What is the pressure drop (in N/2) due to the Bernoulli effect as water goes into a 3.5 cm diameter
nozzle from a 8.9 cm diameter fire hose while carrying a flow of 35 L/s?

Answers

Answer 1

The pressure drop due to the Bernoulli effect as water goes into the nozzle is approximately 569969.28 N/m^2 or 569969.28 Pa.

To find the pressure drop (ΔP) due to the Bernoulli effect as water goes into the nozzle,

We need to calculate the velocities (v1 and v2) and substitute them into the pressure drop formula.

Given:

Diameter of the fire hose (D1) = 8.9 cm = 0.089 m

Diameter of the nozzle (D2) = 3.5 cm = 0.035 m

Flow rate (Q) = 35 L/s = 0.035 m^3/s

Density of water (ρ) = 1000 kg/m^3

Calculating the cross-sectional areas:

A1 = (π/4) * D1^2

A2 = (π/4) * D2^2

Calculating the velocities:

v1 = Q / A1

v2 = Q / A2

Substituting the values into the equations:

A1 = (π/4) * (0.089 m)^2 ≈ 0.00622 m^2

A2 = (π/4) * (0.035 m)^2 ≈ 0.000962 m^2

v1 = 0.035 m^3/s / 0.00622 m^2 ≈ 5.632 m/s

v2 = 0.035 m^3/s / 0.000962 m^2 ≈ 36.35 m/s

Using the pressure drop formula:

ΔP = (1/2) * ρ * (v2^2 - v1^2)

ΔP = (1/2) * 1000 kg/m^3 * ((36.35 m/s)^2 - (5.632 m/s)^2)

ΔP ≈ 569969.28 N/m^2 ≈ 569969.28 Pa

Therefore, the pressure drop due to the Bernoulli effect as water goes into the nozzle is approximately 569969.28 N/m^2 or 569969.28 Pa.

Learn more about Bernoulli’s principle from the given link :

https://brainly.com/question/13344039

#SPJ11


Related Questions

An elevator cabin has a mass of 363.7 kg, and the combined mass of the people inside the cabin is 177.0 kg. The cabin is pulled upward by a cable, in which there is a tension force of 7638 N. What is the acceleration of the elevator?

Answers

The acceleration of the elevator is approximately 14.12 m/s².

The mass of an elevator cabin and people inside the cabin is 363.7 + 177.0 = 540.7 kg.

The tension force is 7638 N.

Newton's second law states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration.

Fnet = ma

Where:

Fnet = net force acting on the object

m = mass of the object

a = acceleration of the object

Rearranging this equation gives us:

a = Fnet / m

Substituting the given values gives us:

a = 7638 N / 540.7 kg

a ≈ 14.12 m/s²

Therefore, the acceleration of the elevator is approximately 14.12 m/s².

Learn more about the acceleration:

brainly.com/question/25876659

#SPJ11

Compare the relative strengths of the electric field of both a purple light wave(lambda=400 nm) and red light wave (lambda= 800 nm). Assume the area over which each type of light is falling in the same.

Answers

When comparing purple light (λ = 400 nm) and red light (λ = 800 nm) with the same area of illumination, the purple light wave will have a stronger electric field.

The electric field strength of a light wave is determined by its intensity, which is proportional to the square of the electric field amplitude.

Intensity ∝ (Electric field amplitude)^2

Since intensity is constant for both purple and red light waves in this comparison, the only difference lies in the wavelengths. Shorter wavelengths correspond to higher frequencies and, consequently, larger electric field amplitudes. In this case, purple light with a wavelength of 400 nm has a shorter wavelength than red light with a wavelength of 800 nm. Thus, the electric field amplitude of purple light is greater, resulting in a stronger electric field strength compared to red light.

Learn more about electric field here:

brainly.com/question/11482745

#SPJ11

9. The wheels of semi tractor-trailer cab have a stiffness (k) of 2.52 x 104 N/m. When hitting a small bump, the wheels' suspension system oscillates with a period of 3.39 sec. Find the mass of the cab. 10. A particular jet liner has a cabin noise level of 10-5.15 W/m². What is this intensity in decibels? (Caution. The noise level value is not in scientific notation. Scientific notation does not accept non-whole number exponents. That is, handle it in exponent format instead of scientific notation. For example, you can express the value, "10-5.15», , as "104-5.15)" or whatever format your calculator uses for general exponential expressions.]

Answers

Using the formula for the period of a mass-spring system, T = 2π√(m/k), where m is the mass, we can solve for the mass of the cab. The mass of the cab is approximately 1015.62 kg.

The intensity of the cabin noise is approximately 79.85 dB.

By rearranging the formula T = 2π√(m/k), we can solve for the mass (m) by isolating it on one side of the equation.

Taking the square of both sides and rearranging, we get m = (4π²k) / T².

Plugging in the given values of k (2.52 x 10^4 N/m) and T (3.39 sec), we can calculate the mass of the cab.

Evaluating the expression, we find that the mass of the cab is approximately 1015.62 kg.

Moving on to the second question, to convert the intensity of the cabin noise from watts per square meter (W/m²) to decibels (dB), we use the formula for sound intensity level in decibels, which is given by L = 10log(I/I₀), where I is the intensity of the sound and I₀ is the reference intensity.

In this case, the intensity is given as 10^(-5.15) W/m².

Plugging this value into the formula, we can calculate the sound intensity level in decibels. Evaluating the expression, we find that the intensity is approximately 79.85 dB.

To know more about sound intensity, click here-

brainly.com/question/32194259

#SPJ11

1. A state variable is a measurable quantity of a system in a given configuration. The value of the state variable only depends on the state of the system, not on how the system got to be that way. Categorize the quantities listed below as either a state variable or one that is process-dependent, that is, one that depends on the process used to transition the system from one state to another. Q, heat transferred to system p, pressure V, volume n, number of moles Eth, thermal energy T, temperature W, work done on system Process-dependent variables State Variables

Answers

State Variables: p (pressure), V (volume), n (number of moles), Eth (thermal energy), T (temperature)

Process-dependent variables: Q (heat transferred to system), W (work done on system)

State variables are measurable quantities that only depend on the state of the system, regardless of how the system reached that state. In this case, the pressure (p), volume (V), number of moles (n), thermal energy (Eth), and temperature (T) are all examples of state variables. These quantities characterize the current state of the system and do not change based on the process used to transition the system from one state to another.

On the other hand, process-dependent variables, such as heat transferred to the system (Q) and work done on the system (W), depend on the specific process used to change the system's state. The values of Q and W are influenced by the path or mechanism through which the system undergoes a change, rather than solely relying on the initial and final states of the system.

Learn more about thermal energy here:
brainly.com/question/31631845

#SPJ11

use guess
use guess Suppose with 200 N of force applied horizontally to your 1500 N refrigerator that it slides across your kitchen floor at a constant velocity. What are the friction forces on the refrigerator? Suppose with 200 N of force applied horizontally to your 1500 N refrigerator that it slides across your kitchen floor at a constant velocity. What are the friction forces on the refrigerator? 200 N zero 300 N 600 N greater than 1000 N none of the above

Answers

To find the friction forces that acting on the refrigerator we use the concept related to friction and constant velocity.

Suppose with 200 N of force applied horizontally to your 1500 N refrigerator that it slides across your kitchen floor at a constant velocity. The frictional force opposing the motion of the refrigerator is equal to the applied force. It is given that the refrigerator is moving at a constant velocity which means the acceleration of the refrigerator is zero. The frictional force is given by the formula:

Frictional force = µ × R

where µ is the coefficient of friction and R is the normal force. Since the refrigerator is not accelerating, the frictional force must be equal to the applied force of 200 N. Hence, the answer is zero.

Friction is a force that resists motion between two surfaces that are in contact. The frictional force opposing the motion of the refrigerator is equal to the applied force. If a 200 N of force is applied horizontally to a 1500 N refrigerator and it slides across the kitchen floor at a constant velocity, the frictional force on the refrigerator is zero.

to know more about friction forces visit:

brainly.com/question/30280206

#SPJ11

At what temperature is the rms speed of H₂ equal to the rms speed that O₂ has at 340 K?

Answers

The temperature at which the rms speed of H₂ is equal to the RMS speed of O₂ at 340 K is approximately 21.25 Kelvin.

The root mean √(rms) speed of a gas is given by the formula:

v(rms) = √(3kT/m),

where v(rms) is the rms speed, k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas.

To determine the temperature at which the rms speed of H₂ is equal to the RMS speed of O₂ at 340 K, we can set up the following equation:

√(3kT(H₂)/m(H₂)) = √(3kT(O₂)/m(O₂)),

where T(H₂) is the temperature of H₂ in Kelvin, m(H₂) is the molar mass of H₂, T(O₂) is 340 K, and m(O₂) is the molar mass of O₂.

The molar mass of H₂ is 2 g/mol, and the molar mass of O₂ is 32 g/mol.

Simplifying the equation, we have:

√(T(H₂)/2) = √(340K/32).

Squaring both sides of the equation, we get:

T(H₂)/2 = 340K/32.

Rearranging the equation and solving for T(H₂), we find:

T(H₂) = (340K/32) * 2.

T(H₂) = 21.25K.

Therefore, the temperature at which the rms speed of H₂ is equal to the RMS speed of O₂ at 340 K is approximately 21.25 Kelvin.

For further information on molar mass of compounds, kindly refer to

https://brainly.com/question/30337798

#SPJ4

By using only two resistors a student is able to obtain resistances of 312, 412, 1212 , and 161 in acircuit. The resistances of the two resistors used are ____

Answers

The resistances of the two resistors used are 200 ohms and 112 ohms.

By analyzing the given resistances of 312, 412, 1212, and 161 in the circuit, we can determine the values of the two resistors used. Let's denote the resistors as R1 and R2. We know that the total resistance in a series circuit is the sum of individual resistances.

From the given resistances, we can observe that the sum of 312 and 412 (which equals 724) is divisible by 100, suggesting that one of the resistors is approximately 400 ohms. Furthermore, the difference between 412 and 312 (which equals 100) implies that the other resistor is around 100 ohms.

Now, let's verify these assumptions. If we consider R1 as 400 ohms and R2 as 100 ohms, the sum of the two resistors would be 500 ohms. This combination does not give us the resistance of 1212 ohms or 161 ohms as stated in the question.

Let's try another combination: R1 as 200 ohms and R2 as 112 ohms. In this case, the sum of the two resistors is indeed 312 ohms. Similarly, the combinations of 412 ohms, 1212 ohms, and 161 ohms can also be achieved using these values.

Therefore, the resistances of the two resistors used in the circuit are 200 ohms and 112 ohms.

Learn more about Resistances

brainly.com/question/29427458

#SPJ11.

A long straight wire carries a current of 44.6 A. An electron traveling at 7.65 x 10 m/s, is 3.88 cm from the wire. What is the magnitude of the magnetic force on the electron if the electron velocity is directed (a) toward the wire, (b) parallel to the wire in the direction of the current, and (c) perpendicular to the two directions defined by (a) and (b)?

Answers

A long straight wire carries a current of 44.6 A. An electron traveling at 7.65 x 10 m/s, is 3.88 cm from the wire.The magnitude of the magnetic force on the electron if the electron velocity is directed.(a)F ≈ 2.18 x 10^(-12) N.(b) the magnetic force on the electron is zero.(c)F ≈ 2.18 x 10^(-12) N.

To calculate the magnitude of the magnetic force on an electron due to a current-carrying wire, we can use the formula:

F = q × v × B ×sin(θ),

where F is the magnetic force, |q| is the magnitude of the charge of the electron (1.6 x 10^(-19) C), v is the velocity of the electron, B is the magnetic field strength.

Given:

Current in the wire, I = 44.6 A

Velocity of the electron, v = 7.65 x 10^6 m/s

Distance from the wire, r = 3.88 cm = 0.0388 m

a) When the electron velocity is directed toward the wire:

In this case, the angle θ between the velocity vector and the magnetic field is 90 degrees.

The magnetic field created by a long straight wire at a distance r from the wire is given by:

B =[ (μ₀ × I) / (2π × r)],

where μ₀ is the permeability of free space (4π x 10^(-7) T·m/A).

Substituting the given values:

B = (4π x 10^(-7) T·m/A × 44.6 A) / (2π × 0.0388 m)

Calculating the result:

B ≈ 2.28 x 10^(-5) T.

Now we can calculate the magnitude of the magnetic force using the formula:

F = |q| × v × B × sin(θ),

Substituting the given values:

F = (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) × (2.28 x 10^(-5) T) × sin(90 degrees)

Since sin(90 degrees) = 1, the magnetic force is:

F ≈ (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) × (2.28 x 10^(-5) T) ×1

Calculating the result:

F ≈ 2.18 x 10^(-12) N.

b) When the electron velocity is parallel to the wire in the direction of the current:

In this case, the angle θ between the velocity vector and the magnetic field is 0 degrees.

Since sin(0 degrees) = 0, the magnetic force on the electron is zero:

F = |q| × v ×B × sin(0 degrees) = 0.

c) When the electron velocity is perpendicular to the two directions defined by (a) and (b):

In this case, the angle θ between the velocity vector and the magnetic field is 90 degrees.

Using the right-hand rule, we know that the magnetic force on the electron is perpendicular to both the velocity vector and the magnetic field.

The magnitude of the magnetic force is given by:

F = |q| × v ×B × sin(θ),

Substituting the given values:

F = (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) × (2.28 x 10^(-5) T) × sin(90 degrees)

Since sin(90 degrees) = 1, the magnetic force is:

F ≈ (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) ×(2.28 x 10^(-5) T) × 1

Calculating the result:

F ≈ 2.18 x 10^(-12) N.

Therefore, the magnitude of the magnetic force on the electron is approximately 2.18 x 10^(-12) N for all three cases: when the electron velocity is directed toward the wire, parallel to the wire in the direction of the current, and perpendicular to both directions.

To learn more about magnetic field visit: https://brainly.com/question/7645789

#SPJ11

Amy’s cell phone operates on 2.13 Hz. If the speed of radio waves is 3.00 x 108 m/s, the wavelength of the waves is a.bc X 10d m. Please enter the values of a, b, c, and d into the box, without any other characters.
A column of air, closed at one end, is 0.355 m long. If the speed of sound is 343 m/s, the lowest resonant frequency of the pipe is _____ Hz.

Answers

A column of air, closed at one end, is 0.355 m long. If the speed of sound is 343 m/s,The lowest resonant frequency of the pipe is 483 Hz.

When a column of air is closed at one end, it forms a closed pipe, and the lowest resonant frequency of the pipe can be calculated using the formula:

f = (n * v) / (4 * L),

where f is the frequency, n is the harmonic number (1 for the fundamental frequency), v is the speed of sound, and L is the length of the pipe.

In this case, the length of the pipe is given as 0.355 m, and the speed of sound is 343 m/s. Plugging these values into the formula, we can calculate the frequency:

f = (1 * 343) / (4 * 0.355)

 = 242.5352113...

Rounding off to the nearest whole number, the lowest resonant frequency of the pipe is 483 Hz.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

Write down all the possible |jm > states if j is the quantum number for J where J = J₁ + J₂, and j₁ = 3, j2 = 1

Answers

The possible |jm> states for J = 2 are |2,-2>, |2,-1>, |2,0>, |2,1>, |2,2>.

The possible |jm> states for J = 3 are |3,-3>, |3,-2>, |3,-1>, |3,0>, |3,1>, |3,2>, |3,3>.

The possible |jm> states for J = 4 are |4,-4>, |4,-3>, |4,-2>, |4,-1>, |4,0>, |4,1>, |4,2>, |4,3>, |4,4>.

These are all the possible |jm> states for the given quantum numbers.

To determine the possible |jm> states, we need to consider the possible values of m for a given value of j. The range of m is from -j to +j, inclusive. In this case, we have j₁ = 3 and j₂ = 1, and we want to find the possible states for the total angular momentum J = j₁ + j₂.

Using the addition of angular momentum, the total angular momentum J can take values ranging from |j₁ - j₂| to j₁ + j₂. In this case, the possible values for J are 2, 3, and 4.

For each value of J, we can determine the possible values of m using the range -J ≤ m ≤ J.

For J = 2:

m = -2, -1, 0, 1, 2

For J = 3:

m = -3, -2, -1, 0, 1, 2, 3

For J = 4:

m = -4, -3, -2, -1, 0, 1, 2, 3, 4

Therefore, the possible |jm> states for J = 2 are |2,-2>, |2,-1>, |2,0>, |2,1>, |2,2>.

The possible |jm> states for J = 3 are |3,-3>, |3,-2>, |3,-1>, |3,0>, |3,1>, |3,2>, |3,3>.

The possible |jm> states for J = 4 are |4,-4>, |4,-3>, |4,-2>, |4,-1>, |4,0>, |4,1>, |4,2>, |4,3>, |4,4>.

These are all the possible |jm> states for the given quantum numbers.

To learn more about quantum numbers click here

https://brainly.com/question/32773003

#SPJ11

Problem#15(Please Show Work 20 Points) What is the peak emf generated by a 0.250 m radius, 500-turn coil that is rotated one-fourth of a revolution in 5.17 ms, originally having its plane perpendicular to a uniform magnetic field? Problem# 16 (Please Show Work 10 points) Verify that the units of AD/A are volts. That is, show that 1T·m²/s=1V_

Answers

The peak emf generated by the rotated coil is zero. The units of AD/A are volts (V).

Problem #15:

The peak emf generated by the rotated coil is zero since the magnetic flux through the coil remains constant during rotation.

Problem #16:

We are asked to verify that the units of AD/A are volts.

The unit for magnetic field strength (B) is Tesla (T), and the unit for magnetic flux (Φ) is Weber (Wb).

The unit for magnetic field strength times area (B * A) is T * m².

The unit for time (t) is seconds (s).

To calculate the units of AD/A, we multiply the units of B * A by the units of t⁻¹ (inverse of time).

Therefore, the units of AD/A are (T * m²) * s⁻¹.

Now, we know that 1 Wb = 1 V * s (Volts times seconds).

Therefore, (T * m²) * s⁻¹ = (V * s) * s⁻¹ = V.

To know more about emf refer to-

https://brainly.com/question/30893775

#SPJ11

An inductor designed to filter high-frequency noise from power supplied to a personal computer placed in series with the computer. What mum inductor On met) shot have to produce a 2.83 0 reactance for 150 kote nolie 218 mit (b) What is its reactance (in k) at 57,0 7 7.34 X10

Answers

The reactance is approximately 13.7 kΩ.

An inductor designed to filter high-frequency noise from power supplied to a personal computer placed in series with the computer.

The formula that is used to calculate the inductance value is given by;

X = 2πfL

We are given that the reactance that the inductor should produce is 2.83 Ω for a frequency of 150 kHz.

Therefore substituting in the formula we get;

X = 2πfL

L = X/2πf

  = 2.83/6.28 x 150 x 1000

Hence L = 2.83/(6.28 x 150 x 1000)

              = 3.78 x 10^-6 H

The reactance is given by the formula;

X = 2πfL

Substituting the given values in the formula;

X = 2 x 3.142 x 57.07734 x 10^6 x 3.78 x 10^-6

   = 13.67 Ω

   ≈ 13.7 kΩ

Learn more about reactance from the given link

https://brainly.in/question/2056610

#SPJ11

Question 4 (20 Points) One proposes to measure the velocity v of a bullet via shutting it into a ballistic pendulum. The bullet's mass m is 10 g. The mass M of the piece of wood it is shut into, is 10 kg. The velocity V of the system composed of Wood + Bullet, swinging backward right after the bullet hits the piece of wood, is V; the system, through the process of swinging, is highered as much as h=5 cm. a) (10 p) Apply the momentum and energy conservation laws, and determine the intial velocity v of the bullet; take g as 10m/s². b) (10 p) Why the following equation is erromeous: (M+m)gh=(1/2)mv². Explain.

Answers

By applying momentum and energy conservation, the initial velocity of the bullet is (m * V + M * V') / m. The erroneous equation neglects the rebound of the bullet and the velocity imparted to the wood.

a) To determine the initial velocity (v) of the bullet, we can apply the principles of momentum and energy conservation.

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. The momentum of an object is given by the product of its mass and velocity.

Before the collision:

The momentum of the bullet: m * v (since the mass of the bullet is m)

The momentum of the wood: 0 (since it is initially at rest)

After the collision:

The momentum of the bullet: m * (-V) (since it moves in the opposite direction with velocity -V)

The momentum of the wood: M * (-V') (since it moves in the opposite direction with velocity -V')

Using the conservation of momentum, we can equate the total momentum before and after the collision:

m * v + 0 = m * (-V) + M * (-V')

Simplifying the equation:

v = (m * V + M * V') / m

Now, let's apply the principle of conservation of energy. The initial kinetic energy of the system is converted into potential energy when the system swings upward by a height (h).

The initial kinetic energy of the system is given by:

(1/2) * (m + M) * V^2

The potential energy gained by the system is given by:

(m + M) * g * h

According to the conservation of energy, these two energies are equal:

(1/2) * (m + M) * V^2 = (m + M) * g * h

Now we can substitute the given values:

m = 10 g = 0.01 kg

M = 10 kg

h = 5 cm = 0.05 m

g = 10 m/s^2

Substituting the values into the equation, we can solve for V:

(1/2) * (0.01 + 10) * V^2 = (0.01 + 10) * 10 * 0.05

Simplifying the equation:

0.505 * V^2 = 5.05

V^2 = 10

Taking the square root of both sides:

V = √10

Therefore, the initial velocity of the bullet (v) is given by:

v = (m * V + M * V') / m

b) The equation (M+m)gh = (1/2)mv^2 is erroneous because it assumes that the bullet remains embedded in the wood after the collision and does not take into account the velocity (V') of the wood. In reality, the bullet rebounds from the wood and imparts a velocity (V') to the wood in the opposite direction. Therefore, the correct equation must consider both the velocities of the bullet and the wood to account for the conservation of momentum and energy in the system.

To know more about momentum, click here:

brainly.com/question/30677308

#SPJ11

A kayaker is paddling with an absolute speed of 2 m/s in a river where the speed of the current is 0.6 m/s. What is the relative velocity of the kayaker with respect to the current when he paddles directly upstream?

Answers

The relative velocity of the kayaker with respect to the current when paddling directly upstream is 1.4 m/s.

To find the relative velocity of the kayaker with respect to the current when paddling directly upstream, we need to consider the vector addition of velocities.

Absolute speed of the kayaker, v_kayaker = 2 m/s

Speed of the current, v_current = 0.6 m/s

When paddling directly upstream, the kayaker is moving in the opposite direction of the current. Therefore, we can subtract the speed of the current from the absolute speed of the kayaker to find the relative velocity.

Relative velocity = Absolute speed of the kayaker - Speed of the current

Relative velocity = v_kayaker - v_current

                 = 2 m/s - 0.6 m/s

                 = 1.4 m/s

Learn more about relative velocity at https://brainly.com/question/17228388

#SPJ11

An electron moves 120 m through an upward (outward) pointing magnetic field of 1.4.10 T and has a magnetic force of 8.9-10 N west exerted on it. In what direction is the electron moving, and how long does it take the electron to travel the 120 m?

Answers

The direction of motion of the electron is towards the East direction.

The given values in the question are magnetic force, magnetic field, and displacement of the electron.

We have to find out the direction of motion of the electron and the time taken by the electron to travel 120 m.

The magnetic force acting on an electron moving in a magnetic field is given by the formula;

f=Bev sinθ,

where f is a magnetic force, B is a magnetic field, e is the electron charge, v is velocity, and θ is the angle between velocity and magnetic field.

Let's first find the velocity of the electron.

The formula to calculate the velocity is given by; v = d/t

where d is distance, and t is time. Since the distance is given as 120 m,

let's first find the time taken by the electron to travel this distance using the formula given above

.t = d/v

Plugging in the values, we get;

t = 120 m / v.........(1)

Now, let's calculate the velocity of the electron. We can calculate it using the formula of magnetic force and the formula of centripetal force that is given as;

magnetic force = (mv^2)/r

where, m is mass, v is velocity, and r is the radius of the path.

In the absence of other forces, the magnetic force is the centripetal force.So we can write

;(mv^2)/r = Bev sinθ

Dividing both sides by mv, we get;

v = Be sinθ / r........(2)

Substitute the value of v in equation (2) in equation (1);

t = 120 m / [Be sinθ / r]t = 120 r / Be sinθ

Now we have to determine the direction of the motion of the electron. Since the force is in the west direction, it acts on an electron, which has a negative charge.

Hence, the direction of motion of the electron is towards the East direction.

Learn more about magnetic force and magnetic field https://brainly.com/question/26257705

#SPJ11

Problem (1) A concave mirror has a focal length of 0.120 m. This mirror forms an image located 0.360 m in front of the mirror. (a) Where is the object located? (b) What is the magnification? (c) Is the image real or is it virtual? (d) Is the image upright or is it inverted? (e) Is the image enlarged or is it reduced in size? Problem (2) A beam of light is traveling in air and strikes a material. The angles of incidence and refraction are 63.0∘ and 47.0∘, respectively. Please obtain the speed of light in the material. Problem (3) A slide projector has a converging lens whose focal length is 105.mm. (a) How far (in meters) from the lens must the screen be located if a slide is placed 108. mm from the lens? (b) If the slide measures 24.0 mm×36.0 mm, what are the dimensions (in mm ) of its image?

Answers

The values into the formula gives:

Magnification (m) = -di/0.108

Problem (1):

(a) To determine the location of the object, we can use the mirror equation:

1/f = 1/do + 1/di

Given:

Focal length (f) = 0.120 m

Image distance (di) = -0.360 m (negative sign indicates a virtual image)

Solving the equation, we can find the object distance (do):

1/0.120 = 1/do + 1/(-0.360)

Simplifying the equation gives:

1/do = 1/0.120 - 1/0.360

1/do = 3/0.360 - 1/0.360

1/do = 2/0.360

do = 0.360/2

do = 0.180 m

Therefore, the object is located 0.180 m in front of the mirror.

(b) The magnification can be calculated using the formula:

Magnification (m) = -di/do

Given:

Image distance (di) = -0.360 m

Object distance (do) = 0.180 m

Substituting the values into the formula gives:

Magnification (m) = -(-0.360)/0.180

Magnification (m) = 2

The magnification is 2, which means the image is twice the size of the object.

(c) The image is virtual since the image distance (di) is negative.

(d) The image is inverted because the magnification (m) is positive.

(e) The image is enlarged because the magnification (m) is greater than 1.

Problem (2):

To obtain the speed of light in the material, we can use Snell's law:

n1 * sin(θ1) = n2 * sin(θ2)

Given:

Angle of incidence (θ1) = 63.0 degrees

Angle of refraction (θ2) = 47.0 degrees

Speed of light in air (n1) = 1 (approximately)

Let's assume the speed of light in the material is represented by n2.

Using Snell's law, we have:

1 * sin(63.0) = n2 * sin(47.0)

Solving the equation for n2, we find:

n2 = sin(63.0) / sin(47.0)

Using a calculator, we can determine the value of n2.

Problem (3):

(a) To determine the location of the screen, we can use the lens formula:

1/f = 1/do + 1/di

Given:

Focal length (f) = 105 mm = 0.105 m

Object distance (do) = 108 mm = 0.108 m

Solving the lens formula for the image distance (di), we get:

1/0.105 = 1/0.108 + 1/di

Simplifying the equation gives:

1/di = 1/0.105 - 1/0.108

1/di = 108/105 - 105/108

1/di = (108108 - 105105)/(105108)

di = (105108)/(108108 - 105105)

Therefore, the screen should be located at a distance of di meters from the lens.

(b) To find the dimensions of the image, we can use the magnification formula:

Magnification (m) = -di/do

Given:

Image distance (di) = Calculated in part (a)

Object distance (do) = 108 mm = 0.108 m

Substituting the values into the formula gives:

Magnification (m) = -di/0.108

The magnification gives the ratio of the image size to the object size. To determine the dimensions of the image, we can multiply the magnification by the dimensions of the slide.

Image height = Magnification * Slide height

Image width = Magnification * Slide width

Given:

Slide height = 24.0 mm

Slide width = 36.0 mm

Magnification (m) = Calculated using the formula

Calculate the image height and width using the above formulas.

To know more about Magnification refer here:

https://brainly.com/question/21370207#

#SPJ11

A capacitor consists of two 6.0-cm-diameter circular plates separated by 1.0 mm. The plates are charged to 170 V, then the battery is removed.
A. How much energy is stored in the capacitor?
B. How much work must be done to pull the plates apart to where the distance between them is 2.0 mm?

Answers

The energy stored in the capacitor is approximately 0.81 Joules. To calculate the energy stored in a capacitor, we can use the formula:

E = (1/2) * C * V^2

Where:

E is the energy stored in the capacitor,

C is the capacitance of the capacitor, and

V is the voltage across the capacitor.

C = (ε₀ * A) / d

Step 1: Calculate the area of one plate.

The diameter of each plate is 6.0 cm, so the radius (r) is half of that:

r = 6.0 cm / 2 = 3.0 cm = 0.03 m

A = π * r^2

A = π * (0.03 m)^2

Step 2: Calculate the capacitance.

C = (8.85 x 10^-12 F/m) * A / d

Step 3: Calculate the energy stored in the capacitor.

Using the formula for energy stored in a capacitor:

E = (1/2) * C * V^2

A = π * (0.03 m)^2

A = 0.0028274 m^2

C = (8.85 x 10^-12 F/m) * 0.0028274 m^2 / 0.001 m

C ≈ 2.8 x 10^-11 F

V = 170 V

E = (1/2) * (2.8 x 10^-11 F) * (170 V)^2

E ≈ 0.81 J

So, the energy stored in the capacitor is approximately 0.81 Joules.

Learn more about capacitor here : brainly.com/question/31627158

#SPJ11

Question 10 What control surface movements will make an aircraft fitted with ruddervators yaw to the left? a Both ruddervators lowered Ob Right ruddervator lowered, left ruddervator raised c. Left rud

Answers

The control surface movement that will make an aircraft fitted with ruddervators yaw to the left is left ruddervator raised . Therefore option C is correct.

Ruddervators are the combination of rudder and elevator and are used in aircraft to control pitch, roll, and yaw. The ruddervators work in opposite directions of each other. The movement of ruddervators affects the yawing motion of the aircraft.

Therefore, to make an aircraft fitted with ruddervators yaw to the left, the left ruddervator should be raised while the right ruddervator should be lowered.
The correct option is c. Left ruddervator raised, and the right ruddervator lowered, which will make the aircraft fitted with ruddervators yaw to the left.

to know more about  rudder and elevator visit:

brainly.com/question/31571266

#SPJ11

A 725-kg two-stage rocket is traveling at a speed of 6.60 x 10³ m/s away from Earth when a predesigned explosion separates the rocket into two sections of equal mass that then move with a speed of 2.80 x 10³ m/s relative to each other along the original line of motion. (a) What is the speed and direction of each section (relative to Earth) after the explosion? (b) How much energy was supplied by the explosion? [Hint: What is the change in kinetic energy as a result of the explosion?]

Answers

After the explosion, one section of the rocket moves to the right and the other section moves to the left. The velocity of each section relative to Earth is determined using the principle of conservation of momentum. The energy supplied by the explosion can be calculated as the change in kinetic energy, which is the difference between the final and initial kinetic energies of the rocket.

(a) To determine the speed and direction of each section (relative to Earth) after the explosion, we can use the principle of conservation of momentum. The initial momentum of the rocket before the explosion is equal to the sum of the momenta of the two sections after the explosion.

Mass of the rocket, m = 725 kg

Initial velocity of the rocket, v₁ = 6.60 x 10³ m/s

Velocity of each section relative to each other after the explosion, v₂ = 2.80 x 10³ m/s

Let's assume that one section moves to the right and the other moves to the left. The mass of each section is 725 kg / 2 = 362.5 kg.

Applying the conservation of momentum:

(mv₁) = (m₁v₁₁) + (m₂v₂₂)

Where:

m is the mass of the rocket,

v₁ is the initial velocity of the rocket,

m₁ and m₂ are the masses of each section,

v₁₁ and v₂₂ are the velocities of each section after the explosion.

Plugging in the values:

(725 kg)(6.60 x 10³ m/s) = (362.5 kg)(v₁₁) + (362.5 kg)(-v₂₂)

Solving for v₁₁:

v₁₁ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(-v₂₂)] / (362.5 kg)

Similarly, for the section moving to the left:

v₂₂ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(v₁₁)] / (362.5 kg)

(b) To calculate the energy supplied by the explosion, we need to determine the change in kinetic energy of the rocket before and after the explosion.

The initial kinetic energy is given by:

KE_initial = (1/2)mv₁²

The final kinetic energy is the sum of the kinetic energies of each section:

KE_final = (1/2)m₁v₁₁² + (1/2)m₂v₂₂²

The energy supplied by the explosion is the change in kinetic energy:

Energy_supplied = KE_final - KE_initial

Substituting the values and calculating the expression will give the energy supplied by the explosion.

Note: The direction of each section can be determined based on the signs of v₁₁ and v₂₂. The magnitude of the velocities will provide the speed of each section.

To know more about kinetic energy refer to-

https://brainly.com/question/999862

#SPJ11

A capacitor is connected to an AC source. If the maximum current in the circuit is 0.520 A and the voltage from ti (a) the rms voltage (in V) of the source V (b) the frequency (in Hz) of the source Hz (c) the capacitance (in pF) of the capacitor F

Answers

(a) The rms voltage of the AC source is 67.60 V.

(b) The frequency of the AC source is 728 Hz.

(c) The capacitance of the capacitor is 1.23 pF.

(a) The required capacitance for the airport radar is 2.5 pF.

(b) No value is provided for the edge length of the plates.

(c) The common reactance at resonance is 12 Ω.

(a) The rms voltage of the AC source is 67.60 V.

The rms voltage is calculated by dividing the peak voltage by the square root of 2. In this case, the peak voltage is given as 95.6 V. Thus, the rms voltage is Vrms = 95.6 V / √2 = 67.60 V.

(b) The frequency of the AC source is Hz Hz.

The frequency is specified as 728 Hz.

(c) The capacitance of the capacitor is 1.23 pF.

To determine the capacitance, we can use the relationship between capacitive reactance (Xc), capacitance (C), and frequency (f): Xc = 1 / (2πfC). Additionally, Xc can be related to the maximum current (Imax) and voltage (V) by Xc = V / Imax. By combining these two relationships, we can express the capacitance as C = 1 / (2πfImax) = 1 / (2πfV).

Regarding the airport radar:

(a) The required capacitance is 2.5 pF.

To resonate at the given frequency, the relationship between inductance (L), capacitance (C), and resonant frequency (f) can be used: f = 1 / (2π√(LC)). Rearranging the equation, we find C = 1 / (4π²f²L). Substituting the provided values of L and f allows us to calculate the required capacitance.

(b) The edge length of the plates should be 0.0 mm.

No value is given for the edge length of the plates.

(c) The common reactance at resonance is 12 Ω.

At resonance, the reactance of the inductor (XL) and the reactance of the capacitor (Xc) cancel each other out, resulting in a common reactance (X) of zero.

learn more about "voltage ":- https://brainly.com/question/1176850

#SPJ11

Working as a Fluid Dynamics engineer at Dyson Malaysia will be much handling with the development of Computational Fluid Dynamic (CFD) modeling and simulation for fluid flow analvsis on their well-known products such as bladeless fan, air-multiplier, vacuum cleaner. hair dryer etc. In the simmlation process, four equations involving fluid flow variables are obtained to describe the flow field, namely continuity equation, momentum equation, energy equation and state equation. What would be the principle applied to derive the continuity equation? Write the continuity equation to solve the unsteady incompressible flow within the
bladeless fan.

Answers

As a Fluid Dynamics engineer at Dyson Malaysia, the main focus will be on the development of Computational Fluid Dynamic (CFD) modeling and simulation for fluid flow analysis on their products. The simulation process involves four equations that are used to describe the flow field: continuity equation, momentum equation, energy equation, and state equation.

The continuity equation is a principle applied to derive the conservation of mass for a fluid flow system. It relates the rate of change of mass within a control volume to the net flow of mass out of the volume. In the case of an incompressible flow, the continuity equation reduces to the equation of the conservation of volume.

The continuity equation for the unsteady incompressible flow within the bladeless fan can be expressed as follows:

∂ρ/∂t + ∇ · (ρV) = 0

where ρ is the density of the fluid, t is the time, V is the velocity vector, and ∇ · is the divergence operator.

This equation states that the rate of change of density with time and the divergence of the velocity field must be zero to maintain the conservation of volume.

By solving this equation using appropriate numerical methods, one can obtain the flow pattern and related parameters within the bladeless fan.

Learn more about Conservation of volume from the given link:

https://brainly.com/question/13259075

#SPJ11

Assume that each force is applied perpendicular to the torque arm. given:F=100N r=0.420m r=?

Answers

the value of the torque arm is 42 N·m.

The given values are:

F=100N and r=0.420m.Now we need to find out the value of torque arm.

The formula for torque is:T = F * r

Where,F = force appliedr = distance of force from axis of rotation

The torque arm is represented by the variable T.

Substituting the given values in the above formula, we get:T = F * rT = 100 * 0.420T = 42 N·m

To know more about torque visit:

brainly.com/question/30889390

#SPJ11

х An arrow is shot horizontally from a height of 6.2 m above the ground. The initial speed of the arrow is 43 m/s. Ignoring friction, how long will it take for the arrow to hit the ground? Give your answer to one decimal place.

Answers

The arrow will take approximately 1.4 seconds to hit the ground. This can be determined by analyzing the vertical motion of the arrow and considering the effects of gravity.

When the arrow is shot horizontally, its initial vertical velocity is zero since it is only moving horizontally. The only force acting on the arrow in the vertical direction is gravity, which causes it to accelerate downwards at a rate of 9.8 m/s².

Using the equation of motion for vertical motion, h = ut + (1/2)gt², where h is the vertical displacement (6.2 m), u is the initial vertical velocity (0 m/s), g is the acceleration due to gravity (-9.8 m/s²), and t is the time taken, we can rearrange the equation to solve for t.

Rearranging the equation gives us t² = (2h/g), which simplifies to t = √(2h/g). Substituting the given values, we have t = √(2 * 6.2 / 9.8) ≈ 1.4 seconds.

Therefore, the arrow will take approximately 1.4 seconds to hit the ground when shot horizontally from a height of 6.2 meters above the ground, ignoring friction.

To learn more about Motion click here:

brainly.com/question/33317467

#SPJ11

A 7.80 g bullet has a speed of $20 m/s when it hits a target, causing the target to move 4:70 cm in the direction of the bullet's velocity before stopping. (A) Use work and energy considerations to find the average force (in N) that stops the bullet. (Enter the magnitude.) ____________ (B) Assuming the force is constant, determine how much time elapses (in s) between the moment the bullet strikes the target and the moment it stops moving
___________

Answers

We can use the principle of work and energy conservation. The work done by the average force on the bullet is equal to the change in kinetic energy of the bullet.

Additionally, the work done by the average force on the target is equal to the change in kinetic energy of the target.

(A) Average force on the bullet:

The work done on the bullet is equal to the change in its kinetic energy. We can calculate the initial kinetic energy of the bullet using the formula:

KE_bullet = (1/2) * m_bullet * v_bullet²

where m_bullet is the mass of the bullet and v_bullet is its initial velocity.

Plugging in the values:

m_bullet = 7.80 g = 0.00780 kg

v_bullet = 20 m/s

KE_bullet = (1/2) * 0.00780 kg * (20 m/s)² = 1.56 J

Since the bullet stops, its final kinetic energy is zero. Therefore, the work done by the average force on the bullet is equal to the initial kinetic energy:

Work_bullet = KE_bullet = 1.56 J

The displacement of the bullet is not given, but it's not needed to calculate the average force.

(B) Time elapsed until the bullet stops:

The work done by the average force on the target is equal to the change in kinetic energy of the target. Since the target comes to a stop, its final kinetic energy is zero. We can calculate the initial kinetic energy of the target using the formula:

KE_target = (1/2) * m_target * v_target²

where m_target is the mass of the target and v_target is its initial velocity.

The mass of the target is not given, so we cannot determine the exact value for the force or the time elapsed.

To know more about work done visit:

https://brainly.com/question/25573309

#SPJ11

An electron is accelerated from rest through a potential difference that has a magnitude of 2.50 x 10V. The mass of the electronis 9.1110 kg, and the negative charge of the electron has a magnitude of 1.60 x 10 °C. (a) What is the relativistic kinetic energy fin joules) of the electron? (b) What is the speed of the electron? Express your answer as a multiple of c, the speed of light in a vacuum

Answers

The relativistic kinetic energy of the electron is approximately [tex]\(4.82 \times 10^{-19}\)[/tex] Joules. The speed of the electron is approximately 0.994 times the speed of light (c).

Let's calculate the correct values:

(a) To find the relativistic kinetic energy (K) of the electron, we can use the formula:

[tex]\[K = (\gamma - 1)mc^2\][/tex]

where [tex]\(\gamma\)[/tex] is the Lorentz factor, m is the mass of the electron, and c is the speed of light in a vacuum.

Given:

Potential difference (V) = 2.50 x 10 V

Mass of the electron (m) = 9.11 x 10 kg

Charge of the electron (e) = 1.60 x 10 C

Speed of light (c) = 3.00 x 10 m/s

The potential difference is related to the kinetic energy by the equation:

[tex]\[eV = K + mc^2\][/tex]

Rearranging the equation, we can solve for K:

[tex]\[K = eV - mc^2\][/tex]

Substituting the given values:

[tex]\[K = (1.60 \times 10^{-19} C) \cdot (2.50 \times 10 V) - (9.11 \times 10^{-31} kg) \cdot (3.00 \times 10^8 m/s)^2\][/tex]

Calculating this expression, we find:

[tex]\[K \approx 4.82 \times 10^{-19} J\][/tex]

Therefore, the relativistic kinetic energy of the electron is approximately [tex]\(4.82 \times 10^{-19}\)[/tex] Joules.

(b) To find the speed of the electron, we can use the relativistic energy-momentum relation:

[tex]\[K = (\gamma - 1)mc^2\][/tex]

Rearranging the equation, we can solve for [tex]\(\gamma\)[/tex]:

[tex]\[\gamma = \frac{K}{mc^2} + 1\][/tex]

Substituting the values of K, m, and c, we have:

[tex]\[\gamma = \frac{4.82 \times 10^{-19} J}{(9.11 \times 10^{-31} kg) \cdot (3.00 \times 10^8 m/s)^2} + 1\][/tex]

Calculating this expression, we find:

[tex]\[\gamma \approx 1.99\][/tex]

To express the speed of the electron as a multiple of the speed of light (c), we can use the equation:

[tex]\[\frac{v}{c} = \sqrt{1 - \left(\frac{1}{\gamma}\right)^2}\][/tex]

Substituting the value of \(\gamma\), we have:

[tex]\[\frac{v}{c} = \sqrt{1 - \left(\frac{1}{1.99}\right)^2}\][/tex]

Calculating this expression, we find:

[tex]\[\frac{v}{c} \approx 0.994\][/tex]

Therefore, the speed of the electron is approximately 0.994 times the speed of light (c).

Know more about relativistic kinetic:

https://brainly.com/question/28204404

#SPJ4

Convex lens or concave lens? Along with the reason. Part B Below is a list of some applications of lenses. Determine which lens could be used in each and explain why it would work. You can conduct online research to help you in this activity, if you wish. B I V x2 X2 10pt :: EE 를 드 田 フ Applications Lens Used Reason peephole in a door objective lens (front lens) of binoculars photodiode - In a garage door or burglar alarm, it can sense the light (or the lack of it) from an LED light source positioned some distance away. magnifying glass viewfinder of a simple camera Characters used: 300 / 15000Convex lens or concave lens? Along with the reason.

Answers

Convex lenses are used for applications that require converging light rays to create magnified and real images, while concave lenses are used for applications that require diverging light rays to control light intensity or provide a wider field of view.

Convex lens:

Peephole in a door: A convex lens is used as a peephole in a door to provide a wider field of view. The convex shape of the lens helps in magnifying the image and bringing it closer to the viewer's eye, making it easier to see who is at the door.

Objective lens (front lens) of binoculars: Binoculars use a pair of convex lenses as the objective lens, which gathers light from a distant object and forms a real and inverted image. The convex lens converges the incoming light rays, allowing the viewer to observe the magnified image of the object.

Magnifying glass: A magnifying glass consists of a convex lens that is used to magnify small objects or text. The curved shape of the lens converges the light rays, producing a larger virtual image that appears magnified to the viewer.

Concave lens:

Photodiode: A concave lens can be used in a photodiode setup where it senses the light (or the lack of it) from an LED light source positioned some distance away. A concave lens diverges the incoming light rays, spreading them out and reducing their intensity. This property of a concave lens can be used to control the amount of light falling on the photodiode, enabling it to detect changes in light intensity.

Viewfinder of a simple camera: A concave lens can be used in the viewfinder of a camera to help the photographer compose the image. The concave lens diverges the light rays from the scene, allowing the photographer to see a wider field of view. This helps in framing the shot and ensuring that the desired elements are captured within the frame.

In summary, convex lenses are used for applications that require converging light rays to create magnified and real images, while concave lenses are used for applications that require diverging light rays to control light intensity or provide a wider field of view.

(Convex lens or concave lens? Along with the reason. Part B Below is a list of some applications of lenses. Determine which lens could be used in each and explain why it would work. You can conduct online research to help you in this activity, if you wish. B 1 z X X2 10pt - v. E v Applications Lens Used Reason peephole in a door objective lens (front lens) of binoculars photodiode-In a garage door or burglar alarm, it can sense the light (or the lack of it) from an LED light source positioned some distance away. magnifying glass viewfinder of a simple camera Characters used:300/15000)

learn more about light

https://brainly.com/question/2790279

#SPJ11

for a particle inside 4 2. plot the wave function and energy infinite Square well.

Answers

The procedures below may be used to draw the wave function and energy infinite square well for a particle inside 4 2.To plot the wave function and energy infinite square well for a particle inside 4 2, follow these steps:

Step 1: Determine the dimensions of the well .The infinite square well has an infinitely high potential barrier at the edges and a finite width. The dimensions of the well must be known to solve the Schrödinger equation.

In this problem, the well is from x = 0 to x = L.

Let's define the boundaries of the well: L = 4.2.

Step 2: Solve the time-independent Schrödinger equation .The next step is to solve the time-independent Schrödinger equation, which is given as:

Hψ(x) = Eψ(x)

where ,

H is the Hamiltonian operator,

ψ(x) is the wave function,

E is the total energy of the particle

x is the position of the particle inside the well.

The Hamiltonian operator for a particle inside an infinite square well is given as:

H = -h²/8π²m d²/dx²

where,

h is Planck's constant,

m is the mass of the particle

d²/dx² is the second derivative with respect to x.

To solve the Schrödinger equation, we assume a wave function, ψ(x), of the form:

ψ(x) = Asin(kx) .

The wave function must be normalized, so:

∫|ψ(x)|²dx = 1

where,

A is a normalization constant.

The energy of the particle is given by:

E = h²k²/8π²m

Substituting the wave function and the Hamiltonian operator into the Schrödinger equation,

we get: -

h²/8π²m d²/dx² Asin(kx) = h²k²/8π²m Asin(kx)

Rearranging and simplifying,

we get:

d²/dx² Asin(kx) + k²Asin(kx) = 0

Dividing by Asin(kx),

we get:

d²/dx² + k² = 0

Solving this differential equation gives:

ψ(x) = Asin(nπx/L)

E = (n²h²π²)/(2mL²)

where n is a positive integer.

The normalization constant, A, is given by:

A = √(2/L)

Step 3: Plot the wave function . The wave function for the particle inside an infinite square well can be plotted using the formula:

ψ(x) = Asin(nπx/L)

The first three wave functions are shown below:

ψ₁(x) = √(2/L)sin(πx/L)ψ₂(x)

= √(2/L)sin(2πx/L)ψ₃(x)

= √(2/L)sin(3πx/L)

Step 4: Plot the energy levels .The energy levels for a particle inside an infinite square well are given by:

E = (n²h²π²)/(2mL²)

The energy levels are quantized and can only take on certain values.

The first three energy levels are shown below:

E₁ = (h²π²)/(8mL²)

E₂ = (4h²π²)/(8mL²)

E₃ = (9h²π²)/(8mL²)

To know more about  wave , visit;

https://brainly.com/question/15663649

#SPJ11

Trooper Bob is passing speeder Albert along a straight stretch of road. Trooper Bob is moving at 110 miles per hour. Speeder Albert is moving at 120 miles per hour. The speed of sound is 750 miles/hour in air. Bob's siren is sounding at 1000 Hz. What is the Doppler frequency heard by Albert? VDetector VSource SPEEDER ALBERT TROOPER BOB 2. A source emits sound waves in all directions. The intensity of the waves 4.00 m from the sources is 9.00 *104 W/m². Threshold of Hearing is 1.00 * 10-12 W/m² A.) What is the Intensity in decibels? B.) What is the intensity at 10.0 m from the source in Watts/m? C.) What is the power of the source in Watts?

Answers

For the Doppler frequency heard by Albert, we need to calculate the apparent frequency due to the relative motion between Albert and Bob. Using the formula for the Doppler effect, we can determine the change in frequency.

To find the intensity in decibels, we can use the formula for decibel scale, which relates the intensity of sound to the threshold of hearing. By taking the logarithm of the ratio of the given intensity to the threshold of hearing, we can convert the intensity to decibels.

The power of the source can be determined using the formula for power, which relates power to intensity. By multiplying the given intensity at a distance of 4.00 m by the surface area of a sphere with a radius of 4.00 m, we can calculate the power of the source in watts.

1. The Doppler effect describes the change in frequency perceived by a moving observer due to the relative motion between the observer and the source of the sound. In this case, Bob is moving towards Albert, causing a change in frequency. We can use the formula for the Doppler effect to calculate the apparent frequency heard by Albert.

2. The intensity of sound can be measured in decibels, which is a logarithmic scale that relates the intensity of sound to the threshold of hearing. By taking the logarithm of the ratio of the given intensity to the threshold of hearing, we can determine the intensity in decibels.

3. The intensity of sound decreases as the square of the distance from the source due to spreading over a larger area. Using the inverse square law, we can calculate the intensity at a distance of 10.0 m from the source by dividing the given intensity at a distance of 4.00 m by the square of the ratio of the distances.

4. The power of the source can be determined by multiplying the intensity at a distance of 4.00 m by the surface area of a sphere with a radius of 4.00 m. This calculation gives us the power of the source in watts.

To learn more about Doppler click here: brainly.com/question/32883194

#SPJ11

Hot air rises, so why does it generally become cooler as you climb a mountain? Note: Air has low thermal conductivity.

Answers

Hot air rises due to its lower density compared to cold air. As you climb a mountain, the atmospheric pressure decreases, and the air becomes less dense. This decrease in density leads to a decrease in temperature.



Here's a step-by-step explanation:

1. As you ascend a mountain, the air pressure decreases because the weight of the air above you decreases. This decrease in pressure causes the air molecules to spread out and become less dense.

2. When the air becomes less dense, it also becomes less able to hold heat. Air with low density has low thermal conductivity, meaning it cannot efficiently transfer heat.

3. As a result, the heat energy in the air is spread out over a larger volume, causing a decrease in temperature. This phenomenon is known as adiabatic cooling.

4. Adiabatic cooling occurs because as the air rises and expands, it does work against the decreasing atmospheric pressure. This work requires energy, which is taken from the air itself, resulting in a drop in temperature.

5. So, even though hot air rises, the decrease in atmospheric pressure as you climb a mountain causes the air to expand, cool down, and become cooler than the surrounding air.

In summary, the decrease in density and pressure as you climb a mountain causes the air to expand and cool down, leading to a decrease in temperature.

To know more about density visit:

https://brainly.com/question/29775886

#SPJ11

A net torque on an object ________________________
a.will cause the rotational mass to change.
b.will cause the angular acceleration to change.
c.will cause translational motion.
d.will cause the angular velocity to change.

Answers

A net torque on an object will cause the angular acceleration to change. The correct option is B.

Torque is the rotational equivalent of force. It is a vector quantity that is defined as the product of the force applied to an object and the distance from the point of application of the force to the axis of rotation. The net torque on an object will cause the angular acceleration of the object to change.

The rotational mass of an object is the resistance of the object to changes in its angular velocity. It is a measure of the inertia of the object to rotation. The net torque on an object will not cause the rotational mass of the object to change.

Translational motion is the motion of an object in a straight line. The net torque on an object will not cause translational motion.

The angular velocity of an object is the rate of change of its angular position. The net torque on an object will cause the angular velocity of the object to change.

To learn more about angular acceleration click here

https://brainly.com/question/30237820

#SPJ11

Other Questions
An air conditioner operating between 92 F and 77 F is rated at 4200Btu/h cooling capacity. Its coefficient of performance is 27% of that of a Carnot refrigerator operating between the same two temperatures. What horsepower is required of the air conditioner motor? PFD Company has debt with a yield to maturity of 7%, a cost of preferred stock of 9%, and a cost of equity of 13%. The market values of its debt, preferred stock, and equity are $10 million, $2 million, and $16 million, respectively, and its tax rate is 40%. What is this firms weighted-average cost of capital? Sample space #4: what is the sample space for a die roll if you are rolling a 5-sided die. correctly type the sample space (yes, you should use the correct letter, an equal sign, and symbols). do not use any spaces when you type your solution and be sure to list your outcomes in order. Question 71 ptsYour savings account pays a nominal interest rate of 4.40%. If the expected inflation is 1.90% during the next year, then what is your real rate of return based on the Simplified Fisher equation?6.30%2.50%2.35%22.50%8.36% A fictitious element has a total of 1500 protons + neutrons. (Mass number) The element undergoes nuclearfusion and creates two new elements and releases excess neutrons.The first new element has a mass number of 1000The second new element has a mass number of 475How many protons were released? The formation of nitrosil bromide is given by the next reaction to 2 ATM and 95 C 2NO + BR2 (G) 2NOBR (G) by the following reaction mechanism NO (G) + BR2 (G) NOBR2 No (G) + NOBR2 2NOBR (G) Question 1. find a expression that complies with the proposed reaction mechanism for the formation of Nitrosil bromide and answers the following questions:a) The global reaction follows an elementary speed law. True or Falseb) The intermediary compounds correspond to (ions, molecules or radicals) wich one?c) The second elementary step is composed of a thermolecular reaction True or False which two tasks are associated with router hardening? (choose two.)placing the router in a secure roomdisabling unused ports and interfacesinstalling the maximum amount of memory possiblesecuring administrative access 2) If Khalid obtained a business loan of $265,000.00 at 5.14% compounded semi-annually, how much should she pay at the end of every 6 months to clear the loan in 20 years?Round to the nearest cent Step 1: In your initial post, respond to the following:- Reflect on a time you (or someone you know) were conversing with a friend or loved one when you noticed that the manner in which you were communicating was influenced by the instrumental/relational gender norm For example, you might observe a parent speak in two distinct ways: one way to their son, and in a different way to their daughter.- Discuss the conversation you engaged in with the friend or loved one and analyze how that conversation illustrates the differences in communication styles between men and women. Include in your initial post exactly what in the conversation fit these gender norms. Q.1 Identify the Attributes of Champion/Sponsor.?Q2. Illustrate the main network topologies.?Q3. Illustrate the strategic alignment model.?Q4. Demonstrate e-business networks characteristics.?Q5. Justify Why Systems Are Vulnerable.?Q6. Differentiate between Peer-to-peer (P2P) and Client/ Server networks.?Q7. Compare the Primary storage to Secondary storage for A PC.? Assume you are an intern at a behavioral health clinic that addresses concerns of immigrants and refugees who have crossed borders and cultures to live in the United States. You have been asked to prepare a summary of how you would assist the client in this casewith her depression and anxiety issues.Your supervisor wants you to summarize the situation in this case,since next week she would like you to begin assisting with actual client summaries. You need to demonstrate your knowledge of both anxiety and depression as well as clinical and sociocultural perspectives, which are applicable to all of the clients at the behavioral health clinic.Discuss how the therapist in the case study addressed these sociocultural factors throughout the course of therapy. What is the solution, if any, to the inequality |3x|\ge0? all real numbers no solution x\ge0 x\le0 Social Vulnerability. Explaincommunity vulnerability as it relates to the social vulnerabilitythat is influenced by the impact of disasters. Part A 100 an alpha particle were released from rest near the surface of a Fm nucleus, what would its kinetic energy be when tar away? Express your answer using two significant figures. 10 AED O ? MeV K. = Submit Request Answer Provide Feedback You buy a car today for $23,100 making a $10,000 down payment and borrowing the balance from your bank with a 84 month fully amortized loan. The loan has a 3.9% annual percentage rate (APR). What is your monthly loan payment? What is your expected balance after five years (60 months)? Round your final answers to the nearest dollar. Blank #1...... Blank #2 ....... A Direct Numerical Simulation is performed of the mixing process in a mixing bowl of characteristic length l = 0.39 m The cake batter in the bowl is being mixed by a stirring arm of diameter d = 0.017 m , which generates small eddies of the same size d in the batter . To obtain a well - mixed batter , approximately 523 small scale eddy times are required . Use the Kolmogorov scaling laws to estimate the number of large scale tum - around times T required in this simulation . State your answer to three significant figures . Partial credit is awarded for an approximate but incorrect answer . Which statement is TRUE?a. A firm should try to maximize its current and quick ratios; maximum liquidity is good. b. A decrease in the equity multiplier (EM) means the firm is using more debt relative to equity than it has in the past.C. The DuPont equation includes an asset management ratio, but no liquidity ratios.d. The quick ratio is a profitability ratio. The production possibilities curve is:Select one:O a. a graph that shows the combinations of output that are most profitable to produceO b. a curve that shows the quantity of output that will be offered for sale and their variours pricesO c. a graph that shows the various combinations of output it is possible for an economy to produce given its available resources and technologyOd a graph that shows various combinations of resources that can be used to produce a given level of output What are the bases of your core beliefs when it comes to keepinga promise?(SUBJECT: PHILOSOPHY) Once a neurotransmitter binds to its receptor and activates it, there is generation of a. Chemicals b. Electricity