Answer:
Step-by-step explanation:
A(-1,6)
the solution is the intersection of the 2 graph because in that point both equations are true
A local grocery store decides to offer a free piece of fresh fruit (banana or apple) to all shoppers in the produce department. The store is conducting an observational study to determine which type of fruit is selected more often. At the end of the first day, the store found that twice as many shoppers select an apple.
The grocery store then repeats the observational study for 14 days. All studies yield similar results. What generalization can be made from the results of this study?
A.
Given the choice of a banana or an apple, twice as many shoppers will select an apple.
B.
The results are inconclusive; therefore, a generalization cannot be made regarding which type of fruit is preferred by most shoppers.
C.
There is not enough information to generalize the study’s results.
D.
Given the choice of any type of fruit, twice as many shoppers will select an apple.
Answer:
A.
Step-by-step explanation:
If the results are similar (A) should be your answer!
Option A is correct.
What is generalization?Generalization is a process which leads to something more general and whose product consequently refers refers to an actual or potential manifold in a certain way.
According to the given question
"At the end of the first day, the store found that twice as many shoppers select an apple"
So, the generalization can be made from the above result is " from the given choice of a banana or an apple, twice as many shoppers will select an apple".
Hence, option A is correct.
Learn more about generalization here:
https://brainly.in/question/10736010
#SPJ2
The portion of the parabola y²=4ax above the x-axis, where is form 0 to h is revolved about the x-axis. Show that the surface area generated is
A=8/3π√a[(h+a)³/²-a³/2]
Use the result to find the value of h if the parabola y²=36x when revolved about the x-axis is to have surface area 1000.
Answer:
See below for Part A.
Part B)
[tex]\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614[/tex]
Step-by-step explanation:
Part A)
The parabola given by the equation:
[tex]y^2=4ax[/tex]
From 0 to h is revolved about the x-axis.
We can take the principal square root of both sides to acquire our function:
[tex]y=f(x)=\sqrt{4ax}[/tex]
Please refer to the attachment below for the sketch.
The area of a surface of revolution is given by:
[tex]\displaystyle S=2\pi\int_{a}^{b}r(x)\sqrt{1+\big[f^\prime(x)]^2} \,dx[/tex]
Where r(x) is the distance between f and the axis of revolution.
From the sketch, we can see that the distance between f and the AoR is simply our equation y. Hence:
[tex]r(x)=y(x)=\sqrt{4ax}[/tex]
Now, we will need to find f’(x). We know that:
[tex]f(x)=\sqrt{4ax}[/tex]
Then by the chain rule, f’(x) is:
[tex]\displaystyle f^\prime(x)=\frac{1}{2\sqrt{4ax}}\cdot4a=\frac{2a}{\sqrt{4ax}}[/tex]
For our limits of integration, we are going from 0 to h.
Hence, our integral becomes:
[tex]\displaystyle S=2\pi\int_{0}^{h}(\sqrt{4ax})\sqrt{1+\Big(\frac{2a}{\sqrt{4ax}}\Big)^2}\, dx[/tex]
Simplify:
[tex]\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax}\Big(\sqrt{1+\frac{4a^2}{4ax}}\Big)\,dx[/tex]
Combine roots;
[tex]\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax\Big(1+\frac{4a^2}{4ax}\Big)}\,dx[/tex]
Simplify:
[tex]\displaystyle S=2\pi\int_{0}^{h}\sqrt{4ax+4a^2}\, dx[/tex]
Integrate. We can consider using u-substitution. We will let:
[tex]u=4ax+4a^2\text{ then } du=4a\, dx[/tex]
We also need to change our limits of integration. So:
[tex]u=4a(0)+4a^2=4a^2\text{ and } \\ u=4a(h)+4a^2=4ah+4a^2[/tex]
Hence, our new integral is:
[tex]\displaystyle S=2\pi\int_{4a^2}^{4ah+4a^2}\sqrt{u}\, \Big(\frac{1}{4a}\Big)du[/tex]
Simplify and integrate:
[tex]\displaystyle S=\frac{\pi}{2a}\Big[\,\frac{2}{3}u^{\frac{3}{2}}\Big|^{4ah+4a^2}_{4a^2}\Big][/tex]
Simplify:
[tex]\displaystyle S=\frac{\pi}{3a}\Big[\, u^\frac{3}{2}\Big|^{4ah+4a^2}_{4a^2}\Big][/tex]
FTC:
[tex]\displaystyle S=\frac{\pi}{3a}\Big[(4ah+4a^2)^\frac{3}{2}-(4a^2)^\frac{3}{2}\Big][/tex]
Simplify each term. For the first term, we have:
[tex]\displaystyle (4ah+4a^2)^\frac{3}{2}[/tex]
We can factor out the 4a:
[tex]\displaystyle =(4a)^\frac{3}{2}(h+a)^\frac{3}{2}[/tex]
Simplify:
[tex]\displaystyle =8a^\frac{3}{2}(h+a)^\frac{3}{2}[/tex]
For the second term, we have:
[tex]\displaystyle (4a^2)^\frac{3}{2}[/tex]
Simplify:
[tex]\displaystyle =(2a)^3[/tex]
Hence:
[tex]\displaystyle =8a^3[/tex]
Thus, our equation becomes:
[tex]\displaystyle S=\frac{\pi}{3a}\Big[8a^\frac{3}{2}(h+a)^\frac{3}{2}-8a^3\Big][/tex]
We can factor out an 8a^(3/2). Hence:
[tex]\displaystyle S=\frac{\pi}{3a}(8a^\frac{3}{2})\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big][/tex]
Simplify:
[tex]\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big][/tex]
Hence, we have verified the surface area generated by the function.
Part B)
We have:
[tex]y^2=36x[/tex]
We can rewrite this as:
[tex]y^2=4(9)x[/tex]
Hence, a=9.
The surface area is 1000. So, S=1000.
Therefore, with our equation:
[tex]\displaystyle S=\frac{8\pi}{3}\sqrt{a}\Big[(h+a)^\frac{3}{2}-a^\frac{3}{2}\Big][/tex]
We can write:
[tex]\displaystyle 1000=\frac{8\pi}{3}\sqrt{9}\Big[(h+9)^\frac{3}{2}-9^\frac{3}{2}\Big][/tex]
Solve for h. Simplify:
[tex]\displaystyle 1000=8\pi\Big[(h+9)^\frac{3}{2}-27\Big][/tex]
Divide both sides by 8π:
[tex]\displaystyle \frac{125}{\pi}=(h+9)^\frac{3}{2}-27[/tex]
Isolate term:
[tex]\displaystyle \frac{125}{\pi}+27=(h+9)^\frac{3}{2}[/tex]
Raise both sides to 2/3:
[tex]\displaystyle \Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}=h+9[/tex]
Hence, the value of h is:
[tex]\displaystyle h=\Big(\frac{125}{\pi}+27\Big)^\frac{2}{3}-9\approx7.4614[/tex]
You seem to have left out that 0 ≤ x ≤ h.
From y² = 4ax, we get that the top half of the parabola (the part that lies in the first quadrant above the x-axis) is given by y = √(4ax) = 2√(ax). Then the area of the surface obtained by revolving this curve between x = 0 and x = h about the x-axis is
[tex]2\pi\displaystyle\int_0^h y(x) \sqrt{1+\left(\frac{\mathrm dy(x)}{\mathrm dx}\right)^2}\,\mathrm dx[/tex]
We have
y(x) = 2√(ax) → y'(x) = 2 • a/(2√(ax)) = √(a/x)
so the integral is
[tex]4\sqrt a\pi\displaystyle\int_0^h \sqrt x \sqrt{1+\frac ax}\,\mathrm dx[/tex]
[tex]=\displaystyle4\sqrt a\pi\int_0^h (x+a)^{\frac12}\,\mathrm dx[/tex]
[tex]=4\sqrt a\pi\left[\dfrac23(x+a)^{\frac32}\right]_0^h[/tex]
[tex]=\dfrac{8\pi\sqrt a}3\left((h+a)^{\frac32}-a^{\frac32}\right)[/tex]
Now, if y² = 36x, then a = 9. So if the area is 1000, solve for h :
[tex]1000=8\pi\left((h+9)^{\frac32}-27\right)[/tex]
[tex]\dfrac{125}\pi=(h+9)^{\frac32}-27[/tex]
[tex]\dfrac{125+27\pi}\pi=(h+9)^{\frac32}[/tex]
[tex]\left(\dfrac{125+27\pi}\pi\right)^{\frac23}=h+9[/tex]
[tex]\boxed{h=\left(\dfrac{125+27\pi}\pi\right)^{\frac23}-9}[/tex]
Find the mean, median, and mode of the data set 8 2 7 2 6
Answer:
Mean=5
Median=6
Mode=2
Step-by-step explanation:
Answer:
Step-by-step explanation:
mode: 2
median: 6
mean: 8 + 2 + 7 + 2 + 6 = 17 + 8 = 25/5 = 5
A picture frame has a perimeter of 100 cm. Its width is 4 cm less than twice its length. What is the width of the picture
frame?
3
18 cm
32 cm
0 48 cm
0 50 cm
Answer:
The correct answer is option 2: 32 cm
Step-by-step explanation:
Let l be the length of the picture frame and w be the width
Then according to given statements, the system of equations will be
[tex]2l+2w = 100\ \ \ Eqn\ 1\\w = 2l-4\ \ \ Eqn\ 2[/tex]
Putting w = 2l-4 in equation 1
[tex]2l+2(2l-4) = 100\\2l+4l-8=100\\6l-8 = 100\\6l = 100+8\\6l=108\\\frac{6l}{6}=\frac{108}{6}\\l = 18[/tex]
Putting the value of l in equation 2
[tex]w = 2(18)-4\\w = 36-4\\w = 32[/tex]
The width is 32 cm
Hence,
The correct answer is option 2: 32 cm
Which describes the missing number plotted on the number line?
A. the opposite of -4
B. the opposite of 4
C. the absolute value of -4
D. the absolute value of 4
dy÷dx=(x-1)(x+3) at x=2 first principal
Answer:
δy
δx = 2x − 4 + δx;
and the limit as δx → 0 is
dy
dx = lim
δx→0
µδy
δx¶
= 2x − 4.
Step-by-step explanation:
dy/2d=(2-1)(2+3)
dy/2d=4+6-2-3
dy/2d=5
dy=5(2d)=10d
2d=5/dy
dy=5×(5/dy)= 25/dy
2d=5/dy
dy^2=25
dy=√25=5
2d=5/dy=5/5=1
d=1/2
dy=1/2×10=5 y=10
plug all of the values
5/(1/2×2)=5
=
4+6-2-3=5
so finally: 5=5
any questions?
What equation is parallel to
y= - 1\4x + 5 and passes through (2,-3)
QUICK
Given:
The equation of parallel line is [tex]y=-\dfrac{1}{4}x+5[/tex].
Required line passes through (2,-3).
To find:
The equation of line.
Solution:
We have,
[tex]y=-\dfrac{1}{4}x+5[/tex]
On comparing this equation with [tex]y=mx+b[/tex], where m is slope, we get
[tex]m=-\dfrac{1}{4}[/tex]
Slope of two parallel lines are always same. So, slope of required line is [tex]m=-\dfrac{1}{4}[/tex].
The required line passes through the point (2,-3) having slope [tex]m=-\dfrac{1}{4}[/tex], so the equation of line is
[tex]y-y_1=m(x-x_1)[/tex]
[tex]y-(-3)=-\dfrac{1}{4}(x-2)[/tex]
[tex]y+3=-\dfrac{1}{4}(x)-\dfrac{1}{4}(-2)[/tex]
[tex]y+3=-\dfrac{1}{4}(x)+\dfrac{1}{2}[/tex]
Subtracting 3 from both sides, we get
[tex]y=-\dfrac{1}{4}(x)+\dfrac{1}{2}-3[/tex]
[tex]y=-\dfrac{1}{4}(x)+\dfrac{1-6}{2}[/tex]
[tex]y=-\dfrac{1}{4}(x)-\dfrac{5}{2}[/tex]
Therefore, the equation of required line is [tex]y=-\dfrac{1}{4}(x)-\dfrac{5}{2}[/tex].
Evaluate the expression 15x + 4 for x = -1 1/2
Answer:
18.5
Step-by-step explanation:
First we plug in the number
-1 1/2 is the same as -1.5
Plugging this in we will have:
15(-1.5) + 4 =
-22.5 + 4 =
-18.5
helpppppp pleaseeee
question: Why do we need to know the mass of a robot? *
why is this in math why does my teacher does this
Answer:
To know what the answer is
Step-by-step explanation:
clearly I do not know, but I can say that we do need to know the mass bc in the future there will be more and more androids on the rising making human interaction bad.
to find out the equation take the seed and the time. (this to make it look like i answered) Taking the mass you will be able to find out how manyspeed is found by the time and masstime is found out by the mass and speedi dont know if this helpedAnswer:
Step-by-step explanation:
If you have five red balls and five blue balls in a jar what’s the probability of the first ball being red?
Answer:
red balls = 5
blue balls = 5
total balls = 5 blue+5 red
= 10
[tex]p(first \: ball \: being \: red) = \frac{red \: balls}{total \: balls} [/tex]
[tex]p(first \: ball \: being \: red) = \frac{5}{10} = \frac{1}{2} [/tex]
Answer:
Step-by-step explanation:
Total number of red balls = 5
Total number of blue balls = 5
Total number of balls in jar = 5 + 5
= 10
Probability of the first ball being red = total number of the red ball/total number of balls in the jar
= [tex]\frac{5}{10}[/tex]
= [tex]\frac{1}{2}[/tex]
Therefore, the probability of the first ball being red = [tex]\frac{1}{2}[/tex], 50% or 0.5 (in any way you are instructed to write it in)
"Five less than
the quotient of
a number and
3 is -7°
A. 5 - X/3-7
B. -7 +x/3
C. X3 - 5 =-7
D. 5 - 4/2 = -7
Which equation has all real numbers as solutions?
HELLLPP
Answer:
The last answer D
Step-by-step explanation:
Hope this helps. :) :D
The equation 3y + 1 = 3y + 1 has all real numbers as solutions becasuse 0 = 0 true for all real numbers option (D) is correct.
What is a linear equation?It is defined as the relation between two variables, if we plot the graph of the linear equation we will get a straight line.
If in the linear equation, one variable is present, then the equation is known as the linear equation in one variable.
It is given that:
The first equation:
3y = 3y + 1
0 = 1 (false)
The second equation:
3y = 3
y = 1 (one real solution)
The third equation:
3y = 0
y = 0 (one real solution)
The fourth equation:
3y + 1 = 3y + 1
0 = 0 (infinitely solution)
Thus, the equation 3y + 1 = 3y + 1 has all real numbers as solutions becasuse 0 = 0 true for all real numbers option (D) is correct.
Learn more about the linear equation here:
brainly.com/question/11897796
#SPJ2
Identify the errors made in finding the inverse of
y = x2 + 12x.
x= y2 + 12x
y2 = x - 12x
y2=-11x
y=-11x, for x > 0
Describe the three errors?
Step-by-step explanation:
y = x2 + 12x.
x= y2 + 12x would also be 12 y
y2 = x - 12x would be -x
y2=-11x
y=[tex]\sqrt{-11x}[/tex], for x > 0 negative square root not possible
Describe the three errors?
The three errors made in finding the inverse of y = x² + 12x are,
⇒ First mistake to write 12y in place of 12x.
⇒ Second mistake to write the expression y² = x - 12x.
⇒ Third mistake because it never possible negative square root for x > 0.
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
We have to given that;
The expression is,
⇒ y = x² + 12x
Here, The process are,
⇒ y = x² + 12x.
⇒ x = y² + 12x
There is first mistake to write 12y in place of 12x.
⇒ y² = x - 12x
There is second mistake.
⇒ y² = -11x
⇒ y = √-11x, for x > 0
There is third mistake because it never possible negative square root for x > 0.
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ2
4,0000000000×10,00000000
Answer:
yes 40
Step-by-step explanation:
she got it correct
Marlye asked students in her school whether they prefer scary movies or comedies. She found that 35 students prefer scary movies while 65 students prefer comedies. What percent of the students questioned prefer scary movies? 30% 35% 50% 65%
2
SEE ANSWERS
Answer:
The answer is 35%
Step-by-step explanation:
If we add together 35 and 65 we get 100. This means altogether there are 100 kids in her school. Out of those 100 kids, 35 like scary movies. We can write this as the fraction 35/100. This is equivalent to 0.35 or 35%.
Answer:
35%
Step-by-step explanation:
35+65
= 100
[tex]\frac{35}{100} * 100[/tex]
= 35%
If angle 1 and angle 5 are vertical angles and angle 1 equals 55°, then angle 5 will equal _____.
25°
125°
55°
can't be determined
Answer:
angle 5 will be 55 °
Step-by-step explanation:
Based only on the information given in the diagram, it is guaranteed that
AJKL ~ AWXY.
27°
A
63"
A. True
B. False
Answer:
True
Step-by-step explanation:
Given
In JKL, we have:
[tex]\angle J = 27[/tex]
[tex]\angle K = 90[/tex]
In WXY, we have:
[tex]\angle Y = 63[/tex]
[tex]\angle X = 90[/tex]
Required
Is JKL ~ WXY?
In both triangles, we already have one similar angle (90)
Next, is to determine the third angles in both triangles.
In JKL
[tex]\angle J + \angle K + \angle L = 180[/tex]
We have that:
[tex]\angle J = 27[/tex] and [tex]\angle K = 90[/tex]
The expression becomes:
[tex]27 + 90 + \angle L = 180[/tex]
[tex]117 + \angle L = 180[/tex]
[tex]\angle L = 180-117[/tex]
[tex]\angle L = 63[/tex]
In WXY
[tex]\angle W + \angle X + \angle Y = 180[/tex]
We have that:
[tex]\angle Y = 63[/tex] and [tex]\angle X = 90[/tex]
The expression becomes:
[tex]\angle W + 63 + 90 = 180[/tex]
[tex]\angle W + 153 = 180[/tex]
[tex]\angle W = 180-153[/tex]
[tex]\angle W = 27[/tex]
The three angles in JKL are:
[tex]\angle J = 27[/tex] [tex]\angle K = 90[/tex] [tex]\angle L = 63[/tex]
The three angles in WXY are:
[tex]\angle W = 27[/tex] [tex]\angle X = 90[/tex] [tex]\angle Y = 63[/tex]
By comparing the angles, we can conclude that both triangles are similar because of AAA postulate (Angle-Angle-Angle)
Can someone help me find the value of X please?
Answer:
x = -4
Step-by-step explanation:
A circle is 360 degrees.
Anyway, first add 85 + 35 + 115 and you will get 235.
Now subtract 235 from 360.
360 - 235 = 125 degrees
Now to find x, do
-32x - 3 = 125
-32x = 128
-32x/-32 = 128/-32
x = -4
Hope it helped! My answer is expert verified.
Identify proportional relationships
Does the following table show a proportional relationship between the variables g and h?
g
3
6
9
9
36
81
Answer:
sure easy man the carrot is blue and green and orange there naswer soled
How do you work this problem? 10x2 +25x
Answer:
x=-5/2,0
Step-by-step explanation:
It is solved by first factorizing it
10x²+25x=5x(2x+5)=0
Finding the zeros
5x=0x=0/5=0
2x+5=0
x=-5/2
Therefore x is -5/2 or 0
If you rotate figure GTR 270° clockwise about the origin. What will be the coordinates of G’T’R’ (Please Help I need this done in five minutes.)
Answer:
C. G' (4,-7), R' (2,-3), T'(6,-4)
Step-by-step explanation:
Get a piece of paper and draw 2 intersecting lines, like how a graph looks like. Then get another paper that's transparent enough, and place a dot roughly where R would be. Rotate it 270* clockwise (3 times around 90 degrees), and R would be in the bottom right area. That means the figure would be around that area and you can base the coordinates from that.
k/2 + 9 = 37
too lazy to do this work. lol
Answer:
K = 56
Step-by-step explanation:
Subtract 9
k/2 = 28
multiply by 2
k = 56
10 more than a number w is -2.6
Answer:
10 + w = -2.6
Step-by-step explanation:
Use special right triangle ratios to find the length of the hypotenuse. Right Triangle Trig.
Answer:
11 sqrt(2)
Step-by-step explanation:
We know that in a 45 45 90 triangle, the lengths of the sides are x, x ,x sqrt(2)
the length of x is 11
so the lengths of the sides are 11, 11, 11 sqrt(2)
The hypotenuse is 11 sqrt(2)
What’s the answer to this radical function
Step-by-step explanation:
We have,
[tex]f(x) = - 2 \sqrt[3]{x + 7} [/tex]
Taking limit,
[tex] \lim _{x \rarr \infty } f(x) \\ = \lim _{x \rarr \infty } - 2 \sqrt[3]{x + 7} [/tex]
If x approaches to positive infinity,
this implies f(x) approaches to negative infinity
GIVING BRAINLIEST AND STARS
13)
Using a map scale of 1/2 inch = 10 miles, what would be the distance on the map between two cities that are actually 120 miles
apart?
A)
6 inches
B)
8 inches
C)
10 inches
D)
12 inches
Answer:
A) 6 Inches
Step-by-step explanation:
1/2=10 to find how many inches we need to get 120 miles, you have to find the conversion rate.
Conversion rate is 120 ÷ 10 which equals 12.
Now we multiply the conversion rate (12) times 1/2 to get an answer of 6 inches.
i'd appreciate a brainliest :)
What is the GCF of 88 and 66?
Answer:
the GCF would be 22 this is because that is 88 and 66 greatest common factor (gcf)
Step-by-step explanation:
have a good day!!
need this done fast pls.
Answer:
45°Step-by-step explanation:
85 + 50 + ? = 180
? = 180 - 85 - 50
? = 45
Is this a function???
Answer:
pfft no lol
Step-by-step explanation:
yeah no
have a good day! :)
plz give me brainliest
Answer:
yes
Step-by-step explanation:
i think,because it goes past the center it all
9 lb 4 oz - 2 lb 12 oz with regrouping
Answer:
6 LB 12 OZ
Step-by-step explanation:
16 OZ in a LB
9 LB - 2 LB = 7 LB
4 OZ - 12 OZ difference of 8 OZ
4 - 4 = 0 then 16 OZ in a LB
4 remaining - 16 = 12 dropping the 7 LB to 6 LB
Answer:
6lb 8oz
Step-by-step explanation:
9lb 4oz
+16
8lb 20 oz
-2 lb 12oz =