What is the unit of Strain?
A.
Pascal,
B.
None of the mentioned
C.
No unit
D.
Pounds per square inch, psi

Answers

Answer 1

The unit of Strain is B. None of the mentioned

The correct answer is B) None of the mentioned.

Strain is a dimensionless quantity and does not have a unit. It is defined as the ratio of the change in length (or deformation) to the original length of an object. Since it is a ratio of two lengths, the units cancel out, resulting in a dimensionless quantity.

Strain is defined as the ratio of change in dimension of a body to the original dimension. E.g. longitudinal strain is defined as the ratio of change in length to the original length.

Since it is a ratio of two quantities having the same dimension, strain is a unitless quantity.

So, the correct answer is B) None of the mentioned

Learn more about Strain at

brainly.com/question/29586595

#SPJ11


Related Questions

N part c of the lab, when two wires are in series, so that current flows in opposite directions inside them, the directions of the magnetic fields in the region between the two wires are ______.

Answers

When two wires are placed in series and current flows in opposite directions inside them, the magnetic fields generated by each wire will interact in the region between the two wires. According to the right-hand rule for determining the direction of a magnetic field, we can determine the directions of the magnetic fields in this scenario.



The right-hand rule states that if you point your thumb in the direction of the current flow, your curled fingers will indicate the direction of the magnetic field created by that current. In this case, since the current flows in opposite directions in the two wires, the magnetic fields will also be in opposite directions.

To be more specific, let's assume that wire A has current flowing from left to right and wire B has current flowing from right to left. If you place your right-hand thumb along wire A pointing towards the right, your curled fingers will wrap around wire A in a clockwise direction, indicating the direction of the magnetic field created by wire A. Conversely, if you place your right-hand thumb along wire B pointing towards the left, your curled fingers will wrap around wire B in a counterclockwise direction, indicating the direction of the magnetic field created by wire B.

Therefore, the magnetic fields in the region between the two wires will be in opposite directions. Wire A will create a clockwise magnetic field, while wire B will create a counterclockwise magnetic field.

For more information on right-hand rule visit:

brainly.com/question/30641867

#SPJ11

M An inductor (L=400mH), a capacitor (C=4.43µF) , and a resistor (R=500Ω) are connected in series. A 50.0 -Hz AC source produces a peak current of 250mA in the circuit. (a) Calculate the required peak voltage ΔVmax.

Answers

The required peak voltage ΔVmax in the circuit is approximately 190.245V.

Given:
L = 400mH = 0.4H
C = 4.43µF = 4.43 * 10⁻⁶ F
R = 500Ω
f = 50.0 Hz
Imax = 250mA = 0.25A

Now, let's calculate XL:
XL = 2π * 50.0 * 0.4 = 125.66Ω

Next, let's calculate XC:
XC = 1/(2π * 50.0 * 4.43 * 10⁻⁶) = 721.85Ω

Now, let's calculate Z:
Z = √(500² + (125.66 - 721.85)²) = 760.98Ω

Finally, let's calculate the required peak voltage ΔVmax:
ΔVmax = Imax * Z = 0.25 * 760.98 = 190.245V


In summary, the required peak voltage ΔVmax in the circuit is approximately 190.245V.

To know more about peak voltage, click here

https://brainly.com/question/31870573

#SPJ11

Assertion (a): the most commonly used liquid in a thermometer is mercury. reason (r): mercury has high coefficient of thermal expansion. as the temperature rises, the mercury in the bulb expands and rises.

Answers

The most typical liquid employed in thermometers is mercury, according to assertion. Mercury has a high coefficient of thermal expansion, which is the reason (r). The mercury in the thermometer's bulb expands and rises as the temperature rises.

Thus, A bulb filled with a liquid that expands or contracts in response to temperature variations commonly makes up thermometers, which are instruments used to measure temperature.  

While many liquids can be used in thermometers, mercury has historically been one of the most popular materials for a number of reasons.

Mercury does actually have a high coefficient of thermal expansion, supporting reason (r). It therefore considerably expands when heated and compresses when cooled.

Thus, The most typical liquid employed in thermometers is mercury, according to assertion. Mercury has a high coefficient of thermal expansion, which is the reason (r). The mercury in the thermometer's bulb expands and rises as the temperature rises.

Learn more about Mercury, refer to the link:

https://brainly.com/question/19940784

#SPJ4

At what rate must the potential difference between the plates of a parallel-plate capacitor with a 2.3 uF capacitance be changed to produce a displacement current of 1.6 A? V/s

Answers

The potential difference between the plates of the parallel-plate capacitor needs to change at a rate of 0.696 V/s to produce a displacement current of 1.6 A.

The required rate of change is calculated by using the formula for displacement current in a parallel-plate capacitor :

I_d = ε₀ * A * dV/dt,

where I_d is the displacement current, ε₀ is the vacuum permittivity (8.85 x 10^(-12) F/m), A is the area of the plates, and dV/dt is the rate of change of the potential difference.

Rearranging the formula, we can solve for dV/dt:

dV/dt = I_d / (ε₀ * A).

Given that the capacitance C = ε₀ * A / d, where d is the separation between the plates, we rewrite the formula as:

dV/dt = (I_d * d) / (C * ε₀).

Substituting the given values, with C = 2.3 x 10^(-6) F and I_d = 1.6 A, we have:

dV/dt = (1.6 A * d) / (2.3 x 10^(-6) F * 8.85 x 10^(-12) F/m).

Calculating the result gives:

dV/dt ≈ 0.696 V/s.

To know more about parallel-plate capacitors, refer to the link:

https://brainly.com/question/12733413#

#SPJ11

an object with a mass of 0.5 kg is released from rest at 1.5 m above the ground. what is its acceleration if it takes 0.251 s to fall 0.32m?

Answers

The acceleration of the object is approximately 12.72 m/s².

To calculate the acceleration of the object, we can use the kinematic equation:

d = ut + (1/2)at²

where:

d = displacement (0.32 m),

u = initial velocity (0 m/s, as the object is released from rest),

t = time taken (0.251 s),

a = acceleration (to be determined).

Rearranging the equation, we get:

a = (2d - 2ut) / t²

Substituting the given values, we have:

a = (2 * 0.32 m - 2 * 0 m/s * 0.251 s) / (0.251 s)²

Simplifying the equation, we find:

a ≈ 12.72 m/s²

Therefore, the acceleration of the object is approximately 12.72 m/s².

Learn more about acceleration

brainly.com/question/2303856

#SPJ11

what is the flux through surface 1 φ1, in newton meters squared per coulomb?

Answers

The flux through surface 1 (φ1) is 3200 Newton meters squared per coulomb.

To calculate the flux through surface 1 (φ1) in Newton meters squared per coulomb, we can use the formula:

φ1 = E * A * cos(θ)

where E is the magnitude of the electric field, A is the area of the surface, and θ is the angle between the electric field vector and the normal vector of the surface.

In this case, the magnitude of the electric field is given as 400 N/C. The surface is a rectangle with sides measuring 4.0 m in width and 2.0 m in length.

First, let's calculate the area of the surface:

A = width * length

A = 4.0 m * 2.0 m

A = 8.0 m²

Since the surface is a rectangle, the angle θ between the electric field and the normal vector is 0 degrees (cos(0) = 1).

Now, we can substitute the given values into the flux formula:

φ1 = E * A * cos(θ)

φ1 = 400 N/C * 8.0 m² * cos(0)

φ1 = 3200 N·m²/C

Therefore, the flux through surface 1 (φ1) is 3200 Newton meters squared per coulomb.

The question should be:
what is the flux through surface 1 φ1, in newton meters squared per coulomb? The magnitude of electric field is 400N/C. Where, the surface is a rectangle, and the sides are 4.0 m in width and 2.0 min length.

Learn more about flux at: https://brainly.com/question/10736183

#SPJ11

In the figure particles with charges q1 = +3e and q2 = -17e are fixed in place with a separation of d = 20.9 cm. With V = 0 at infinity, what are the finite (a) positive and (b) negative values of x at which the net electric potential on the x axis is zero?

Answers

The electric potential at a point is the work that would be required to bring a unit charge from an infinite distance to that point against the electric field. The potential V at a point (x, y, z) due to a point charge q located at the origin is given by:$$V

= \frac{1}{4\pi \epsilon_0}\frac{q}{r}$$where r is the distance between the point charge and the point at which potential is being calculated, ε0 is the permittivity of free space. Particles with charges q1

= +3e and q2

= -17e are fixed in place with a separation of d

= 20.9 cm. With V

= 0 at infinity,

= 0.15 × 20.9

= 3.135 cm. T

= \frac{d}{2} - \frac{q_1}{q_1-q_2}$$$$

= 10.45 - 0.15d$$$$

= -2.1885

To know more about permittivity  visit:

https://brainly.com/question/30748663

#SPJ11

01111110 00110110 00000111 00100011 00101110 011111010 FCS 01111110 Answer the following question if the above frame sent from Station A to Station B, 1-How many flag used in? 2-How many byte used for address and what is the address? 3-What is the type of the frame? 4-What is the Current frame number? 5-How many frames expected to send?

Answers

It is impossible to determine the number of frames expected to send with the given information.

Given the message format:

01111110 00110110 00000111 00100011 00101110 0111110FCS 01111110, answer the following questions if the frame is sent from Station A to Station B:

1. There are two flags used in the message, one at the beginning and one at the end.

2. There are no bytes used for the address. Hence, the address is not available.

3. It is an Information Frame (I-frame) because it is the only type of frame that contains the sequence number.

4. The current frame number is 0110.

5. The number of frames that are expected to send is not available in the given message frame.

Therefore, it is impossible to determine the number of frames expected to send with the given information. The number of frames expected to send is usually predetermined during the communication protocol design.

Learn more about bytes

brainly.com/question/15166519

#SPJ11

what is the limiting angle of resolution for the eye if the pupil diameter of the eye is 4.0 mm, the wavelength of the light is 600 nm, and index of refraction of the liquid in the eye is 1.34?

Answers

The limiting angle of resolution for the eye is 183 x 10^(-12) radians.

The limiting angle of resolution for the eye can be calculated using the formula:

θ = 1.22 * (λ / D)

where θ is the limiting angle of resolution, λ is the wavelength of light, and D is the diameter of the pupil.

Given:

λ = 600 nm = 600 x 10^(-9) m

D = 4.0 mm = 4.0 x 10^(-3) m

Substituting these values into the formula:

θ = 1.22 * (600 x 10^(-9) m) / (4.0 x 10^(-3) m)

  = 1.22 * (600 / 4.0) x 10^(-9 - 3) m

  = 1.22 * 150 x 10^(-12) m

  = 183 x 10^(-12) m

Therefore, the limiting angle of resolution for the eye is 183 x 10^(-12) radians.

Visit here to learn more about wavelength brainly.com/question/31143857

#SPJ11

If an inductor carrying a 1.80 a current stores an energy of 0.250 mj, what is its inductance? mh (b) how much energy does the same inductor store if it carries a 3.2 a current?

Answers

The energy stored in an inductor can be calculated using the formula:
E = 0.5 * L * I^2
where E is the energy in joules, L is the inductance in henries, and I is the current in amperes.

To find the inductance, we can rearrange the formula:
L = 2 * E / I^2
Given that the current is 1.80 A and the energy is 0.250 mJ (0.250 * 10^-3 J), we can substitute these values into the formula to find the inductance:
L = 2 * 0.250 * 10^-3 J / (1.80 A)^2
L = 0.1389 * 10^-3 J / 3.24 A^2
L = 0.0428 * 10^-3 J/A^2
L = 42.8 * 10^-6 J/A^2
Therefore, the inductance is 42.8 μH.
To find the energy when the current is 3.2 A, we can substitute this value into the formula:
E = 0.5 * L * (3.2 A)^2
E = 0.5 * 42.8 μH * (3.2 A)^2
E = 0.5 * 42.8 * 10^-6 J/A^2 * 10.24 A^2
E = 0.2196 * 10^-6 J
E = 0.2196 μJ
So, the same inductor would store 0.2196 μJ of energy when carrying a 3.2 A current.

To know more about inductance, visit:

https://brainly.com/question/31127300

#SPJ11

d. Keep the plate area at 100.0mm2 and separation at 10.0mm, slide the dielectric all the way in between the plates. Fill out table-2 below for the various insulators. TABLE 2 Dielectric Constant 5 Glass (4.7) 4 Paper (3.5) 3 Teflon (2.1) 1 Capacitance 4.43 x 10^-13 F 4.16 x 10^-13 F 3.54 x 10^-13 F 3.10 x 10^-13 F 2.66 x 10^-13 F 1.86 x 10^-13 F 0.89 x 10^-13 F e. Describe the pattern you found.

Answers

The pattern observed is that the capacitance decreases as the dielectric constant of the insulator decreases. This is as shown below.

Dielectric Constant (K)  Capacitance (C)

1                    5                      4.43 × 10⁻¹³

2                   4                      4.16 × 10⁻¹³

3                   3                      3.54 × 10⁻¹³

4                   1                       0.89 × 10⁻¹³

Plate area, A = 100.0 mm2

Separation between the plates, d = 10.0 mm

Dielectric constants, K = 5, 4, 3, 1.

Capacitances, C = ?

The capacitance of a capacitor is given by the formula,

C = ε₀KA/d,

where ε₀ = 8.85 × 10−¹² F/m² is the permittivity of free space.

Substituting the values of A, d, K, and ε₀, we get

C = (8.85 × 10−¹² × 100 × K) / 10.The table can be filled as follows:

  Dielectric Constant (K)  Capacitance (C)

1                    5                      4.43 × 10⁻¹³

2                   4                      4.16 × 10⁻¹³

3                   3                      3.54 × 10⁻¹³

4                   1                       0.89 × 10⁻¹³

Dielectric Constant (K)

Capacitance (C)

5C = (8.85 × 10⁻¹² × 100 × 5) / 10 = 4.43 × 10⁻¹³ F

4C = (8.85 × 10⁻¹² × 100 × 4) / 10 = 4.16 × 10⁻¹³ F

3C = (8.85 × 10⁻¹² × 100 × 3) / 10 = 3.54 × 10⁻¹³ F

1C = (8.85 × 10⁻¹² × 100 × 1) / 10 = 0.89 × 10⁻¹³ F

The pattern observed is that the capacitance decreases as the dielectric constant of the insulator decreases. The highest capacitance is observed when the dielectric constant is 5 and the lowest capacitance is observed when the dielectric constant is 1.

This is because the higher the dielectric constant, the more charge can be stored in the capacitor, resulting in a higher capacitance.

Learn more about dielectric constant at: https://brainly.com/question/28592099

#SPJ11

one of the common errors in this experiment is overshooting the equivalence point. does this error cause an increase or decrease in the calculated mass percent?

Answers

:Overshooting the equivalence point is one of the common errors in titration experiments. This error causes the calculated mass percentage to increase. It occurs when too much titrant is added to the solution being titrated, causing the endpoint to be passed.

Titration is a chemical method for determining the concentration of a solution of an unknown substance by reacting it with a solution of known concentration. The endpoint of a titration is the point at which the reaction between the two solutions is complete, indicating that all of the unknown substance has been reacted. Overshooting the endpoint can result in errors in the calculated mass percentage of the unknown substance

.Because overshooting the endpoint adds more titrant than needed, the calculated mass percentage will be higher than it would be if the endpoint had been properly identified. This is because the volume of titrant used in the calculation is greater than it should be, resulting in a higher calculated concentration and a higher calculated mass percentage. As a result, overshooting the endpoint is an error that must be avoided during titration experiments.

To know more about overshooting visit:

https://brainly.com/question/11382623

#SPJ11

which sprinting technique is more effective: flexing the knee of the swing leg more during the swing-through, or flexing the knee of the swing leg less during the swing-through? why? (hint: 1) moment of inertia differences; 2) conservation of angular momentum in swing phase.)

Answers

Because of the decreased moment of inertia and the conservation of angular momentum, flexing the swing leg's knee more during the swing-through can be thought of as a more successful sprinting strategy. This causes the legs to move more quickly and causes the stride frequency to increase.

To analyze the effectiveness of sprinting techniques involving flexing the knee of the swing leg more or less during the swing-through, we can consider the concepts of moment of inertia and conservation of angular momentum in the swing phase.

Period of Inertia Differences: The mass distribution and rotational axis both affect the moment of inertia. The moment of inertia is decreased by bringing the swing leg closer to the body by flexing the knee more during the swing-through. As a result of the reduced moment of inertia, moving the legs is simpler and quicker because less rotational inertia needs to be overcome. Therefore, in order to decrease the moment of inertia and enable speedier leg movements, flexing the knee more during the swing-through can be beneficial.

Conservation of Angular Momentum: The body maintains its angular momentum during the sprinting swing phase. Moment of inertia and angular velocity combine to form angular momentum. The moment of inertia diminishes when the swing leg's knee flexes more during the swing-through. A reduction in moment of inertia must be made up for by an increase in angular velocity in accordance with the conservation of angular momentum. Therefore, increasing knee flexion causes the swing leg's angular velocity to increase.

Leg swing speed and stride frequency are both influenced by the swing leg's greater angular velocity. The athlete can cover more ground more quickly, which can result in a more effective sprinting technique.

In conclusion, because of the decreased moment of inertia and the conservation of angular momentum, flexing the swing leg's knee more during the swing-through can be thought of as a more successful sprinting strategy. This causes the legs to move more quickly and causes the stride frequency to increase.

To know more about moment of inertia:

https://brainly.com/question/14245281

#SPJ4

a 50 kva 220 volts 3 phase alternator delivers half rated kilovolt amperes at a power factor of 0.84 leading. The effective ac resistance between armature winding terminal is 0.18 ohm and synchronous reactance per phase is 0.25 ohm. Calculate the percent voltage regulation?

Answers

The percent voltage regulation for the given alternator is approximately 1.32%.

To calculate the percent voltage regulation for the given alternator, we can use the formula:

Percent Voltage Regulation = ((VNL - VFL) / VFL) * 100

where:

VNL is the no-load voltage

VFL is the full-load voltage

Apparent power (S) = 50 kVA

Voltage (V) = 220 volts

Power factor (PF) = 0.84 leading

Effective AC resistance (R) = 0.18 ohm

Synchronous reactance (Xs) = 0.25 ohm

First, let's calculate the full-load current (IFL) using the apparent power and voltage:

IFL = S / (sqrt(3) * V)

IFL = 50,000 / (sqrt(3) * 220)

IFL ≈ 162.43 amps

Next, let's calculate the full-load voltage (VFL) using the voltage and power factor:

VFL = V / (sqrt(3) * PF)

VFL = 220 / (sqrt(3) * 0.84)

VFL ≈ 163.51 volts

Now, let's calculate the no-load voltage (VNL) using the full-load voltage, effective AC resistance, and synchronous reactance:

VNL = VFL + (IFL * R) + (IFL * Xs)

VNL = 163.51 + (162.43 * 0.18) + (162.43 * 0.25)

VNL ≈ 165.68 volts

Finally, let's calculate the percent voltage regulation:

Percent Voltage Regulation = ((VNL - VFL) / VFL) * 100

Percent Voltage Regulation = ((165.68 - 163.51) / 163.51) * 100

Percent Voltage Regulation ≈ 1.32%

Learn more about voltage regulation at https://brainly.com/question/14407917

#SPJ11

How many times can an array with 4,096 elements be cut into two equal pieces?

a) 8

b) 12

c) 16

d) 10

Answers

10.

An array with 4,096 elements can be cut into two equal pieces 10 times. Each time we cut the array in half, we divide the number of elements by 2. Starting with 4,096, we have:

1st cut: 4,096 / 2 = 2,048

2nd cut: 2,048 / 2 = 1,024

3rd cut: 1,024 / 2 = 512

4th cut: 512 / 2 = 256

5th cut: 256 / 2 = 128

6th cut: 128 / 2 = 64

7th cut: 64 / 2 = 32

8th cut: 32 / 2 = 16

9th cut: 16 / 2 = 8

10th cut: 8 / 2 = 4

After the 10th cut, we are left with two equal pieces of 4 elements each. Therefore, the array can be cut into two equal pieces 10 times.

Learn more about :  Elements

brainly.com/question/31950312

#SPJ11

: An oscillating LC circuit consisting of a 3.0 nF capacitor and a 4.5 mh coil has a maximum voltage of 5.0 V. (a) What is the maximum charge on the capacitor? c (b) What is the maximum current through the circuit? A (c) What is the maximum energy stored in the magnetic field of the coil?

Answers

Given: An oscillating LC circuit consisting of a 3.0 nF capacitor and a 4.5 mh coil has a maximum voltage of 5.0 V. (a) What is the maximum charge on the capacitor? c (b) What is the maximum current through the circuit? A (c) What is the maximum energy stored in the magnetic field of the coil? To find:

The maximum charge on the capacitor, the maximum current through the circuit, and the maximum energy stored in the magnetic field of the coil. Solution: We know that an oscillating LC circuit consisting of a 3.0 nF capacitor and a 4.5 mh coil has a maximum voltage of 5.0 V. Maximum charge on the capacitor Q is given by;Q = VC Where, V = maximum voltage = 5.0 Cc= 3.0 nF = 3.0 × 10⁻⁹ FQ = 5 × 3 × 10⁻⁹= 15 × 10⁻⁹ = 15 nC The maximum charge on the capacitor is 15 nC.

Maximum current I is given by;I = V / XL Where,V = maximum voltage = 5.0 CXL = inductive reactance Inductive reactance XL = ωLWhere,ω = angular frequency L = 4.5 mH = 4.5 × 10⁻³ HXL = 2 × π × f × L From the formula;f = 1 / 2π√(LC) Where,C = 3.0 nF = 3.0 × 10⁻⁹ HF = 1 / 2π√(LC)F = 1 / (2π√(3.0 × 10⁻⁹ × 4.5 × 10⁻³))F = 1 / (2π × 1.5 × 10⁻⁶)F = 106.1 kHzXL = 2 × π × f × LXL = 2 × π × 106.1 × 10³ × 4.5 × 10⁻³XL = 1.5ΩI = V / XL= 5 / 1.5I = 3.33 A. The maximum current through the circuit is 3.33 A. The maximum energy stored in the magnetic field of the coil is given by;W = (1 / 2) LI²W = (1 / 2) × 4.5 × 10⁻³ × (3.33)²W = 0.025 J. The maximum energy stored in the magnetic field of the coil is 0.025 J.

To know more about magnetic field visit

https://brainly.com/question/14848188

#SPJ11

place these events in chronological order: a) galileo discovers jupiter's moons; b) copernicus proposes heliocentric model; c) newton develops law of gravitation; d) ptolemy revises aristotle's model

Answers

The chronological order of these events is as follows: Aristotle's model is proposed, followed by Ptolemy revising the model. Copernicus proposes the heliocentric model, Galileo discovers Jupiter's moons, and finally, Newton develops the law of gravitation.

The chronological order of these events is as follows:

1) Aristotle proposes his model of the universe.

2) Ptolemy revises Aristotle's model.

3) Copernicus proposes the heliocentric model.

4) Galileo discovers Jupiter's moons.

5) Newton develops the law of gravitation.

So the correct order is: d) Ptolemy revises Aristotle's model, b) Copernicus proposes heliocentric model, a) Galileo discovers Jupiter's moons, c) Newton develops law of gravitation.

Learn more about heliocentric model here :-

https://brainly.com/question/19757858

#SPJ11

Review. In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is 5.29 × 10⁻¹¹ m. (b) If this force causes the centripetal acceleration of the electron, what is the speed of the electron?

Answers

The speed of the electron in the Bohr model of the hydrogen atom can be determined using the centripetal force equation.

What is the mathematical expression for centripetal force?

According to the centripetal force equation, the force acting on the electron is equal to the product of its mass and centripetal acceleration. In this case, the force is provided by the electrostatic attraction between the electron and the proton.

The centripetal force equation is given by:

F centripetal =m⋅a centripetal

​The centripetal acceleration can be expressed as the square of the velocity divided by the radius of the orbit:

a centripetal = v2/r

The force of electrostatic attraction is given by Coulomb's law:

Felectrostatic = k⋅e2 /r2

where k is the electrostatic constant and e is the elementary charge.

Setting these two forces equal, we can solve for the velocity of the electron:

k⋅e 2/r 2 =m⋅ v 2/r2

Simplifying the equation and solving for v gives:

v= (k⋅e 2/m⋅r)1/2

Learn more about hydrogen atom

brainly.com/question/1462347

#SPJ11

Pfizer is American pharmaceutical want to invest 150m in Jordan Company, for 1 year as a tried. The project is likely to start after 6 month and would last for 1 year. The Cwrew Spot rate is The following is the yield. Country Cave of both Rate JOR USA 6o manch LS² 1 year 2.23 1.9² 1.5 year 3.3² 2.4₁ 1. What is direct and indirect risk 2. which curency would depreciate and wich would appreciate through the year; hence would fizer to loose/gain you expect 3. Advice the company which steps should take in order to minimize Cwrency risk. (5 points at least apply. on this case. ) 4. How much would the • company loose / goin in dollars. during the year. 5. phizer enter on ERA agreement with City Bank. On the setbreat day the one year rote USA was 1:31. Explain what would happen.

Answers

4. So the net gain is $84.5 million. 5. If the interest rate in Jordan is higher than 3.23%, then it may make sense for Pfizer to borrow in Jordanian dinars instead of US dollars.

1. Direct risk is the financial or economic risks that a company assumes and includes the cost of the Jordanian investment and the related expenses. Indirect risk is the country risk which includes currency exchange rate risk.

2. Since the interest rates in Jordan are higher than in the US, Pfizer would want to keep the investment in Jordanian currency. The Jordanian currency is therefore expected to appreciate, whereas the US dollar is expected to depreciate.

3. Here are the five steps Pfizer can take to minimize currency risk:

a. Pfizer can use forward contracts to fix the exchange rate for the year.

b. If the Jordanian investment has not been made yet, Pfizer can delay the investment until it has sufficient funds in Jordanian dinars.

c. Pfizer can set up a currency swap, where they agree to exchange Jordanian dinars with another company for US dollars at a fixed rate.

d. Pfizer can set up a money market hedge, where they borrow Jordanian dinars for a year and convert them into US dollars at the current rate.

They can then invest the dollars at a US money market rate.

e. Pfizer can use a natural hedge, where it increases sales in Jordan so that the dinar inflows match the investment outflows.

4. The calculation of Pfizer's profit or loss depends on the exchange rate at which the dinar is converted into dollars. The initial investment is $150 million, and the profit in dinars is:

Profit = $150m x 2.23 = JD335m.

If the dinar depreciates to $1 = JD0.7, then the profit in dollars is $234.5 million.

So the net gain is $84.5 million.

5. The Era agreement is an interest rate swap between Pfizer and Citibank, which means they agree to swap interest rate payments on a specific amount of debt.

If the one-year rate in the US is 1:31, then it means that the interest rate on US dollar debt is 3.23%.

If Pfizer has borrowed dollars from Citibank, then it will pay 3.23% interest to Citibank.

to know more about investment visit:

https://brainly.com/question/15105766

#SPJ11

In a one-dimensional harmonic oscillator problem, the Hamiltonian may also be expressed as A = holat & + 1/2) where &' and à are the creation and annihilation operators so that a n) = ln n-1) and an) = n+1 [n+1). Determine the expectation values of position and momentum operators for n).

Answers

To determine the expectation values of the position and momentum operators for the state |n), we need to calculate the inner products of the state |n) with the position and momentum operators.

Expectation value of the position operator: The position operator, denoted by x, can be expressed in terms of the creation and annihilation operators as: x = (a + a†)/√2 The expectation value of the position operator for the state |n) is given by: <x> = (n| x |n) Substituting the expression for x, we have: <x> = (n| (a + a†)/√2 |n) Using the commutation relation [a, a†] = 1, we can simplify the expression <x> = (n| (a + a†)/√2 |n) = (n| a/√2 + a†/√2 |n) = (n| a/√2 |n) + (n| a†/√2 |n) = (n| a/√2 |n) + (n| a†/√2 |n) The annihilation operator a acts on the state |n) as: a |n) = √n |n-1) Therefore, we can rewrite the expression as: <x> = √(n/2) <n-1|n> + √((n+1)/2) <n+1|n> The inner products <n-1|n> and <n+1|n> are the coefficients of the state |n) in the basis of states |n-1) and |n+1), respectively. They are given by: <n-1|n> = <n+1|n> = √n Substituting these values back into the expression, we get: <x> = √(n/2) √n + √((n+1)/2) √n = √(n(n+1)/2) Therefore, the expectation value of the position operator for the state |n) is √(n(n+1)/2). Expectation value of the momentum operator: The momentum operator, denoted by p, can also be expressed in terms of the creation and annihilation operators as: p = -i(a - a†)/√2 Similarly, the expectation value of the momentum operator for the state |n) is given by: <p> = (n| p |n) Substituting the expression for p and following similar steps as before, we can find the expectation value: <p> = -i√(n(n+1)/2) Therefore, the expectation value of the momentum operator for the state |n) is -i√(n(n+1)/2).

To learn more about momentum, https://brainly.com/question/30677308

#SPJ11

A satellite, initially at rest in deep space, separates into two pieces, which move away from each other. One piece has a rest mass of 190 kg and moves away with a speed 0.280c, and the second piece moves in the opposite direction with a speed 0.600c. What is the rest mass of the second piece

Answers

The rest mass of the second piece is approximately 250.5 kg.

To solve this problem, we can apply the conservation of momentum and energy principles in special relativity.

Let's denote the rest mass of the second piece as m2. Given that the rest mass of the first piece is 190 kg, we can calculate the relativistic mass of each piece using the formula:

Relativistic Mass (m) = Rest Mass (m0) / sqrt(1 - (v/c)^2)

where v is the velocity of the piece and c is the speed of light.

For the first piece:

m1 = 190 kg / sqrt(1 - (0.280c / c)^2)

m1 = 190 kg / sqrt(1 - 0.0784)

m1 = 190 kg / sqrt(0.9216)

m1 ≈ 200.4 kg

For the second piece, which moves in the opposite direction with a speed of 0.600c:

m2 = m0 / sqrt(1 - (0.600c / c)^2)

m2 = m0 / sqrt(1 - 0.36)

m2 = m0 / sqrt(0.64)

m2 ≈ m0 / 0.8

m2 = 200.4 kg / 0.8

m2 ≈ 250.5 kg

Therefore, the rest mass of the second piece is approximately 250.5 kg.

learn more about rest mass on

https://brainly.com/question/11824622

#SPJ11

A solid S has as its base the region in the xy− plane bounded by the graphs of y=sin(x) and y=0 from x=0 to x=π. If the intersection of S with any plane perpendicular to the x-axis is a square, then the volume of S is

Answers

The volume of the solid S, formed by the region bounded by the graphs of y = sin(x) and y = 0 in the xy-plane from x = 0 to x = π, is π. When intersected with any plane perpendicular to the x-axis, S takes the shape of a square.

The given solid S is formed by the region bounded by the graphs of y = sin(x) and y = 0 in the xy-plane, from x = 0 to x = π.

When we intersect S with any plane perpendicular to the x-axis, the resulting shape is a square.

To understand this, let's visualize the region bounded by the graphs of y = sin(x) and y = 0 in the xy-plane. This region lies entirely above the x-axis, with its boundaries defined by the curve of y = sin(x) and the x-axis itself. As we move along the x-axis from 0 to π, the curve of y = sin(x) oscillates between -1 and 1.

Now, consider a plane perpendicular to the x-axis intersecting the solid S. This plane cuts through the region and creates a cross-sectional shape. Since the intersection of S with any such plane forms a square, it implies that the height of the solid, perpendicular to the x-axis, is constant throughout its entire length.

Therefore, the volume of S can be calculated as the area of the base, which is the region bounded by the graphs of y = sin(x) and y = 0, multiplied by the constant height. The area of the base is given by the definite integral from x = 0 to x = π of sin(x) dx, which evaluates to 2. The constant height, in this case, is π - 0 = π.

Thus, the volume of S = base area × height = 2 × π = π.

Learn more about Volume

brainly.com/question/28058531

#SPJ11

Consider an aperiodic continuous-time signal x(t) having the corresponding Fourier transform X(jw). What would be the Fourier transform of the signal y(t)=3x(t+5) Select one: 3e −j5w
X(jw) 3e j5w
X(jw) 5e j3w
X(jw) e j5w
X(jw) 3e jw
X(jw)

Answers

The Fourier transform of the signal y(t)=3x(t+5) is X(jw) 3e j5w.

When we have a signal y(t) obtained by multiplying a given signal x(t) by a constant and shifting it by a time delay, the Fourier transform of y(t) can be found using the time-shifting and frequency-scaling properties of the Fourier transform.

In this case, the signal y(t) is obtained by multiplying the signal x(t) by 3 and shifting it by 5 units of time. Mathematically, we can express y(t) as y(t) = 3x(t+5).

To find the Fourier transform of y(t), we can start by applying the time-shifting property. According to this property, if X(jw) is the Fourier transform of x(t), then[tex]X(jw) * e^(^j^w^t^0^)[/tex] is the Fourier transform of x(t - t0), where t0 represents the time shift.

In our case, we have x(t+5), which is a time-shifted version of x(t) by 5 units to the left. Therefore, we can express y(t) as [tex]y(t) = 3x(t) * e^(^-^j^w^*^5^)[/tex].

Next, we use the frequency-scaling property of the Fourier transform. According to this property, if X(jw) is the Fourier transform of x(t), then X(j(w/a)) is the Fourier transform of x(at), where 'a' is a constant.

In our case, the constant scaling factor is 3, which means that the Fourier transform of y(t) is 3 times the Fourier transform of x(t+5). Mathematically, this can be written as [tex]Y(jw) = 3X(jw) * e^(^-^j^w^*^5^)[/tex].

Combining the time-shift and frequency-scaling properties, we can simplify Y(jw) to [tex]Y(jw) = X(jw) * 3e^(^-^j^w^*^5^)[/tex], which is the main answer.

Learn more about Fourier transform

brainly.com/question/1542972

#SPJ11

What is the angular momentum of a figure skater spinning at 3.5 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.6 m , a radius of 13 cm, and a mass of 60 kg?
B.) How much torque is required to slow her to a stop in 5.8 s, assuming she does not move her arms?

Answers

Angular momentum of a figure skater spinning at 3.5 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.6 m, a radius of 13 cm, and a mass of 60 kg is 63.25 kg*m²/s. Te torque required to slow her to a stop in 5.8 s, assuming she does not move her arms, is -5.373 Nm.

The formula to calculate the angular momentum of a figure skater is:  L = Iω Where,I = moment of inertia ω = angular velocity of the figure skater. The moment of inertia of a cylinder is I = 1/2mr² + 1/12m (4h² + r²)I = 1/2(60 kg) (0.13 m)² + 1/12(60 kg) [4 (1.6 m)² + (0.13 m)²]I = 1.419 kgm².ω = 2πfω = 2π (3.5 rev/s)ω = 21.991 rad/sL = IωL = (1.419 kgm²) (21.991 rad/s)L = 63.25 kgm²/s

Therefore, the angular momentum of a figure skater spinning at 3.5 rev/s with arms in close to her body is 63.25 kg*m²/s.

The formula to calculate the torque is:τ = Iα Where,I = moment of inertiaα = angular acceleration of the figure skater.

To find angular acceleration, we use the following kinematic equation:ω = ω₀ + αtWhere,ω₀ = initial angular velocityω = final angular velocity t = time taken.ω₀ = 21.991 rad/sω = 0 rad/s(t) = 5.8 sα = (ω - ω₀) / tα = (0 rad/s - 21.991 rad/s) / 5.8 sα = - 3.785 rad/s²τ = (1.419 kgm²) (- 3.785 rad/s²)τ = - 5.373 Nm

Therefore, the torque required to slow her to a stop in 5.8 s, assuming she does not move her arms, is -5.373 Nm.

More on Angular momentum: https://brainly.com/question/29563080

#SPJ11

for each group you need a corian block, vernier caliper, set of hooked maseses, and a piece of string intro physics lab

Answers

These materials are commonly used in introductory physics labs to conduct experiments and explore fundamental concepts in mechanics, such as forces, motion, and equilibrium.

In an introductory physics lab, for each group, you will need the following materials:

1. Corian block: This is a solid block made of Corian, which is a type of synthetic material commonly used in laboratory settings. The Corian block can be used for various experiments involving forces, friction, and other mechanical properties.

2. Vernier caliper: A vernier caliper is a measuring instrument used to measure the dimensions of objects with high precision. It consists of an upper and lower jaw that can be adjusted to measure both internal and external distances. The vernier caliper is useful for measuring the length, width, and height of the Corian block or other objects in the lab.

3. Set of hooked masses: A set of hooked masses consists of individual masses that can be attached to one another using hooks. These masses are typically used to create known forces and determine the effects of forces on objects. The set of hooked masses allows students to explore concepts related to gravitational forces, weight, and equilibrium.

4. Piece of string: The piece of string is a simple but versatile tool in the lab. It can be used for various purposes, such as creating pendulums, attaching masses to objects, measuring distances, or suspending objects for experiments. The string provides flexibility and ease of use in setting up different apparatus and experimental setups.

Learn more about Vernier caliper:

https://brainly.com/question/24694454

#SPJ11

These materials are commonly used in introductory physics labs to conduct experiments and explore fundamental concepts in mechanics, such as forces, motion, and equilibrium.

In an introductory physics lab, for each group, you will need the following materials:

1. Corian block: This is a solid block made of Corian, which is a type of synthetic material commonly used in laboratory settings. The Corian block can be used for various experiments involving forces, friction, and other mechanical properties.

2. Vernier caliper: A vernier caliper is a measuring instrument used to measure the dimensions of objects with high precision. It consists of an upper and lower jaw that can be adjusted to measure both internal and external distances. The vernier caliper is useful for measuring the length, width, and height of the Corian block or other objects in the lab.

3. Set of hooked masses: A set of hooked masses consists of individual masses that can be attached to one another using hooks. These masses are typically used to create known forces and determine the effects of forces on objects. The set of hooked masses allows students to explore concepts related to gravitational forces, weight, and equilibrium.

4. Piece of string: The piece of string is a simple but versatile tool in the lab. It can be used for various purposes, such as creating pendulums, attaching masses to objects, measuring distances, or suspending objects for experiments. The string provides flexibility and ease of use in setting up different apparatus and experimental setups.

Learn more about Vernier caliper:

brainly.com/question/24694454

#SPJ11

a parallel-plate capacitor has plates of area a, separated by a distance d. if we decrease the distance between the plates while keeping the charge constant, what happens to the capacitance?

Answers

When the distance between the plates of a parallel-plate capacitor is decreased while keeping the charge constant, the capacitance of the capacitor increases.

The capacitance of a parallel-plate capacitor is given by the formula:

C = (ε₀ * A) / d

where:

C is the capacitance,

ε₀ is the permittivity of free space (a constant),

A is the area of the plates,

d is the distance between the plates.

From the formula, we can observe that capacitance is inversely proportional to the distance between the plates (d). This means that as the distance between the plates decreases, the capacitance increases.

To understand this relationship, consider that a smaller distance between the plates allows for a stronger electric field to be established for the same amount of charge. The electric field lines become more concentrated, resulting in a higher electric field strength between the plates. This increased electric field leads to a greater potential difference per unit charge, resulting in a higher capacitance.

Hence, when the distance between the plates of a parallel-plate capacitor is decreased while keeping the charge constant, the capacitance of the capacitor increases.

To know more about capacitance here

https://brainly.com/question/31871398

#SPJ4

At one instant, a 17.5 -kg sled is moving over a horizontal surface of snow at 3.50 m/s. After 8.75s has elapsed, the sled stops. Use a momentum approach to find the average friction force acting on the sled while it was moving

Answers

The average friction force acting on the sled while it was moving can be determined using the principle of conservation of momentum.

According to the principle of conservation of momentum, the total momentum of a system remains constant if no external forces are acting on it. In this case, we can use the conservation of momentum to find the average friction force.

Initially, the sled has a mass of 17.5 kg and is moving with a velocity of 3.50 m/s. The momentum of the sled before it comes to a stop is given by the product of its mass and velocity:

Initial momentum = mass × velocity = 17.5 kg × 3.50 m/s

After a time interval of 8.75 seconds, the sled comes to a stop, which means its final velocity is 0 m/s. The momentum of the sled after it comes to a stop is given by:

Final momentum = mass × velocity = 17.5 kg × 0 m/s = 0 kg·m/s

Since momentum is conserved, the initial momentum and final momentum are equal:

17.5 kg × 3.50 m/s = 0 kg·m/s

To find the average friction force, we can use the formula:

Average force = (change in momentum) / (time interval)

In this case, the change in momentum is equal to the initial momentum. Therefore, the average friction force can be calculated as:

Average force = (17.5 kg × 3.50 m/s) / 8.75 s

By evaluating this expression, we can determine the average friction force acting on the sled while it was moving.

Learn more about Average friction

brainly.com/question/29733868

#SPJ11

A 5.0 kg block is pushed at a constant speed with a horizontal force of 15 N. What is the coefficient of kinetic friction for the surfaces in contact

Answers

The coefficient of kinetic friction for the surfaces in contact is [tex]0.31[/tex]

The coefficient of kinetic friction can be determined using the equation:

[tex]\mu  = F_f / F_n[/tex]

where:
[tex]\mu[/tex] is the coefficient of kinetic friction
[tex]F_f[/tex] is the force of friction
[tex]F_n[/tex] is the normal force

Given that the block is pushed at a constant speed, we know that the force of friction is equal and opposite to the applied force. So, [tex]F_f = 15 N[/tex]

The normal force can be calculated using the equation:

[tex]F_n = m * g[/tex]

where:
m is the mass of the block ([tex]5.0 kg[/tex])
g is the acceleration due to gravity ([tex]9.8 m/s^2[/tex])

[tex]F_n = 5.0 kg * 9.8 m/s^2[/tex]

[tex]= 49 N[/tex]

Now we can substitute the values into the equation to find the coefficient of kinetic friction:

[tex]\mu  = 15 N / 49 N[/tex]

[tex]= 0.31[/tex] (rounded to two decimal places)

Therefore, the coefficient of kinetic friction for the surfaces in contact is [tex]0.31[/tex]

Learn more about kinetic friction here:

https://brainly.com/question/30886698

#SPJ11

two sounds have intensities of 2.60×10-8 and 8.40×10-4 w/m2 respectively. what is the magnitude of the sound level difference between them in db units?

Answers

The magnitude of the sound level difference between the two sounds is approximately -45.08 dB.

The magnitude of the sound level difference between the two sounds can be calculated using the formula for sound level difference in decibels (dB):

Sound level difference (dB) = 10 * log10 (I1/I2)

where I1 and I2 are the intensities of the two sounds.

In this case, the intensities are given as 2.60×10-8 W/m2 and 8.40×10-4 W/m2, respectively.

Plugging these values into the formula:

Sound level difference (dB) = 10 * log10 ((2.60×10-8)/(8.40×10-4))

Simplifying the expression:

Sound level difference (dB) = 10 * log10 (3.10×10-5)

Using a scientific calculator to evaluate the logarithm:

Sound level difference (dB) ≈ 10 * (-4.508)

Sound level difference (dB) ≈ -45.08 dB

So, the magnitude of the sound level difference between the two sounds is approximately -45.08 dB.

Learn more about magnitude

brainly.com/question/31022175

#SPJ11

A ball is tossed straight up in the air. At its very highest point, the ball's instantaneous acceleration ayay is
A ball is tossed straight up in the air. At its very highest point, the ball's instantaneous acceleration is
zero.
downward.
upward.

Answers

At the very highest point of its trajectory when a ball is tossed straight up in the air, the ball's instantaneous acceleration is (A) zero.

This occurs because the ball reaches its maximum height and momentarily comes to a stop before reversing its direction and starting to descend. At that specific instant, the ball experiences zero acceleration.

Acceleration is the rate of change of velocity, and when the ball reaches its highest point, its velocity is changing from upward to downward.

The acceleration changes from positive to negative, but at the exact moment when the ball reaches its peak, the velocity is momentarily zero, resulting in (A) zero instantaneous acceleration.

To know more about the trajectory refer here,

https://brainly.com/question/28874076#

#SPJ11

Other Questions
Which of the below is/are not correct? A solution to the "diet" problem has to be physically feasible, that is, a negative "amount of an ingredient is not acceptable. The diet construction problem leads to a linear system since the amount of nutrients supplied by each ingredient is a multiple of the nutrient vector, and the total amount of a nutrient is the sum of the amounts from each ingredient. Kirchhoff's voltage law states that the sum of voltage drops in one direction around a loop equals the sum of voltage sources in the same direction. D. The model for the current flow in a loop is linear because both Ohm's law and Kirchhoff's law are linear. If a solution of a linear system for the current flows in a network gives a negative current in a loop, then the actual direction of the current in that loop is opposite to the chosen one. F. The equation Xx = AXk+1 is called the linear difference equation. Design a three-stage space-division switch with N= 450 with k=8 and n- 18. i. Draw the configuration diagram. ii. Calculate the total number of crosspoints. iii. Find the possible number of simultaneous connections. iv. Examine the possible number of simultaneous connections if we use in a single-stage crossbar. Find the blocking factor. v. Redesign the configuration of the previous three-stage 450 x 450 crossbar switch using the Clos criteria. i. Draw the configuration diagram with Clos criteria justification. ii. Calculate the total number of crosspoints. iii. Compare it to the number of crosspoints of a single-stage crossbar. iv. Compare it to the minimum number of crosspoints according to the Clos criteria. v. Why do we use Clos criteria in multistage switches? The delta of an option is __________. a. the change in the dollar value of an option for a dollar change in the price of the underlying asset b. the change in the dollar value of the underlying asset for a dollar change in the call price c. the percentage change in the value of an option for a one percent change in the value of the underlying asset d. the percentage change in the value of the underlying asset for a one percent change in the value of the call . complete the following tasks to help you investigate faradays electromagnet lab. these tasks will help you conduct appropriate experiments to answer the lab questions. we will be using the bar magnet and electromagnet tabs for this activity and the other tabs later in the unit. CHECK my WOT Bacteria contain several types of cytoskeletal proteins. Match the protein with its function within the cell. Ftsz 2 ParA 3 MreB 4 Bactofilin Match each of the options above to the items below. Cell division Helps determine shape of cell Segregates chromosomes and plasmids Protein and chromosome positioning based from your observations and experiences with your teachers, do they act in accordance to the expectations of the community? cite at least three (3) concrete examples Which of the following concepts can be used to explain the difference in acidity between acetic acid (CH3COOH) and ethanol (CH3CH2OHP Multiple Choice Size Electronegativity Hybridization Resonance A fisherman can row upstream at 1mph and downstream at 4mph. He started rowing upstream until he got tired and then towed downstream to Bis stating point. How fa did the fisherman row if the entire trip took 7 hours? The distance the fisherman rowed is mi. (Type an integer or a decimal.) The height of a type of bean plant is determined by six unlinked genes called A, B, CD, E and Fthat are additive and equal in their effects. Wieles represented by lowercase letters are forms of the genes that do not contribute to height. The genotypes are known for two bean plants. Plant 1 has genotype AA Bbce Dd EE FF. Plant 2 has genotype aa B8 Cc D E F What's the probability of an Abcdefgamete from plant 1 and an a Bcd Elgamete from plant 2? Oa 1/4 chance from plant 1: 1/4 chance from plant 2. Ob 1/2 chance from plant 1 1/8 chance from plant 2. O 1/4 chance from plant 1: 1/2 chance from plant 2 d. 1/4 chance from plant 1:1/8 chance from plant 2. Oe 178 chance from plant 1; 1/4 chance from plant 2. Junie established a buy and sell business. He established the following Chart of Accounts to record the transactions made: Cash, Accounts Receivable, Prepaid Rent, Supplies, Accounts Payable, Junie Capital, Junie Drawings, Sales, Sales Discounts, Sales Returns, Purchase, Purchase Discounts, Purchase Returns, Freight In, Rent Expense, Supplies Expense, Salaries Expense, Miscellaneous Expense, Freight Out. Here are the transactions for the month of March.March 1. Invested 200,000 to operate the buy and sell business.March 5. Purchased merchandise on account amounting to 50,000. FOB Shipping Point Freight Collect. Transportation cost is 100.March 7: Paid 2 month rent amounting to 10,000.March 9: Sold merchandise amounting to 30,000. FOB Destination, Freight Prepaid. Transportation cost is 200.March 15. Paid salaries amounting to 4,000.March 25. Sold merchandise on account amounting to 30,000 2/10, n/30. FOB Shipping Point Freight Collect. Transportation cost is 400.March 30. Received payment on March 25 sales All of the following objects are found in a database EXCEPT ____. Group of answer choices queries forms reports cells a client informs the nurse, "i cant adhere to the dietary sodium decrease that is required for the treatment of my hypertension." what can the nurse educate the client about regarding this statement? Choose any chapter from the "dreamers" section of callings that you found to be emotional. the idea of emotion is typically looked at as sadness, but it could also be funny, happy, shocking, or anything else that elicits a reaction. write the chapter you chose and explain why you found it emotional in your reading experience. your answer should be in at least five complete sentences. a nurse is unsure how best to respond to a client's vague complaint of "feeling off." the nurse is attempting to apply the principles of critical thinking, including metacognition. how can the nurse best foster metacognition? Short circuit test is done in the transformer with: a) Low voltage side shorted and supply to the high voltage side b) High voltage side shorted and supply to the low voltage side. c) No difference. d) Supply to the high voltage and low voltage is opened. Activation of stretch receptors in the esophagus leads to relaxation. Activation of stretch receptors in the stomach leads to relaxation. a. Receptive; adaptive b. Receptive; receptive c. Adaptive; receptive d. Adaptive; adaptive Suppose your client wishes to purchase an annuity that pays $80,000 each year for 9 years, with the first payment 5 years from now. At an interest rate of 5%, how much would the client need to invest now A 60.0?L solution is 0.0241M in Ca2+. If Na2SO4 were added to the solution in order to precipitate the calcium, what minimum mass of Na2SO4 would be required to get a precipitate? mNa2SO4 = ? A General Power bond carries a coupon rate of 9.2%, has 9 years until maturity, and sells at a yield to maturity of 8.2%. (Assume annual interest payments.)a. What interest payments do bondholders receive each year?b. At what price does the bond sell? (Do not round intermediate calculations. Round your answer to 2 decimal places.)c. What will happen to the bond price if the yield to maturity falls to 7.2%? (Do not round intermediate calculations. Round your answer to 2 decimal places.)d. If the yield to maturity falls to 7.2%, will the current yield be less, or more, than the yield to maturity?MoreLess A vendor sells hot dogs and bags of potato chips. A customer buys 2 hot dogs and 4 bags of potato chips for $5.00. Another customer buys 5 hot dogs and 3 bags of potato chips for $7.25. Find the cost of each item. A. $1.25 for a hot dog $1.00 for a bag of potato chups B. $0.75 for a hat dog: $1,00 for abag of potato chips C. $1,00 for a hot dog: $1,00 for a bag of potato chips D. $1.00 for a hot dog: $0.75 for a bag of potato chips