = Distance / Speed

The speed of light in a vacuum is approximately 299,792,458 meters per second (m/s). However, the speed of light in a medium, such as diamond, is slower due to the refractive index.

The refractive index of diamond is approximately 2.42.

The distance light needs to travel is the thickness of the diamond, which is 10.0 mm or 0.01 meters.

Using these values, we can calculate the time it takes for light to travel across the diamond:

Time = 0.01 meters / (299,792,458 m/s / 2.42)

Simplifying the expression:

Time = 0.01 meters / (123,933,056.2 m/s)

Time ≈ 8.07 x 10^(-11) seconds

Therefore, it will take approximately 8.07 x 10^(-11) seconds for light to travel across the diamond.

To learn more about refractive index, Visit:

https://brainly.com/question/83184

#SPJ11

A dentist's drill starts from rest. After 2.90s of constant angular acceleration, it turns at a rate of 2.47 x 10ª rev/min. (a) Find the drill's angular acceleration. rad/s² (along the axis of rotation) (b) Determine the angle through which the drill rotates during this period. rad

Answers

(a) The drill's angular acceleration is approximately 0.149 rad/s² (along the axis of rotation).

(b) The drill rotates through an angle of approximately 4.28 rad during the given time period.

(a) To find the drill's angular acceleration, we can use the equation:

θ = ω₀t + (1/2)αt²,

where θ is the angle of rotation, ω₀ is the initial angular velocity, α is the angular acceleration, and t is the time.

Given that ω₀ (initial angular velocity) is 0 rad/s (starting from rest), t is 2.90 s, and θ is given as 2.47 x 10^3 rev/min, we need to convert the units to rad/s and s.

Converting 2.47 x 10^3 rev/min to rad/s:

ω = (2.47 x 10^3 rev/min) * (2π rad/rev) * (1 min/60 s)

≈ 257.92 rad/s

Using the equation θ = ω₀t + (1/2)αt², we can rearrange it to solve for α:

θ - ω₀t = (1/2)αt²

α = (2(θ - ω₀t)) / t²

Substituting the given values:

α = (2(2.47 x 10^3 rad/s - 0 rad/s) / (2.90 s)² ≈ 0.149 rad/s²

Therefore, the drill's angular acceleration is approximately 0.149 rad/s².

(b) To find the angle of rotation, we can use the equation:

θ = ω₀t + (1/2)αt²

Using the given values, we have:

θ = (0 rad/s)(2.90 s) + (1/2)(0.149 rad/s²)(2.90 s)²

≈ 4.28 rad

Therefore, the drill rotates through an angle of approximately 4.28 rad during the given time period.

(a) The drill's angular acceleration is approximately 0.149 rad/s² (along the axis of rotation).

(b) The drill rotates through an angle of approximately 4.28 rad during the given time period.

To know more about acceleration ,visit:

https://brainly.com/question/460763

#SPJ11

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs. After the collision, both objects move together along the same line with speed v/2. What is the numerical value of the ratio m/m, of their masses?

Answers

`[(au + (v/2)]/[(u - (v/2))]`is the numerical value of the ratio m/m, of their masses .

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs.

After the collision, both objects move together along the same line with speed v/2.

The numerical value of the ratio of the masses m1/m2 can be calculated by the following formula:-

                 Initial Momentum = Final Momentum

Initial momentum is given by the sum of the momentum of two masses before the collision. They are moving with the same speed but in opposite directions, so momentum will be given by myu - mau where u is the velocity of both masses.

`Initial momentum = myu - mau`

Final momentum is given by the mass of both masses multiplied by the final velocity they moved together after the collision.

So, `final momentum = (my + ma)(v/2)`According to the principle of conservation of momentum,

`Initial momentum = Final momentum

`Substituting the values in the above formula we get: `myu - mau = (my + ma)(v/2)

We need to find `my/ma`, so we will divide the whole equation by ma on both sides.`myu/ma - au = (my/ma + 1)(v/2)

`Now, solving for `my/ma` we get;`my/ma = [(au + (v/2)]/[(u - (v/2))]

`Hence, the numerical value of the ratio m1/m2, of their masses is: `[(au + (v/2)]/[(u - (v/2))

Therefore, the answer is given by `[(au + (v/2)]/[(u - (v/2))]`.

Learn more about Final Momentum

brainly.com/question/29990455

#SPJ11

What is the energy of a photon that has the same wavelength as a
100-eV electron? Show work.

Answers

We can now find the energy of the photon using E=hc/λE = (6.626 × 10^-34 J·s)(3 × 10^8 m/s)/(1.24 × 10^-6 m)= 1.6 × 10^-15 .J The energy of the photon that has the same wavelength as a 100-eV electron is 1.6 × 10^-15 J (or 1.0 × 10^2 eV).

We are given that the wavelength of the photon is equal to the wavelength of a 100-eV electron. We are to find the energy of the photon. We know that the energy of a photon is given byE

=hc/λWhereE is the energy of the photon h is Planck’s constant the

=6.626 × 10^-34 J·s (joule second)c is the speed of light c

=3 × 10^8 m/sλ is the wavelength of the photon We are also given that the wavelength of the photon is equal to the wavelength of a 100-eV electron. Therefore, we know thatλ

=hc/E

We are given that the energy of the electron is 100 eV. We need to convert this to joules. We know that 1 eV

= 1.602 × 10^-19 J Therefore, 100 eV

= 100 × 1.602 × 10^-19 J

= 1.602 × 10^-17 J Substituting the values into the equation, we getλ

=hc/E

=hc/1.602 × 10^-17

= 1.24 × 10^-6 m We now know the wavelength of the photon. We can now find the energy of the photon using E

=hc/λE

= (6.626 × 10^-34 J·s)(3 × 10^8 m/s)/(1.24 × 10^-6 m)

= 1.6 × 10^-15 .J The energy of the photon that has the same wavelength as a 100-eV electron is

1.6 × 10^-15 J (or 1.0 × 10^2 eV).

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

An android turns on the power on to a grinding wheel at time t= 0 s. The wheel accelerates uniformly from rest for 10 seconds and reaches the operating angular speed of 40 rad/s. The wheel is run at that angular velocity for another 10 seconds and then power is shut off. The wheel slows down uniformly at 2 rad/s2 until the wheel stops. For how long after the power is shut off does it take the wheel to stop? 80 seconds 8 seconds 10 seconds 20 seconds 4 seconds 5 seconds

Answers

It takes the wheel 20 seconds after the power is shut off to come to a stop.

The wheel undergoes three phases: acceleration, constant angular velocity, and deceleration.

During the acceleration phase, the wheel starts from rest and accelerates uniformly for 10 seconds until it reaches an angular speed of 40 rad/s.

During the constant angular velocity phase, the wheel maintains an angular speed of 40 rad/s for another 10 seconds.

Finally, during the deceleration phase, the power is shut off, and the wheel slows down uniformly at a rate of 2 rad/s² until it comes to a stop.

To find the time it takes for the wheel to stop after the power is shut off, we can use the equation:

ω = ω₀ + α * t,

where ω is the final angular velocity, ω₀ is the initial angular velocity, α is the angular acceleration, and t is the time.

Since the wheel comes to a stop, the final angular velocity ω is 0 rad/s. The initial angular velocity ω₀ is 40 rad/s, and the angular acceleration α is -2 rad/s² (negative because it's deceleration).

Plugging in these values, we have:

0 = 40 + (-2) * t,

Solving for t, we get:

2t = 40,

t = 20.

Therefore, it takes the wheel 20 seconds after the power is shut off to come to a stop.

To learn more about angular acceleration, click here: https://brainly.com/question/1980605

#SPJ11

Helium ions He?* of mass 6.70 × 1027 kg and charge Ze are emitted from a source at zero electric potential and are attracted towards an electrode at a potential of 800 V. Select the option closest to the magnitude of the momentum acquired by a helium ion immediately before
it strikes the electrode. You may neglect the initial speed of the ions as they leave the source.
KEY for 012
A
B
C
2.6 × 10-1 kgms-1
3.4 × 10-17 kgms
8.8 × 10-18 kgms
D 9.1 × 10-19 kgms
E
1.0 x 10-20 kgms-1
F
1.9 × 10-21 kgms-1
G 8.9 × 10-22 kgms-1
H 5.5 × 10-23 kgms

Answers

The momentum acquired by a helium ion immediately before it strikes the electrode can be determined by considering the potential difference and the charge of the ion. The option closest to the magnitude of the momentum is 9.1 ×[tex]10^-19[/tex] kg·m/s (option D).

The momentum acquired by a charged particle can be calculated using the equation p = qV, where p is the momentum, q is the charge of the particle, and V is the potential difference.

In this case, the helium ions ([tex]He^+2[/tex]) have a charge of Ze, where Z is the charge number of the ion (2 for helium) and e is the elementary charge.

Given the potential difference of 800 V and the charge of the helium ion, we can calculate the momentum using the formula mentioned above. Substituting the values, we find that the momentum acquired by the helium ion is equal to (2Ze)(800) = 1600Ze.

The magnitude of the momentum acquired by the helium ion is equal to the absolute value of the momentum, which in this case is 1600Ze.

Since the magnitude of the charge Ze is constant for all helium ions, we can compare the options provided and select the one closest to 1600. The option that is closest is 9.1 × [tex]10^-19[/tex] kg·m/s (option D).

Learn more about Helium ions from the given link:
https://brainly.com/question/2886630

#SPJ11

Identify three things in Figure 5 that help make the skier complete the race faster. Figure 5

Answers

This enables the skier to make quick and accurate turns, which is especially important when skiing downhill at high speeds.

In Figure 5, the following are the three things that help the skier complete the race faster:

Reduced air resistance: The skier reduces air resistance by crouching low, which decreases air drag. This enables the skier to ski faster and more aerodynamically. This is demonstrated by the skier in Figure 5 who is crouching low to reduce air resistance.

Rounded ski tips: Rounded ski tips help the skier to make turns more quickly. This is because rounded ski tips make it easier for the skier to glide through the snow while turning, which reduces the amount of time it takes for the skier to complete a turn.

Sharp edges: Sharp edges on the skier’s skis allow for more precise turning and edge control.

To know more about accurate:

https://brainly.com/question/30350489


#SPJ11

The vector position of a particle varies in time according to the expression F = 7.20 1-7.40t2j where F is in meters and it is in seconds. (a) Find an expression for the velocity of the particle as a function of time. (Use any variable or symbol stated above as necessary.) V = 14.8tj m/s (b) Determine the acceleration of the particle as a function of time. (Use any variable or symbol stated above as necessary.) a = ___________ m/s² (c) Calculate the particle's position and velocity at t = 3.00 s. r = _____________ m
v= ______________ m/s

Answers

"(a) The expression for the velocity of the particle as a function of time is: V = -14.8tj m/s. (b) The acceleration of the particle as a function of time is: a = -14.8j m/s². (c) v = -14.8tj = -14.8(3.00)j = -44.4j m/s."

(a) To find the expression for the velocity of the particle as a function of time, we can differentiate the position vector with respect to time.

From question:

F = 7.20(1 - 7.40t²)j

To differentiate with respect to time, we differentiate each term separately:

dF/dt = d/dt(7.20(1 - 7.40t²)j)

= 0 - 7.40(2t)j

= -14.8tj

Therefore, the expression for the velocity of the particle as a function of time is: V = -14.8tj m/s

(b) The acceleration of the particle is the derivative of velocity with respect to time:

dV/dt = d/dt(-14.8tj)

= -14.8j

Therefore, the acceleration of the particle as a function of time is: a = -14.8j m/s²

(c) To calculate the particle's position and velocity at t = 3.00 s, we substitute t = 3.00 s into the expressions we derived.

Position at t = 3.00 s:

r = ∫V dt = ∫(-14.8tj) dt = -7.4t²j + C

Since we need the specific position, we need the value of the constant C. We can find it by considering the initial position of the particle. If the particle's initial position is given, please provide that information.

Velocity at t = 3.00 s:

v = -14.8tj = -14.8(3.00)j = -44.4j m/s

To know more about position of particles visit:

https://brainly.com/question/30685477

#SPJ11

We know that for a relativistic particle, we can write the energy as E? = p° + m?. For a matter wave, we
may also express the energy and momentum via the de Broglie relations: E = hw and p = hik. i. Compute the phase velocity, Up = „ , for a relativistic particle. Express your answer in terms of, m, c, t,
and k.

Answers

The phase velocity can be expressed in terms of m, c, t, and k as Up = c(1 + (m²c²)/(hc²k²)) where p is the momentum of the particle and m is its rest mass.

For a relativistic particle, we can write the energy as E = pc + mc² where p is the momentum of the particle and m is its rest mass. The de Broglie relations for a matter wave are E = hν and p = h/λ, where h is Planck's constant, ν is the frequency of the wave, and λ is its wavelength.The phase velocity, Up is given by:Up = E/p= (pc + mc²) / p= c + (m²c⁴)/p²Using the de Broglie relation p = h/λ, we can express the momentum in terms of wavelength:p = h/λSubstituting this in the expression for phase velocity:Up = c + (m²c⁴)/(h²/λ²) = c + (m²c²λ²)/h²The wavelength of the matter wave can be expressed in terms of its frequency using the speed of light c:λ = c/fSubstituting this in the expression for phase velocity:Up = c + (m²c²/c²f²)h²= c[1 + (m²c²)/(c²f²)h²]= c(1 + (m²c²)/(hc²k²))where f = ν is the frequency of the matter wave and k = 2π/λ is its wave vector. So, the phase velocity can be expressed in terms of m, c, t, and k as Up = c(1 + (m²c²)/(hc²k²)).

Learn more about momentum:

https://brainly.com/question/24030570

#SPJ11

A two-stage rocket moves in space at a constant velocity of +4010 m/s. The two stages are then separated by a small explosive charge placed between them. Immediately after the explosion the velocity of the 1390 kg upper stage is +5530 m/s. What is the velocity (magnitude and direction) of the 2370-kg lower stage immediately after the explosion?

Answers

The velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

Initially, the two-stage rocket is moving in space at a constant velocity of +4010 m/s.

When the explosive charge is detonated, the two stages separate.

The upper stage, with a mass of 1390 kg, acquires a new velocity of +5530 m/s.

To find the velocity of the lower stage, we can use the principle of conservation of momentum.

The total momentum before the explosion is equal to the total momentum after the explosion.

The momentum of the upper stage after the explosion is given by the product of its mass and velocity: (1390 kg) * (+5530 m/s) = +7,685,700 kg·m/s.

Since the explosion only affects the separation between the two stages and not their masses, the total momentum before the explosion is the same as the momentum of the entire rocket: (1390 kg + 2370 kg) * (+4010 m/s) = +15,080,600 kg·m/s.

To find the momentum of the lower stage, we subtract the momentum of the upper stage from the total momentum of the rocket after the explosion: +15,080,600 kg·m/s - +7,685,700 kg·m/s = +7,394,900 kg·m/s.

Finally, we divide the momentum of the lower stage by its mass to find its velocity: (7,394,900 kg·m/s) / (2370 kg) = -3190 m/s.

Therefore, the velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

To learn more about velocity click here:

brainly.com/question/30559316

#SPJ11

Automated grid generation for several simple shapes: a pipe of circular cross-section, a spherical ball, a duct of rectangular cross-section, a 2D channel with a backward-facing step, and so on. In each case, create a grid with clustering near the walls. Try different cell shapes and different algorithms of grid generation, if available. Analyze the quality of each grid
This is a question of Computational Fluid Dynamics (CFD)subject.

Answers

In Computational Fluid Dynamics (CFD), grid generation plays a crucial role in accurately representing the geometry and capturing the flow features. The grid should be structured or unstructured depending on the problem.

Here's a brief overview of grid generation for the mentioned shapes:

Pipe of Circular Cross-section:

For a pipe, a structured grid with cylindrical coordinates is commonly used. The grid points are clustered near the pipe walls to resolve the boundary layer. Various methods like algebraic, elliptic, or hyperbolic grid generation techniques can be employed to generate the grid. The quality of the grid can be evaluated based on smoothness, orthogonality, and clustering near the walls.

Spherical Ball:

For a spherical ball, structured grids may be challenging to generate due to the curved surface. Instead, unstructured grids using techniques like Delaunay triangulation or advancing front method can be employed. The grid can be clustered near the surface of the ball to capture the flow accurately. The quality of the grid can be assessed based on element quality, aspect ratio, and smoothness.

Duct of Rectangular Cross-section:

For a rectangular duct, a structured grid can be easily generated using techniques like algebraic grid generation or transfinite interpolation. The grid can be clustered near the walls to resolve the boundary layers and capture flow features accurately. The quality of the grid can be analyzed based on smoothness, orthogonality, and clustering near the walls.

2D Channel with a Backward-facing Step:

For a 2D channel with a backward-facing step, a combination of structured and unstructured grids can be used. Structured grids can be employed in the main channel, and unstructured grids can be used near the step to capture complex flow phenomena. Techniques like boundary-fitted grids or cut-cell methods can be employed. The quality of the grid can be assessed based on smoothness, orthogonality, grid distortion, and capturing of flow features.

To analyze the quality of each grid, various metrics can be used, such as aspect ratio, skewness, orthogonality, grid density, grid convergence, and comparison with analytical or experimental results if available. Additionally, flow simulations using the generated grids can provide further insights into the accuracy and performance of the grids.

It's important to note that specific grid generation techniques and algorithms may vary depending on the CFD software or tool being used, and the choice of grid generation method should be based on the specific requirements and complexities of the problem at hand.

To learn more about Fluid Dynamics click here

https://brainly.com/question/31020521

#SPJ11

A 2.70 kg bucket is attached to a disk-shaped pulley of radius 0.131 m and a mass of 0.742 kg. If the bucket is allowed to fall,(1) What is its linear acceleration? a = (?) m/s^2
(2) What is the angular acceleration of the pulley? α = (?) rad/s^2
(3) How far does the bucket drop in 1.00 s? Δy = (?) m

Answers

A 2.70 kg bucket attached to a disk-shaped pulley of radius 0.131 m and mass of 0.742 kg. If the bucket is allowed to fall, the linear acceleration can be calculated as shown below:

1. Linear acceleration:The tension, T, in the string is the force acting to move the bucket upwards; it is given by T = mg. The force acting downwards is equal to the weight of the bucket; therefore, its weight is given by the product of its mass and the acceleration due to gravity. Thus, F = ma. For the system of the pulley and the bucket, the net force acting downwards is the force due to the weight of the bucket, Fg, minus the tension, T. Thus, the net force is given by the difference of the two forces.ΣF = Fg - T. Therefore, we can write:Fg - T = maBut Fg is equal to mg. Therefore, we have:mg - T = maBut T is equal to the tension in the string, which can be written as Iα/ r2. Therefore, we have:Iα/r2 = mg - ma. We need to determine the angular acceleration, α. To do this, we need to find the moment of inertia of the pulley. The moment of inertia is given by:I = (1/2) mr2. Therefore, we have:Iα/r2 = mg - ma. Solving for a, we obtain:a = g(m - (I/r2 m)) / (m + M). Substituting the values given, we have:

a = (9.81 m/s²)(2.70 kg - ((0.5)(0.742 kg)(0.131 m)²)/(2.70 kg + 0.742 kg))a = 2.90 m/s².

The linear acceleration of the bucket is 2.90 m/s².

2. Angular acceleration. The angular acceleration, α, can be calculated as follows:T = Iα/ r2. But T is equal to the tension in the string, which can be written as mg - ma. Therefore, we have:(mg - ma)r = Iαα = (mg - ma)r / IA substituting the values given, we have:

α = (9.81 m/s²)(2.70 kg - (2)(0.742 kg)(0.131 m)²)/(0.5)(0.742 kg)(0.131 m)²α = 10.1 rad/s².

The angular acceleration of the pulley is 10.1 rad/s².3. The distance the bucket drops in 1.00 s can be calculated as follows:Δy = 1/2 at². Using the value of a obtained above, we have:Δy = 1/2 (2.90 m/s²)(1.00 s)²Δy = 1.45 m

The linear acceleration of the bucket is 2.90 m/s².The angular acceleration of the pulley is 10.1 rad/s².The distance the bucket drops in 1.00 s is 1.45 m.

To know more about acceleration visit:

brainly.com/question/2303856

#SPJ11

The gravitational field strength at the surface of an hypothetical planet is smaller than the value at the surface of earth. How much mass (in kg) that planet needs to have a gravitational field strength equal to the gravitational field strength on the surface of earth without any change in its size? The radius of that planet is 14.1 x 106 m. Note: Don't write any unit in the answer box. Your answer is required with rounded off to minimum 2 decimal places. An answer like 64325678234.34 can be entered as 6.43E25 A mass m = 197 kg is located at the origin; an identical second mass m is at x = 33 cm. A third mass m is above the first two so the three masses form an equilateral triangle. What is the net gravitational force on the third mass? All masses are same. Answer:

Answers

1. Calculation of mass to get equal gravitational field strengthThe gravitational field strength is given by g = GM/R2, where M is the mass of the planet and R is the radius of the planet. We are given that the radius of the planet is 14.1 x 106 m, and we need to find the mass of the planet that will give it the same gravitational field strength as that on Earth, which is approximately 9.81 m/s2.

2. Calculation of net gravitational force on the third massIf all masses are the same, then we can use the formula for the gravitational force between two point masses: F = Gm2/r2, where m is the mass of each point mass, r is the distance between them, and G is the gravitational constant.

The net gravitational force on the third mass will be the vector sum of the gravitational forces between it and the other two masses.

To know more about the gravitational field, visit:

https://brainly.com/question/31829401

#SPJ11

At a site where the Earth's magnetic field has a magnitude of 0.42 gauss (where 1 gauss = 1.00 X 104 T) and points to the north, 680 below the horizontal, a high-voltage pover line 153 m in length
carries a current or TEA.
Determine the magnitude and direction of the magnetic force exerted on this wire, if the orientation of the vire and hence the current is as follove
horizontally toward the south

Answers

The magnitude of the magnetic force is 3.99 TEA and its direction is upward.

Magnitude of Earth's magnetic field, |B|=0.42 G=0.42 × 10⁻⁴ T

Angle between direction of Earth's magnetic field and horizontal plane, θ = 680

Length of power line, l = 153 m

Current flowing through the power line, I = TEA

We know that the magnetic force (F) exerted on a current-carrying conductor placed in a magnetic field is given by the formula

F = BIl sinθ,where B is the magnitude of magnetic field, l is the length of the conductor, I is the current flowing through the conductor, θ is the angle between the direction of the magnetic field and the direction of the conductor, and sinθ is the sine of the angle between the magnetic field and the conductor. Here, F is perpendicular to both magnetic field and current direction.

So, magnitude of magnetic force exerted on the power line is given by:

F = BIl sinθ = (0.42 × 10⁻⁴ T) × TEA × 153 m × sin 680F = 3.99 TEA

Now, the direction of magnetic force can be determined using the right-hand rule. Hold your right hand such that the fingers point in the direction of the current and then curl your fingers toward the direction of the magnetic field. The thumb points in the direction of the magnetic force. Here, the current is flowing horizontally toward the south. So, the direction of magnetic force is upward, that is, perpendicular to both the direction of current and magnetic field.

So, the magnitude of the magnetic force is 3.99 TEA and its direction is upward.

Learn more about magnetic force https://brainly.com/question/26257705

#SPJ11

An end window Geiger counter is used to survey the rate at which beta particles from 32P are incident on the skin. The Geiger counter, which is almost 100% efficient at these energies (1.7 MeV), has a surface area of 5 cm^2 and records
200 counts per sec. What is the skin dose rate?

Answers

The skin dose rate of 32P is 6.8 mGy/h.

An end-window Geiger counter is a device that counts high-energy particles such as beta particles. 32P, or phosphorus-32, is a radioactive isotope that emits beta particles. The Geiger counter's surface area is 5 cm^2 and it records 200 counts per second. The energy of beta particles is approximately 1.7 MeV, and the Geiger counter is almost 100% effective at this energy.

The following equation can be used to calculate the dose rate: D = Np / AE where: D is the dose rate in gray per hour (Gy/h)N is the number of counts per second (cps)p is the radiation energy per decay (Joules per decay)A is the Geiger counter area in cm^2E is the detector efficiency.

At 1.7 MeV, the detector efficiency is almost 100%.

p = 1.7 MeV × (1.6 × 10^-19 J/MeV)

= 2.72 × 10^-13 J.

Np = 200 cps, AE = 5 cm^2 × 100 = 500,

D = (200 × 2.72 × 10^-13 J) / 500 = 6.8 × 10^-11 Gy/h = 6.8 mGy/h

Therefore, the skin dose rate of 32P is 6.8 mGy/h.

Learn more about beta particles here:

https://brainly.com/question/2193947

#SPJ11

Explain the working principle of scanning tunnelling microscope.
List examples of
barrier tunnelling occurring in the nature and in manufactured
devices?

Answers

The scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.

The scanning tunneling microscope (STM) operates based on the principle of quantum tunneling. It uses a sharp conducting probe to scan the surface of a sample and measures the tunneling current that flows between the probe and the surface.

By maintaining a constant tunneling current, the STM can create a topographic image of the surface at the atomic level. Examples of barrier tunneling can be found in various natural phenomena, such as radioactive decay and electron emission, as well as in manufactured devices like tunnel diodes and flash memory.

The scanning tunneling microscope (STM) works by bringing a sharp conducting probe very close to the surface of a sample. When a voltage is applied between the probe and the surface, quantum tunneling occurs.

Quantum tunneling is a phenomenon in which particles can pass through a potential barrier even though they do not have enough energy to overcome it classically. In the case of STM, electrons tunnel between the probe and the surface, resulting in a tunneling current.

By scanning the probe across the surface and measuring the tunneling current, the STM can create a topographic map of the surface with atomic-scale resolution. Variations in the tunneling current reflect the surface's topography, allowing scientists to visualize individual atoms and manipulate them on the atomic level.

Barrier tunneling is a phenomenon that occurs in various natural and manufactured systems. Examples of natural barrier tunneling include radioactive decay, where atomic nuclei tunnel through energy barriers to decay into more stable states, and electron emission, where electrons tunnel through energy barriers to escape from a material's surface.

In manufactured devices, barrier tunneling is utilized in tunnel diodes, which are electronic components that exploit tunneling to create a negative resistance effect.

This allows for applications in oscillators and high-frequency circuits. Another example is flash memory, where charge is stored and erased by controlling electron tunneling through a thin insulating layer.

Overall, the scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.

Learn more about scanning tunneling from the given link:

https://brainly.com/question/17091478

#SPJ11

A quantum particle is described by the wave functionψ(x) = { A cos (2πx/L) for -L/4 ≤ x ≤ L/40 elsewhere(a) Determine the normalization constant A.

Answers

The normalization constant A is equal to √(2/L).

To determine the normalization constant A, we need to ensure that the wave function ψ(x) is normalized, meaning that the total probability of finding the particle in any location is equal to 1.

To normalize the wave function, we need to integrate the absolute square of ψ(x) over the entire domain of x. In this case, the domain is from -L/4 to L/4.

First, let's calculate the absolute square of ψ(x) by squaring the magnitude of A cos (2πx/L):

[tex]|ψ(x)|^2 = |A cos (2πx/L)|^2 = A^2 cos^2 (2πx/L)[/tex]

Next, we integrate this expression over the domain:

[tex]∫[-L/4, L/4] |ψ(x)|^2 dx = ∫[-L/4, L/4] A^2 cos^2 (2πx/L) dx[/tex]
To solve this integral, we can use the identity cos^2 (θ) = (1 + cos(2θ))/2. Applying this, the integral becomes:

[tex]∫[-L/4, L/4] A^2 cos^2 (2πx/L) dx = ∫[-L/4, L/4] A^2 (1 + cos(4πx/L))/2 dx[/tex]
Now, we can integrate each term separately:

[tex]∫[-L/4, L/4] A^2 dx + ∫[-L/4, L/4] A^2 cos(4πx/L) dx = 1[/tex]

The first integral is simply A^2 times the length of the interval:

[tex]A^2 * (L/2) + ∫[-L/4, L/4] A^2 cos(4πx/L) dx = 1[/tex]
Since the second term is the integral of a cosine function over a symmetric interval, it evaluates to zero:

A^2 * (L/2) = 1

Solving for A, we have:

A = √(2/L)

Therefore, the normalization constant A is equal to √(2/L).

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

In Figure 2, a conducting rod of length 1.2 m moves on two horizontal, frictionless rails in a 2.5 T magnetic field. If the total resistance of the circuit is 6.0 Ω, how fast must the rod move to generate a current of 0.50 A?

Answers

The speed of the conducting rod is 1.2 m/s.

Given data

Conducting rod length = l = 1.2 m

Magnetic field = B = 2.5 T

Resistance of the circuit = R = 6.0 Ω

Required current = I = 0.50 A

Formula used to calculate the speed of the conducting rod is:v = BL/IR

Where ,v is the speed of the conducting rod.

B is the magnetic field.

L is the length of the conducting rod.

I is the current through the circuit.

R is the resistance of the circuit.

Substitute the values of B, l, I, and R in the above formula to find the speed of the conducting rod: v = BL/IR = (2.5 T)(1.2 m)/(0.50 A)(6.0 Ω) = 1.2 m/s

Therefore, the speed of the conducting rod is 1.2 m/s.

Learn more about circuit

brainly.com/question/12608516

#SPJ11

Object A, which has been charged to +13.96 nC, is at the origin.
Object B, which has been charged to -25.35 nC, is at x=0 and y=1.42
cm. What is the magnitude of the electric force on object A?

Answers

the magnitude of the electric force on Object A is 0.0426 N.

Given data:Object A charge = +13.96 nC.Object B charge = -25.35 nC.Object B location = (0, 1.42) cm.The formula used to find the magnitude of the electric force is:

F = k * q1 * q2 / r^2 where k is Coulomb's constant which is equal to 9 x 10^9 Nm^2/C^2.q1 and q2 are the charges of object A and object B, respectively.r is the distance between the objects.

To find the distance between Object A and Object B, we use the distance formula which is:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)where x1 and y1 are the coordinates of Object A (which is at the origin) and x2 and y2 are the coordinates of Object B.Using the given data, we can calculate:d = sqrt((0 - 0)^2 + (1.42 - 0)^2)d = 1.42 cm = 0.0142 m

Now we can substitute all the values into the formula:F = k * q1 * q2 / r^2F = (9 x 10^9 Nm^2/C^2) * (13.96 x 10^-9 C) * (-25.35 x 10^-9 C) / (0.0142 m)^2F = -4.26 x 10^-2 N = 0.0426 N (to three significant figures)

Therefore, the magnitude of the electric force on Object A is 0.0426 N.

For further information on Electric force visit :

https://brainly.com/question/13099698

#SPJ11

The magnitude of the electric force on object A is 8.10×10⁻² N.

The electric force between two charges can be determined using Coulomb's Law which is defined as F = k q1 q2 / r², where F is the force exerted by two charges, q1 and q2, k is the Coulomb constant, and r is the distance between the two charges.

Coulomb's Law states that the electric force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

The electric force between object A and object B is given as F = k(q1q2 / r²)

Here, q1 = 13.96 nC and q2 = -25.35 nC.

Therefore, the electric force between object A and object B is given as F = k q1 q2 / r²

F = 9 x 10⁹ (13.96 x 10⁻⁹) (25.35 x 10⁻⁹) / (0.0142)²

F = 8.10 x 10⁻² N.

Thus, the magnitude of the electric force on object A is 8.10×10⁻² N.

Learn more about Coulomb's Law:

https://brainly.com/question/506926

#SPJ11

After a fall, a 96 kg rock climber finds himself dangling from the end of a rope that had been 17 m long and 9.8 mm in diameter but has stretched by 3.4 cm. For the rope, calculate (a) the strain, (b) the stress, and (c) the Young's modulus.

Answers

The strain is 0.002, the stress is approximately 1.25 × 10^7 Pa, and Young's modulus is approximately 6.25 × 10^9 Pa.

To calculate the strain, stress, and Young's modulus for the given situation, we'll use the following formulas and information:

The formula for strain:

Strain (ε) = ΔL / L

The formula for stress:

Stress (σ) = F / A

Formula for Young's modulus:

Young's modulus (E) = Stress / Strain

Given information:

Mass of the rock climber (m) = 96 kg

Length of the rope (L) = 17 m

The original meter of the rope (d) = 9.8 mm = 0.0098 m

Change in length of the rope (ΔL) = 3.4 cm = 0.034 m

First, let's calculate the strain (ε):

Strain (ε) = ΔL / L

Strain (ε) = 0.034 m / 17 m

Strain (ε) = 0.002

Next, we need to calculate the stress (σ):

To calculate the force (F) exerted on the rope, we'll use the gravitational force formula:

Force (F) = mass (m) × gravitational acceleration (g)

Gravitational acceleration (g) = 9.8 m/s²

Force (F) = 96 kg × 9.8 m/s²

Force (F) = 940.8 N

To calculate the cross-sectional area (A) of the rope, we'll use the formula for the area of a circle:

Area (A) = π × (radius)²

Radius (r) = (diameter) / 2

Radius (r) = 0.0098 m / 2

Radius (r) = 0.0049 m

Area (A) = π × (0.0049 m)²

Area (A) = 7.54 × 10^-5 m²

Now, we can calculate the stress (σ):

Stress (σ) = F / A

Stress (σ) = 940.8 N / 7.54 × 10^-5 m²

Stress (σ) ≈ 1.25 × 10^7 Pa

Finally, we can calculate Young's modulus (E):

Young's modulus (E) = Stress / Strain

Young's modulus (E) = (1.25 × 10^7 Pa) / 0.002

Young's modulus (E) = 6.25 × 10^9 Pa

Therefore, for the given rope, the strain is 0.002, the stress is approximately 1.25 × 10^7 Pa, and Young's modulus is approximately 6.25 × 10^9 Pa.

To know more about Young's modulus visit:

https://brainly.com/question/13257353

#SPJ11

Determine the x-component of a vector in the xy-plane that has a y- component of -5.6 m so that the overall magnitude of the vector is 11.6 m. Assume that the vector is in Quadrant IV.

Answers

The x-component of the given vector which is in  Quadrant IV is 11.41 m.

Given Data: y-component of a vector = -5.6 m and the overall magnitude of the vector is 11.6 m

Quadrant: IV

To find: the x-component of a vector.

Formula : Magnitude of vector = √(x² + y²)

Magnitude of vector = √(x² + (-5.6)²)11.6²

= x² + 5.6²135.56 = x²x

= ±√(135.56 - 5.6²)x

= ±11.41 m

Here, the vector is in quadrant IV, which means the x-component is positive is x = 11.41 m

So, the x-component of the given vector which is in  Quadrant IV is 11.41 m.

Learn more about Magnitude and Quadrant https://brainly.com/question/4553385

#SPJ11

The magnetic flux through a coil containing 10 loops changes
from 20W b to −20W b in 0.03s. Find the induced voltage .

Answers

The induced voltage in the coil is approximately 13333.33 volts. The induced voltage in a coil can be determined using Faraday's law of electromagnetic induction.

The induced voltage in a coil can be determined using Faraday's law of electromagnetic induction, which states that the induced voltage is equal to the rate of change of magnetic flux through the coil. The formula to calculate the induced voltage is:
V = -NΔΦ/Δt where V is the induced voltage, N is the number of loops in the coil, ΔΦ is the change in magnetic flux, and Δt is the time interval over which the change occurs.
In this case, the coil contains 10 loops, and the change in magnetic flux is from 20 Wb to -20 Wb. The time interval over which this change occurs is 0.03 s. Substituting these values into the formula, we have:
V = -10 (-20 - 20) / 0.03
Simplifying the calculation, we find: V = 13333.33 volts

Therefore, the induced voltage in the coil is approximately 13333.33 volts.

Learn more about Faraday's law here:

https://brainly.com/question/11903316

#SPJ11

A 8.9- μF and a 4.1- μF capacitor are connected in series across a 24-V battery. What voltage is required to charge a parallel combination of the two capacitors to the same total energy?

Answers

91.7 V voltage is required to charge a parallel combination of the two capacitors to the same total energy

Capacitors C1 = 8.9 μF, C2 = 4.1 μF Connected in series across 24 V battery.

We know that the capacitors in series carry equal charges.

Let the total charge be Q.

Then;

Q = CV1 = CV2

Let's find the total energy E1 in the capacitors.

We know that energy stored in a capacitor is;

E = (1/2)CV²

Putting the values;

E1 = (1/2)(8.9x10⁻⁶)(24)² + (1/2)(4.1x10⁻⁶)(24)²

E1 = 5.1584 mJ

Now the capacitors are connected in parallel combination.

Let's find the equivalent capacitance Ceq of the combination.

We know that;

1/Ceq = 1/C1 + 1/C2

Putting the values;

1/Ceq = 1/8.9x10⁻⁶ + 1/4.1x10⁻⁶

Ceq = 2.896 μF

Now, let's find the voltage V2 required to store the same energy E1 in the parallel combination of the capacitors.

V2 = √(2E1/Ceq)

V2 = √[(2x5.1584x10⁻³)/(2.896x10⁻⁶)]

V2 = 91.7 V

Therefore, 91.7 V voltage is required to charge a parallel combination of the two capacitors to the same total energy.

Learn more about the capacitors:

brainly.com/question/21851402

#SPJ11

An 93kg diver inhales to have a body density of 948 kg/m3, then swims to the bottom of a shallow sea (sea water density = 1024 kg/m") and begins to float to the surface. What is his acceleration? (g=9.8 m/s2)

Answers

The diver's acceleration is approximately 1.01 m/s^2.

To calculate the diver's acceleration, we need to consider the forces acting on the diver.

1. Weight force: The weight force acts downward and is given by the formula:

Weight = mass × gravity

             = 93 kg × 9.8 m/s^2

             = 911.4 N

2. Buoyant force: When the diver inhales to have a body density less than the surrounding water, there will be an upward buoyant force acting on the diver. The buoyant force is given by:

Buoyant force = fluid density × volume submerged × gravity

The volume submerged is equal to the volume of the diver. Since the diver's body density is 948 kg/m^3, we can calculate the volume submerged as:

Volume submerged = mass / body density

                                 = 93 kg / 948 kg/m^3

                                 = 0.0979 m^3

  Now we can calculate the buoyant force:

  Buoyant force = 1024 kg/m^3 × 0.0979 m^3 × 9.8 m/s^2

                           = 1005.5 N

Now, let's calculate the net force acting on the diver:

Net force = Buoyant force - Weight

         = 1005.5 N - 911.4 N

         = 94.1 N

Since the diver is floating to the surface, the net force is directed upward. We can use Newton's second law to calculate the acceleration:

Net force = mass × acceleration

Rearranging the formula, we find:

Acceleration = Net force / mass

            = 94.1 N / 93 kg

            ≈ 1.01 m/s^2

Therefore, the diver's acceleration is approximately 1.01 m/s^2.

Learn more about acceleration https://brainly.com/question/460763

#SPJ11

Exercise 3: Radio waves travel at the speed of 3x10 m/s. If your radio tunes to a station that broadcasts with a wavelength of 300m. At what frequency does this radio transmit?

Answers

The frequency at which the radio transmits is approximately 1 MHz.

The speed of light in a vacuum is approximately 3 × 10^8 m/s, and radio waves travel at the speed of light. The relationship between the speed of light (c), frequency (f), and wavelength (λ) is given by the equation c = f * λ.

Rearranging the equation to solve for frequency, we have f = c / λ.

Substituting the given values, with the speed of light (c) as 3 × 10^8 m/s and the wavelength (λ) as 300 m, we can calculate the frequency (f).

f = (3 × 10^8 m/s) / (300 m)

= 1 × 10^6 Hz

= 1 MHz

Therefore, the radio transmits at a frequency of approximately 1 MHz.

To learn more about frequency , click here : https://brainly.com/question/14316711

#SPJ11

Bee Suppose, you have an ancient artifact containing about 1.00 g of carbon. How many atoms of carbon does it have? Natural (or "fresh") carbon has one atom of radioactive carbon 14c for every 7.70x10'of stable 12C atoms. How many 140 atoms would a fresh sample containing 1.00 g of carbon have? The half life of 14C is 5730 years. How many disintegrations (decays) per second would a fresh natural sample produce? When placing the ancient sample containing 1 g of carbon near Geiger counter you found that the activity of it is only one tenth of this number. How old is the ancient sample then?

Answers

The ancient artifact containing 1.00 g of carbon has approximately 8.34 x 10²² carbon atoms. A fresh sample with 1.00 g of carbon would have approximately 1.30 x 10¹⁹ 14C atoms.

To calculate the number of carbon atoms in the ancient artifact:

1. Convert the mass of carbon to moles:

Number of moles = mass (g) / molar mass of carbon

Molar mass of carbon = 12.01 g/mol

2. Convert moles to number of atoms:

Number of atoms = Number of moles × Avogadro's constant

Avogadro's constant = 6.022 x 10²³ atoms/mol

To calculate the number of 14C atoms in a fresh sample containing 1.00 g of carbon:

1. Determine the number of stable 12C atoms:

Number of 12C atoms = mass of carbon (g) / molar mass of 12C

2. Determine the number of 14C atoms using the ratio given:

Number of 14C atoms = Number of 12C atoms / (7.70 x 10⁻¹⁰)

To calculate the number of disintegrations (decays) per second in a fresh natural sample:

1. Determine the decay constant (λ) using the half-life (t1/2):

λ = ln(2) / t1/2

2. Calculate the number of disintegrations per second:

Number of disintegrations = Number of 14C atoms × λ

To determine the age of the ancient sample:

1. Divide the activity of the ancient sample (one-tenth of the fresh sample) by the number of disintegrations per second for the fresh sample:

Age = ln(0.1) / λ

Using these calculations, you can find the number of carbon atoms, 14C atoms in a fresh sample, the number of disintegrations per second, and the age of the ancient sample.

Read more about Carbon dating here: https://brainly.com/question/23266034

#SPJ11

Show how to calculate the sample standard deviation (for a small sample size) of these numbers: 23, 24, 26, 28, 29, 28, 26, 24. Display all steps

Answers

The Sample Standard Deviation is 1.97. The sample standard deviation is a statistical measure that is used to determine the amount of variation or dispersion of a set of data from its mean.

To calculate the sample standard deviation of the given numbers, follow these steps:

Step 1: Find the mean of the given numbers.

Step 2: Subtract the mean from each number to get deviations.

Step 3: Square each deviation to get squared deviations.

Step 4: Add up all squared deviations.

Step 5: Divide the sum of squared deviations by (n - 1), where n is the sample size.

Step 6: Take the square root of the result from Step 5 to get the sample standard deviation.

It is calculated as the square root of the sum of squared deviations from the mean, divided by (n - 1), where n is the sample size.

To calculate the sample standard deviation of the given numbers, we need to follow the above-mentioned steps.

First, find the mean of the given numbers which is 26. Next, subtract the mean from each number to get deviations. The deviations are -3, -2, 0, 2, 3, 2, 0, and -2. Then, square each deviation to get squared deviations which are 9, 4, 0, 4, 9, 4, 0, and 4. After that, add up all squared deviations which is 34. Finally, divide the sum of squared deviations by (n - 1), where n is the sample size (8 - 1), which equals 4.86. Now, take the square root of the result from Step 5 which equals 1.97. Therefore, the sample standard deviation is 1.97.

To know more about the standard deviation visit:

https://brainly.com/question/475676

#SPJ11

Required information A scuba diver is in fresh water has an air tank with a volume of 0.0100 m3. The air in the tank is initially at a pressure of 100 * 107 Pa. Assume that the diver breathes 0.500 l/s of air. Density of fresh water is 100 102 kg/m3 How long will the tank last at depths of 5.70 m² min

Answers

In order to calculate the time the tank will last, we need to consider the consumption rate of the diver and the change in pressure with depth.

As the diver descends to greater depths, the pressure on the tank increases, leading to a faster rate of air consumption. The pressure increases by 1 atm (approximately 1 * 10^5 Pa) for every 10 meters of depth. Therefore, the change in pressure due to the depth of 5.70 m²/min can be calculated as (5.70 m²/min) * (1 atm/10 m) * (1 * 10^5 Pa/atm).

To find the time the tank will last, we can divide the initial volume of the tank by the rate of air consumption, taking into account the change in pressure. However, we need to convert the rate of air consumption to cubic meters per second to match the units of the tank volume. Since 1 L is equal to 0.001 m³, the rate of air consumption becomes 0.500 * 10^-3 m³/s.

Finally, we can calculate the time the tank will last by dividing the initial volume of the tank by the adjusted rate of air consumption. The formula is: time = (0.0100 m³) / ((0.500 * 10^-3) m³/s + change in pressure). By plugging in the values for the initial pressure and the change in pressure, we can calculate the time in seconds or convert it to minutes by dividing by 60.

In the scuba diver's air tank with a volume of 0.0100 m³ and an initial pressure of 100 * 10^7 Pa will last a certain amount of time at depths of 5.70 m²/min. By considering the rate of air consumption and the change in pressure with depth, we can calculate the time it will last. The time can be found by dividing the initial tank volume by the adjusted rate of air consumption, taking into account the change in pressure due to the depth.

learn more about scuba diver here:

brainly.com/question/20530297

#SPJ11

A light ray of wavelength 589 nm traveling through air is incident on a smooth, flat slab of crown glass. If θ1 = 30° then: (A) Find the angle of refraction. (B) Find the speed of this light once it enters the glass. (C) What is the wavelength of this light in the glass? (D) What is the frequency of this light inside the glass? (E) Calculate the refracted exit angle. (F) Calculate the critical angle of refraction.

Answers

a. The angle of refraction is 52.19°.

b. The speed of light once it enters the glass is 1.97 × 108 m/s.

c. The wavelength of this light in the glass is 387.50 × 10⁻⁹ m.

d. The frequency of this light inside the glass is 5.08 × 10¹⁴ Hz.

e. The refracted exit angle is 52.19°.

f.  The critical angle of refraction is 41.1°.

Given: Wavelength of light, λ = 589 nm

           Angle of incidence in air, θ1 = 30°

          Angle of refraction in glass, θ2 = ?

Formulae: Snell's law of refraction, n1 sin θ1 = n2 sin θ2. The refractive index of glass with respect to air, ng = 1.52 (Given) Critical angle of refraction, sin θc = 1 / n2

Part A: Angle of refraction is given by Snell's law of refraction

n1 sin θ1 = n2 sin θ2ng

sin θ1 = 1.52

sin θ2sin θ2 = (ng / 1)

sin θ1sin θ2 = 1.52 × sin 30°sin θ2 = 0.78θ2 = 52.19°

The angle of refraction is 52.19°.

Part B: Speed of light in air, v1 = 3 × 108 m/s

Speed of light in glass, v2 = ?

We know that the refractive index of glass is given by

ng = v1 / v2

where v1 is the speed of light in air and

           v2 is the speed of light in glass

v2 = v1 / ngv2 = 3 × 108 / 1.52v2 = 1.97 × 108 m/s

The speed of light once it enters the glass is 1.97 × 108 m/s.

Part C: Wavelength of light in glass, λ2 = ?

We know that the refractive index of glass is given by

ng = c / v2

where c is the speed of light in vacuum and

           v2 is the speed of light in glass

λ2 = λ / ng

λ2 = 589 × 10⁻⁹ / 1.52

λ2 = 387.50 × 10⁻⁹ m

The wavelength of this light in the glass is 387.50 × 10⁻⁹ m.

Part D: Frequency of light inside the glass, f2 = ?

We know that frequency is given by the formula,

v = f λ

where v is the velocity of light and

          λ is the wavelength of light

v2 = f2

λ2f2 = v2 / λ2f2 = 1.97 × 10⁸ / 387.50 × 10⁻⁹f2 = 5.08 × 10¹⁴ Hz

The frequency of this light inside the glass is 5.08 × 10¹⁴ Hz.

Part E: Refracted exit angle is given by Snell's law of refraction

n1 sin θ1 = n3 sin θ3ng

sin θ1 = 1 sin θ3sin θ3 = ng sin θ1sin θ3 = 1.52 × sin 30°sin θ3 = 0.78θ3 = 52.19°

The refracted exit angle is 52.19°.

Part F: Critical angle of refraction is given by,

sin θc = 1 / n2sin θc = 1 / 1.52θc = sin⁻¹ (1 / 1.52)θc = 41.1°

The critical angle of refraction is 41.1°.

Learn more about angle of refraction at https://brainly.com/question/30952453

#SPJ11

Suppose that the light bulb in Figure 22.4 b is a 60.0−W bulb with a resistance of 243Ω. The magnetic fueld has a magnitude of 0.421 T. and the length of the rod is 1.13 m. The only resistance in the circuit is that duc to the bulb. What is the shortest distance along the rails that the rod would have to slide for the bulb to remain lit for one-half second? Figure 22.4b Units

Answers

The shortest distance along the rails that the rod would have to slide for the bulb to remain lit for one-half second is 30.61 m

The force F is acting opposite to the force of friction.The shortest distance d is the distance at which the force of friction is maximum.

So, acceleration of the rod will be zero, i.e. F = frictional force.

Maximum frictional force Fmax = µN

Where µ is the coefficient of friction and N is the normal force.

N = mg = (mass of the rod) x g

Now, F = µmg ...........(iv)

Putting value of force from (iii) in (iv), we get

µmg = (60/2BL) x B x L x dµ = 30/dg

So, the shortest distance along the rails that the rod would have to slide for the bulb to remain lit for one-half second is given byd = 30/(µg)

Substituting the given value of µ as 0.10 and g = 9.8 m/s² we get,d = 30/(0.10 x 9.8) = 30.61 m

Learn more about the distance at

https://brainly.com/question/28997408

#SPJ11

Other Questions
Explain primary and secondary surveys of a traumapatient. Which of the following is FALSE? a. Biological membranes usually contain lipids, proteins, and carbohydrates. b. Proteins can allow specific molecules to cross membranes. c. Simple membranes are impermeable to other molecules. d. Membrane are held together noncovalently. e. Membranes are two molecules thick. How are chords inverted? O The chord become major if it was minor. O The chord is extended by adding additional notes. O The chords gets a seventh on it and is used as a dominant chord. O The note was on the bottom of the chord, is moved up by an octave. Evaluate What are the advantages of todays faster communications? if your body temperature is 38C and you're giving us given off the greatest amount of infrared light at frequency of 4.2x10^13 Hz.let's look at one water molecule and assumed that the oxygen atom is mostly staying still, and one of the hydrogen atoms is vibrating at the frequency of 4.2x10^13 Hz. we can model this oscillation as a mass on a spring. It hydrogen atom is just a proton and an electron.1a. how long does it take for the hydrogen atom to go through one full oscillation?2a. what is the spring constant?3a. what is the amplitude of the oscillation?4a. what is the hydrogen atoms maximum speed while it's oscillating? "What is the long-term financial impact related to the use of the new tax forms? One researcher reported that after the first year the new form was in use, the federal government increased revenue by about 6% compared to the year before use of the new form (Appelbaum, 2015). Would the use of the new form continue to show increases in revenue in future years from the preceding tax years? Lets assume we have the following data from fifteen different tax years: the percentage of tax forms that have the signature on top submitted during each tax year and the percentage change (from the previous tax year) in revenue collected by the federal government.Which statistical test could be used to predict the percentage change in revenue based upon the number of new tax forms submitted?z testsingle-sample t testpaired-samples t testindependent-samples t testone-way between-groups ANOVAone-way within-groups ANOVAtwo-way between-groups ANOVAPearson correlation coefficientregression" traveling?The displacement of a wave traveling in the negative y-direction is D(y,t) = (5.10 cm ) sin ( 6.30 y+ 63.0 t), where y is in m and t is in s. In which direction is the waveO-zOzO -yO yO -xOxWaves Part BWhat is the frequency of this wave in units of Hz?Waves Part CWhat is the wavelength, in m, of this wave in Part A. enter your answer in 3 decimals.Waves Part DWhat is the maximum velocity of a particle in the wave in units of m/s? enter your answer in 2 decimals 1. If personality could be broken down into individual qualities or styles, what attributes would be considered desirable for college students? Which ones would be undesirable? 2. Do you have what would be considered desirable personality qualities for a college student? In what ways does that impact you? 3. In what ways does society come to conclusions about the personality traits associated with individuals? Although we all tend to "size each other up," what could be the problem with that? Who is the creator of each source--the writer, the speaker? And, who does the source represent? Fully introduce the creator of the sources you select. What do you learn about the historical speaker or writer based on the evidence from this source? What important historical context helps explain the source? What evidence (direct quote) can you include from the source to support your summary of what you have learned? What specific topic would you use for your informative speech?Who would be your audience? Where, specifically, would youresearch? The unit cost, in dollars, to produce tubs of ice cream is $14 and the fixed cost is $6624. The price-demand function, in dollars per tub, is p(x) = 348 - 2x Find the cost function. C(x) = Find the revenue function. R(T) = Find the profit function. P(x) = At what quantity is the smallest break-even point? Select an answer Suppose a string joins two objects so they move together in a straight line. When calculating the acceleration of the two objects, should you consider the tension? Explain your reasoning. Doug Bernard specializes in cross-rate arbitrage. He notices thefollowing quotes:USD/CHF = 0.9010 AUD/USD = 0.7633 and AUD/CHF = 0.6850He has $1,000,000 to do arbitrage. He believes the USD/CHF is Two Firms Compete In A Market To Sell A Homogeneous Product With Inverse Demand Function P=200Q. Each Firm Produces At A Constant Marginal Cost Of S50 And Has No Fixed Costs Assuming The Firms Collude And Act As A Monopolist, Calculate The Following A) Equatibnum Price P B) Equilbrium Quantity Q : 2 C) Total Proht: D) Total Welfare Loss Relative To Perfect What compliance and human capital risks might LTD face? helpppppp i need help with this QUESTIONS 1) From the observations of force-acceleration and mass-acceleration, what can you conclude about the validity of Newton's second law of motion, F = ma? Have you verified Newton's second law? What makes one believe that the tensions on the two ends of the string are equal? Is this an instance of Newton's third law of motion? Explain. 4v Previously acceleration was defined as the time rate of change of velocity, a= t F Now acceleration is defined as the ratio of force to mass, a = Which is correct? m What is the difference in the two expressions for acceleration? (a) Calculate the classical momentum of a proton traveling at 0.979c, neglecting relativistic effects. (Use 1.67 1027 for the mass of the proton.)(b) Repeat the calculation while including relativistic effects.(c) Does it make sense to neglect relativity at such speeds?yes or no The stotement that best describes Hyperosmolor Hyperglycemic Syndrome isSelect one a.A metobolic disordes of type DM chorocterized by metabolic ocio b.A metobolic disorder of type 2 DM occurring with younga.ltc.A metobolic disordet of type 2 DM characterized by severe con d.A lite threatening disorder that requires tuid restriction What is the potential difference across a 10.0mH inductor if the current through the inductor drops from 130 mA to 50.0 mA in 14.0 s? Express your answer with the appropriate units.