Answer:
Step-by-step explanation:
[tex](\sqrt{b^{2}})^{3}=b^{3}\\\\[/tex]
or If it is
[tex]\sqrt[3]{b^{2}} =(b^{2})^{\frac{1}{3}}=b^{2*\frac{1}{3}}=b^{\frac{2}{3}}[/tex]
Which fraction is equivalent to 2/-6? -2/6 2/6 -2/-6 6/2
I need help for the solution
Answer:
[tex]\boxed{ \ dY_t=(2\theta+2\psi Y_t+\phi^2)dt+2\phi \sqrt{Y_t}dW_t\ }[/tex]
Step-by-step explanation:
it is a long time I have not applied Ito's lemma
I would say the following
for [tex]f(x)=x^2[/tex]
f'(x)=2x
f''(x)=2
so using Ito's lemma we can write that
[tex]dY_t=2V_tdV_t+\phi^2dt[/tex]
[tex]dY_t=2(\theta+\psi V_t^2)dt+2\phi V_tdW_t+\phi^2dt[/tex]
[tex]dY_t=(2\theta+2\psi V_t^2+\phi^2)dt+2\phi V_tdW_t[/tex]
so it comes
[tex]dY_t=(2\theta+2\psi Y_t+\phi^2)dt+2\phi \sqrt{Y_t}dW_t[/tex]
Need help with this . The picture is enclosed
Answer: (fоg)(24)=5
Step-by-step explanation:
(fоg)(24) is f of g of 24. This means you plug in g(24) into f(x).
[tex]g(24)=\sqrt{24-8}[/tex]
[tex]g(24)=\sqrt{16}[/tex]
[tex]g(24)=4[/tex]
Now that we know g(24), we can plug it into f(x).
f(4)=2(4)-3
f(4)=8-3
f(4)=5
Brand name producers of aspirin claim that one advantage of their aspirin over generic aspirin is that brand name aspirin is much more consistent in the amount of active ingredient used. This in turn means that users can expect the same results each time they use the brand name aspirin, while the effects of the generic aspirin can be a lot more variable. A random sample of 200 brand name aspirin tablets had a mean and standard deviation of active ingredient of 325.01 and 10.12 mg. A second independent sample of 180 generic aspirin tablets was measured for the amount of active ingredient, and the mean standard deviation were 323.47 and 11.43 mg. Given that the amount of active ingredient is normally distributed for both the brand name and the generic aspirin, do these data support the brand name producers claim? Let alpha = 0.025.
Answer:
Step-by-step explanation:
The claim here is that the brand name aspirin is more consistent in the amount of active ingredient used than the generic aspirin.
This is a test of 2 independent groups. The population standard deviations are not known. Let μ1 be the mean amount of active ingredients in brand name aspirin and μ2 be the mean amount of active ingredients in generic name aspirin
The random variable is μ1 - μ2 = difference in the mean amount of active ingredients between the brand name and generic aspirin
We would set up the hypothesis.
The null hypothesis is
H0 : μ1 ≥ μ2 H0 : μ1 - μ2 ≥ 0
The alternative hypothesis is
H1 : μ1 < μ2 H1 : μ1 - μ2 < 0
This is a left tailed test
Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is
(x1 - x2)/√(s1²/n1 + s2²/n2)
From the information given,
x1 = 325.01
x2 = 323.47
s1 = 10.12
s2 = 11.43
n1 = 200
n2 = 180
t = (325.01 - 323.47)/√(10.12²/200 + 11.43²/180)
t = 1.24
1.237877
The formula for determining the degree of freedom is
df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²
df = [10.12²/200 + 11.43²/180]²/[(1/200 - 1)(10.12²/200)² + (1/180 - 1)(11.43²/180)²] = 1.53233946713/0.00537245359
df = 285
We would determine the probability value from the t test calculator. It becomes
p value = 0.108
Since alpha, 0.025 < than the p value, 0.108, then we would fail to reject the null hypothesis. Therefore, at 2.5% level of significance, these data support the brand name producers claim
An Undergraduate Study Committee of 6 members at a major university is to be formed from a pool of faculty of 18 men and 6 women. If the committee members are chosen randomly, what is the probability that precisely half of the members will be women?
Answer:
5/33649= approx 0.00015
Step-by-step explanation:
Total number of outcomes are C24 6= 24!/(24-6)!/6!=19*20*21*22*23*24/(2*3*4*5*6)= 19*14*22*23
Half of the Committee =3 persons. That mens that number of the women in Commettee=3. 3 women from 6 can be elected C6 3 ways ( outputs)=
6!/3!/3!=4*5*6*/2/3=20
So the probability that 3 members of the commettee are women is
P(women=3)= 20/(19*14*22*23)=5/(77*19*23)=5/33649=approx 0.00015
The probability that precisely half of the members will be women is;
P(3 women) = 0.1213
This question will be solved by hypergeometric distribution which has the formula;
P(x) = [S_C_s × (N - S)_C_(n - s)]/(NC_n)
where;
S is success from population
s is success from sample
N is population size
n is sample size
We are give;
s = 3 women (which is precisely half of the members selected)
S = 6 women
N = 24 men and women
n = 6 people selected
Thus;
P(3 women) = (⁶C₃ * ⁽¹⁸⁾C₍₃₎)/(²⁴C₆)
P(3 women) = (20 * 816)/134596
P(3 women) = 0.1213
Read more at; https://brainly.com/question/5733654
Number of multiples of 7 between 200 and 1000
Answer:
114
Step-by-step explanation:
Answer:
144Step-by-step explanation:
Please answer this correctly
Answer:
yes
Step-by-step explanation:
not every person is going to have the same opinion, so it is yes.
// have a great day //
Answer:
Yes, because if Pedro asked them the question "what do you think of public transportation?" the majority would probably say that they like it or something along those lines. This is biased because there may be other city inhabitants who don't think very highly of public transportation. Basically, what I'm trying to say is that not everyone will have the same opinion.
A laptop computer is purchased for $2300. Each year, its value is 75% of its value the year before. After how many years will the laptop computer be worth $700 or less? (Use the calculator provided if necessary.) Write the smallest possible whole number answer.
Answer:
after the 1st year
Step-by-step explanation:
$2300 × 75% = $1725.00
$2300-$1725= $575
The Downtown Parking Authority of Tampa, Florida, reported the following information for a sample of 228 customers on the number of hours cars are parked and the amount they are charged.
Number of Hours Frequency Amount Charged
1 21 $4
2 36 6
3 53 9
4 40 13
5 22 14
6 11 16
7 9 18
8 36 22
228
A. Convert the information on the number of hours parked to a probability distribution. Is this a discrete or a continuous probability distribution?
B. Find the mean and the standard deviation of the number of hours parked. How would you answer the question: How long is a typical customer parked?
C. Find the mean and the standard deviation of the amount charged.
Answer: A. This is a discrete probability distribution.
hours probability
1 0.09
2 0.16
3 0.23
4 0.17
5 0.09
6 0.05
7 0.04
8 0.16
B. E(X) = 4.12; σ = 2.21
C. μ = 12.75; s = 6.11
Step-by-step explanation: Probability Distribution is an equation or table linking each outcome of an experiment with its probability of ocurrence. For this case, since the experiment is performed a high number of times and in a long run, the relative frequency of the event is its probability. Therefore:
A. To convert to a probability distribution, find the probability through the frequency by doing:
Hour 1
P(X) = [tex]\frac{21}{228}[/tex] = 0.09
Hour 2
P(X) = [tex]\frac{36}{228}[/tex] = 0.16
Hour 3
P(X) = [tex]\frac{53}{228}[/tex] = 0.23
Hour 4
P(X) = [tex]\frac{40}{228}[/tex] = 0.17
Hour 5
P(X) = [tex]\frac{22}{228}[/tex] = 0.09
Hour 6
P(X) = [tex]\frac{11}{228}[/tex] = 0.05
Hour 7
P(X) = [tex]\frac{9}{228}[/tex] = 0.04
Hour 8
P(X) = [tex]\frac{36}{228}[/tex] = 0.16
The table will be:
hours probability
1 0.09
2 0.16
3 0.23
4 0.17
5 0.09
6 0.05
7 0.04
8 0.16
This is a discrete distribution because it lists all the possible values that the discrete variable can be and its associated probabilities.
B. Mean for a probability distribution is calculated as:
E(X) = ∑[[tex]x_{i}[/tex].P([tex]x_{i}[/tex])]
E(X) = 1*0.09 + 2*0.16+3*0.23+4*0.17+5*0.09+6*0.05+7*0.04+8*0.16
E(X) = 4.12
Standard Deviation is:
σ = √∑{[x - E(x)]² . P(x)}
σ = [tex]\sqrt{(1-4.12)^{2}*0.09 + (2-4.12)^{2}*0.16 + ... + (7-4.12)^{2}*0.04 + (8-4.12)^{2}*0.16}[/tex]
σ = [tex]\sqrt{4.87}[/tex]
σ = 2.21
The average number of hours parked is approximately 4h with a standard deviation of approximately 2 hours, which means that a typical costumer parks between 2 to 6 hours.
C. Mean for a sample is given by: μ = ∑[tex]\frac{x_{i}}{n}[/tex] , which is this case is:
μ = [tex]\frac{4+6+9+13+14+16+18+22}{8}[/tex]
μ = 12.75
Standard Deviation of a sample: s = √[tex]\frac{1}{n-1}[/tex]∑([tex]x_{i}[/tex] - μ)²
s = [tex]\sqrt{ \frac{(4-12.75)^{2} + (6-12.74)^{2} + ... + (18-12.75)^{2} + (22-12.75)^{2} }{8-1}}[/tex]
s = 6.11
The average amount charged is 12.75±6.11.
which of the following is equivalent to this?
a: b over a divided by d over c
b: a over b divided by d over c
c: b over a divided by d over c
d: b over a divided by c over d
please help me!
Answer:
b: a over b divided by do over c
Step-by-step explanation:
You can solve this by plugging in numbers for each variable.
For example: a=1, b=4, c=1, d=2
1/4 ÷ 1/2 = 0.125
If you plug in the numbers for all the equations listed, only 1/4 ÷ 2/1 = 0.125.
george cut a cake into 8 equal pieces. what is the unit fraction for the cake
Answer: 1/8
Step-by-step explanation:
Unit Fractions: A unit fraction is a rational number written as a fraction where the numerator is one and the denominator is a positive integer. A unit fraction is therefore the reciprocal of a positive integer, 1/n.
Example of Unit Fractions: 1/1, 1/2, 1/3, 1/4 ,1/5, etc.
Hope this helps! Please mark as brainliest!
The unit fraction of the cake is 1/8
What is a unit fraction?A unit fraction is a rational number written as a fraction where the numerator is one and the denominator is a positive integer.
A unit fraction is therefore the reciprocal of a positive integer, 1/n.
Examples are 1/1, 1/2, 1/3, 1/4, 1/5, etc.
Given that, George cut a cake into 8 equal pieces, we need to find the unit fraction for the cake
Since, George cut the cake in 8 equal pieces so, 1 part will be shown by 1/8 of the cake, that mean 1/8 is one unit of the cake, we can say that 1/8 is the unit of the whole cake.
Hence, the unit fraction of the cake is 1/8
Learn more about unit fractions, click;
https://brainly.com/question/15326565
#SPJ3
Brainliest to whoever gets this correct Which of the following is equal to the rational expression when x ≠ -3? x^2-9/x+3
Answer:
see below
Step-by-step explanation:
We presume you want to simplify ...
[tex]\dfrac{x^2-9}{x+3}=\dfrac{(x-3)(x+3)}{x+3}=\boxed{x-3}[/tex]
__
The numerator is the difference of squares, so is factored accordingly. One of those factors cancels the denominator.
how many nickels equal $18.45? (show your work)
Answer:
369
Step-by-step explanation:
One nickel = 0.05
0.05x=18.45
x=369
The manager of the Danvers-Hilton Resort Hotel stated that the mean guest bill for a weekend is $600 or less. A member of the hotel's accounting staff noticed that the total charges for guest bills have been increasing in recent months. The accountant will use a sample of future weekend guest bills to test the manager's claim. (a) Which form of the hypotheses should be used to test the manager's claim? H0: - Select your answer - Ha: - Select your answer - The member of the hotel's accounting staff suspects that the total charges for guest bills have Select in recent months. To test the manager’s claim, the staff member will conduct Select test of the population Select . (b) What conclusion is appropriate when H0 cannot be rejected? When H0 cannot be rejected, there Select enough evidence to conclude that the total charges for guest bills have Select in recent months. (c) What conclusion is appropriate when H0 can be rejected? When H0 can be rejected, there Select enough evidence to conclude that the total charges for guest bills have Select in recent m
Answer:
a) Null hypothesis (H0): the mean guest bill for a weekend is $600.
Alternative hypothesis (Ha): the mean guest bill for a weekend is significantly bigger than $600.
b) When H0 can not be rejected, the conclusion is that there is no enough evidence to claim that the mean guest bill had increased from $600.
c) When the H0 is rejected, they have enough evidence to claim that the mean guest bill is significantly bigger than $600.
Step-by-step explanation:
a) The accountant, as he wants to see if there is evidence to support the claim that the mean guest bill has increased significanty, should write the hypothesis like that:
Null hypothesis (H0): the mean guest bill for a weekend is $600.
Alternative hypothesis (Ha): the mean guest bill for a weekend is significantly bigger than $600.
A sample of bills of the period in study needs to be taken in order to have a representation of the actual population of bills and then perform a t-test, as the sample mean and standard deviation will be used to perform the test.
b) When H0 can not be rejected, the conclusion is that there is no enough evidence to claim that the mean guest bill had increased from $600. If the P-value was low but not enough, they may take another sample to perform the test again or leave it like that.
c) When the H0 is rejected, they have enough evidence to claim that the mean guest bill is significantly bigger than $600.
To the nearest tenth, which is the perimeter of ABC. Geometry
Answer:
23.6
Step-by-step explanation:
Finding AC:
Cos 61 = [tex]\frac{adjacent}{hypotenuse}[/tex]
0.48 × 10 = Adjacent
AC = 4.8
Now, CB:
Cos 29 = [tex]\frac{adjacent}{hypotenuse}[/tex]
0.87 × 10 = CB
CB = 8.8
The perimeter:
=> 10+4.8+8.8
=> 23.6
Answer:
23.6
Step-by-step explanation:
What is the area of a shape with points a 5 -8 b 11, -8 c 11,0 d 6,-3 e 4,-3
Answer:
Area of the given figure is 51.5 square units.
Step-by-step explanation:
Area of rectangle OCBH = Length × width
= 11 × 8
= 88 square units
Area of trapezoid OGEF = [tex]\frac{1}{2}(b_1+b_2)\times h[/tex]
= [tex]\frac{1}{2}(\text{GE+OF)}\times (\text{OG})[/tex]
= [tex]\frac{1}{2}(3+6)\times 4[/tex]
= 18 units²
Area of trapezoid GCDE = [tex]\frac{1}{2}(\text{GC+DE)}\times (\text{GE})[/tex]
= [tex]\frac{1}{2}(7+2)\times 3[/tex]
= 13.5 units²
Area of triangle AFH = [tex]\frac{1}{2}(\text{Base})\times (\text{Height})[/tex]
= [tex]\frac{1}{2}(5)(2)[/tex]
= 5 units²
Area of polygon ABCDEF = Area of rectangle CBHO - (Area of trapezoid OGEF + Area of trapezoid GCDE + Area of triangle AFH)
= 88 - (18 + 13.5 + 5)
= 88 - 36.5
= 51.5 units²
Therefore, area of the given polygon is 51.5 units²
Teaching descriptive statistics. A study compared five different methods for teaching descriptive statistics. The five methods were traditional lecture and discussion, programmed textbook instruction, programmed text with lectures, computer instruction, and computer instruction with lectures. 45 students were randomly assigned, 9 to each method. After completing the course, students took a 1-hour exam.
a. What are the hypotheses for evaluating if the average test scores are different for the different teaching methods?
b. What are the degrees of freedom associated with the F-test for evaluating these hypotheses?
c. Suppose the p-value for this test is 0.0168. What is the conclusion?
Answer:
Step-by-step explanation:
a. The hypotheses are:
Null hypothesis: the average test scores are the same for the different teaching methods.
Alternative hypothesis: the average test scores are different for the different teaching methods.
b. To determine the degree of freedom for the F test: we must find two sources of variation such that we have two variances. The two sources of variation are: Factor (between groups) and the error (within groups) and add this up. Or use (N - 1). N is number in sample
c. With a p value of of 0.0168 and using a standard significance level of 0.05, we will reject the null hypothesis as 0.0168 is less than 0.05 and conclude that the average test scores are different for the different teaching methods.
When $\frac{1}{1111}$ is expressed as a decimal, what is the sum of the first 40 digits after the decimal point?
Answer:
90
Step-by-step explanation:
1/1111= 0. (0009) cycles of 0009 after decimal point (one 9 per 4 digits)
Number of digits 9:
40/4= 1010*9= 90Answer:
90
Step-by-step explanation:
please help and please show your work
Answer:
The volume of all 9 spheres is 301.6 [tex]in^3[/tex]
Step-by-step explanation:
Notice that three of the identical spheres fit perfectly along the 12 in side box, therefore we know that the diameter of each is 12 in/3 = 4 in.
Then the radius of each sphere must be 2 inches (half of the diameter). Now that we know the radius of each sphere, we use the formula for the volume of a sphere to find it:
[tex]V=\frac{4}{3} \pi R^3\\V=\frac{4}{3} \pi (2\,in)^3\\V=\frac{4}{3} \pi\, 8\,\,in^3\\V=\frac{32}{3} \pi\,\,in^3[/tex]
Now, the total volume of all nine spheres is the product of 9 times the volume we just found:
[tex]V_{all \,9}=9\,*\frac{32}{3} \pi\,\,in^3\\V_{all \,9}=96 \pi\,\,in^3\\V_{all \,9}\approx \,301.6\,\,in^3[/tex]
Consider random samples of size 900 from a population with proportion 0.75 . Find the standard error of the distribution of sample proportions. Round your answer for the standard error to three decimal places. standard error
Answer:
[tex] SE =\sqrt{\frac{p(1-p)}{n}}[/tex]
And replacing we got:
[tex] SE=\sqrt{\frac{0.75*(1-0.75)}{900}}= 0.014[/tex]
Step-by-step explanation:
For this case we have the following info given:
[tex] n=900[/tex] represent the sample size selected
[tex]p = 0.75[/tex] represent the population proportion
We want to find the standard error and we can use the distribution for the sample proportion and for this case since the sample size is large enough and we satisfy np>10 and n(1-p) >10 we have:
[tex] \hat p \sim N (p,\sqrt{\frac{p(1-p)}{n}})[/tex]
And the standard error is given;
[tex] SE =\sqrt{\frac{p(1-p)}{n}}[/tex]
And replacing we got:
[tex] SE= \sqrt{\frac{0.75* (1-0.75)}{900}}= 0.014[/tex]
All the angles in the diagram are measured to the nearest degree. Work out the upper bound and lower bound of angle x 59 degree 108 degree 81 degree X degree ??????
Answer: lower bound, x = 110.5°
upper bound, x = 113.5°
Step-by-step explanation:
There is no diagram but I am going to assume it is a quadrilateral since it has 4 angles. The sum of the angles of a quadrilateral is 360°.
Upper Lower
59° 58.5° ≤ a < 59.5
108° 107.5° ≤ b < 108.5°
81° 80.5° ≤ c < 81.5°
Total: 246.6° ≤ x < 249.5°
Subtract the lower and upper bound totals from 360° :
360.0 360.0
- 246.5 - 249.5
x = 1 1 3.5 1 1 0.5
↓ ↓
upper lower
bound bound
Find the area of the smaller sector.
A
6 in
030°
Area = [? ]in?
B
Round your answer to the nearest hundredth.
Answer:
9.42 in²
Step-by-step explanation:
The area of whole circle S=pi*R² , where pi is appr. 3.14, R= 6 in
S= 3.14*6² =113.04 in²
The area of smaller sector is Ssec=S/360*30=113,04/12=9.42 in²
The area of the smaller sector with a central angle of 30 degrees and a radius of 6 inches is 9.42478 square inches.
To find the area of a sector, you can use the formula:
Area of sector = (θ/360) × π × r²
where θ is the central angle in degrees, r is the radius of the sector.
The central angle is 30 degrees and the radius is 6 inches.
Plugging these values into the formula:
Area of sector = (30/360) × π × 6²
= (1/12) × π × 36
= (1/12) × 3.14159 × 36
= 9.42478 square inches
To learn more on Area of sector click:
https://brainly.com/question/29055300
#SPJ2
Black walnut trees contain chemicals that inhibit the growth of other plants. In a simple experiment to test whether this is true, you grow several tomato plants in soil with and without decomposing leaves from a black walnut tree. You collect data on plant height as a measure of growth. In this experiment, __________ is the independent variable, __________ is the dependent variable, and __________ is the control.
Answer:
Height of tomato plant is the dependent variable
Presence of walnut leaves in the soil is the independent variable
Tomato plants grown without walnut leaves is the control
Step-by-step explanation:
An independent variable is the variable in an experiment that can be altered to test for a certain result. It is independent, or does not change with change in other factors in the experiment. In this case, the presence or absence, or quantity of walnut available in the soil is the independent variable in the experiment.
A dependent variable varies, and depends on the independent variable. It is what is measured in the experiment. In this case, the height of the tomato plants is the dependent variable that depends on the presence, absence or quantity of walnut in the soil.
A control in an experiment, is a replicate experiment, that is manipulated in order to be able to test a single variable at a time. Controls are variables are held constant so as to minimize their effect on the system under study. In this case, some of the tomato plants are planted without walnut in the soil, to test the effect of the absence of the walnut in the soil.
All math teachers are smart. Ms. Smith is your math teacher, so she is smart. What type of reasoning is this? inductive or deductive
Answer:
I believe it is Inductive Reasoning.
Step-by-step explanation:
Inductive Reasoning is a type of logical thinking that involves forming generalizations based on specific incidents you've experienced, observations you've made, or facts you know to be true or false.
Deductive Reasoning is a basic form of valid reasoning.
Rearrange the following steps in the correct order to locate the last occurrence of the smallest element in a finite list of integers, where the integers in the list are not necessarily distinct.
a. return location
b. min ≔a1 and location ≔1
c. min ≔ai and location≔i
d. procedure last smallest(a1,a2,...,an: integers)
e. If min >= ai then
Answer:
The rearranged steps is as follows:
d. procedure last smallest(a1,a2,...,an: integers)
b. min ≔a1 and location ≔1
e. If min >= ai then
c. min ≔ai and location≔i
a. return location
Step-by-step explanation:
The proper steps to perform the task in the question above is dbeca
Here, the procedure (or function) was defined along with necessary parameters
d. procedure last smallest(a1,a2,...,an: integers)
The smallest number is initialized to the first number on the list and its location is initialized to 1
b. min ≔a1 and location ≔1
The next line is an if conditional statement that checks if the current smallest number is greater than a particular number
e. If min >= ai then
If the above condition is true, the smallest value is assigned to variable min; it's location is also assigned to variable location
c. min ≔ai and location≔i
The last step returns the location of the smallest number
a. return location
Which foundation drawing matches this orthographic drawing ?
The correct answer is A
Explanation:
An orthographic drawing shows a three-dimensional figure from different perspectives or sides. Indeed, the orthographic drawing in the question shows how the object looks if you see this the front, side, and top of this. This implies the foundation drawing needs to match the figures of the orthographic drawing.
According to this, the correct figure is A because this is the only one that has a rectangle shape, and due to this, if you look at this from any different sides you will always see a rectangle. For example, the top view shows a rectangle of approximately 2x3 squares, and this view only fits with option A because B and C are not complete rectangles and therefore their top view is not a rectangle.
Find the Laplace transform F(s)=L{f(t)} of the function f(t)=sin2(wt), defined on the interval t≥0. F(s)=L{sin2(wt)}= help (formulas) Hint: Use a double-angle trigonometric identity. For what values of s does the Laplace transform exist? help (inequalities)
The Laplace transform of the function [tex]\frac{1}{2} (\frac{1}{s} - \frac{s}{s^2 + 4w^2} )[/tex] .
The Laplace transform exist when s > 0 .
Here, the given function is f(t) = sin²(wt) .
The Laplace transform of the the function f(t),
F(s) = f(t) = { [tex]{\frac{1}{2} \times 2sin^2(wt) }[/tex] }
F(s) = { [tex]\frac{1}{2} \times (1- cos2wt)[/tex] }
F(s) = { [tex]\frac{1}{2} - \frac{1}{2} \times cos(2wt)\\[/tex] }
F(s) = [tex]\frac{1}{2} (\frac{1}{s} - \frac{s}{s^2 + 4w^2} )[/tex]
Next,
The above Laplace transform exist if s > 0 .
Know more about Laplace transform,
https://brainly.com/question/31481915
#SPJ4
Please answer this correctly
Answer:
1/2 (simplified)
Step-by-step explanation:
6 numbers (that's the total probability) --> 6 denominator
3 are odd (odd numbers in the probability) --> 3 numerator
so => 3/6
--> simplify
1/2
Hope this helps!
A 12 ft ladder leans against the side of a house. The top of the ladder is 10ft off the ground. Find x, the angle of elevation of the ladder.
1. Remember to address each of the critical elements of the prompt:
Articulate your overall approach to solving this problem before tackling the details. In other words, think about what the question is actually asking, which pieces of information are relevant, and how you can use what you have learned to fill in the missing pieces.
2. Apply the mathematical process to solve the problem:
Interpret the word problem to identify any missing information.
Translate the word problem into an equation.
Appropriately use the order of operations and law of sines and cosines to determine the solution.
Check your work by ensuring that the known properties of triangles are met.
The image is missing, so i have attached it.
Answer:
x = 56.44°
Step-by-step explanation:
From the attached image, we can see that this is a right angle triangle which has opposite, adjacent and hypotenuse as sides. Since we want to find the angle x, thus, we can make use of trigonometric ratios.
From the attached image, the side opposite to angle x is 10ft and the hypotenuse is 12 ft.
From trigonometric ratios, we know that, sin x = opposite/hypotenuse
So, sin x = 10/12
x = sin^(-1) (10/12)
x = sin^(-1) 0.8333
x = 56.44°
Any help would be great
Answer:
V = 137.2
Step-by-step explanation:
We are given the volume equation. Simply plug in your r into the equation and calculate and you should get 137.189 as your answer.