what is the pka of an acid whose ka is 6.5 × 10-6 ? (3sf)

Answers

Answer 1

The pka of an acid whose ka is 6.5 × 10-6 can be calculated using the formula pka = -log(ka). Plugging in the given value for ka, we get pka = -log(6.5 × 10-6) which equals 5.19 (rounded to 3 significant figures). Therefore, the pka of the acid is 5.19.


The pKa of an acid whose Ka is 6.5 × 10^-6 can be determined using the formula pKa = -log10(Ka). In this case, the Ka value is 6.5 × 10^-6.

By applying the formula, pKa = -log10(6.5 × 10^-6), the calculated pKa value is approximately 5.19 (rounded to 3 significant figures). Therefore, the pKa of the acid in question is 5.19.

To know more about acid visit-

https://brainly.com/question/14072179

#SPJ11


Related Questions

If 6. 52 grams of pyridine, c5h5n(l ), is added to 30. 0 ml of 0. 950 m hcl(aq), what will be the ph of the resulting solution? take the final volume of the solution to be 36. 0 ml

Answers

When 6.52 grams of pyridine (C5H5N) is added to 30.0 mL of 0.950 M HCl, we can calculate the pH of the resulting solution.

To calculate the pH of the resulting solution, we need to consider the reaction between pyridine and HCl. Pyridine is a weak base, and HCl is a strong acid. The reaction between the two will result in the formation of pyridinium ion (C5H5NH+) and chloride ion (Cl-).

First, we need to determine the moles of pyridine present in the solution. We can do this by dividing the given mass of pyridine by its molar mass.

Next, we can determine the moles of HCl present in the solution by multiplying the initial volume of HCl by its molarity.

Since pyridine is a weak base, it will react with HCl to form the pyridinium ion. The moles of pyridine that react with HCl can be determined based on the stoichiometry of the reaction.

After the reaction, we have the moles of pyridinium ion and chloride ion in the solution. We can calculate the concentration of the pyridinium ion by dividing its moles by the final volume of the solution.

Finally, we can calculate the pOH of the solution using the concentration of the pyridinium ion, and then convert it to pH using the equation pH = 14 - pOH.

Learn more about pyridine here:

https://brainly.com/question/13718139

#SPJ11

Write and balance the following single
replacement reaction.
c) Ag + CoBr₂

Answers

Answer:

The balanced single replacement reaction for the given chemical equation "Ag + CoBr₂" is:

2Ag + CoBr₂ → 2AgBr + Co

In this reaction, silver (Ag) replaces cobalt (Co) in the compound CoBr₂ (cobalt(II) bromide) to form silver bromide (AgBr) and solid cobalt (Co). The reaction is balanced because the number of atoms of each element is equal on both the reactant and product sides of the equation.

Note that the coefficients are 2 in front of Ag and AgBr, indicating that two molecules of Ag and two molecules of AgBr are required to balance the reaction.

what is the ph of a buffer solution that is 0.270 m in dimethylamine, (ch3)2nh, and 0.449 m in dimethylammonium chloride, (ch3)2nh2cl? (kb for (ch3)2nh = 5.9 x 10−4)a. 3.450 Ob 10.771 OC 3.008 Od 10.298 O e 10.550

Answers

The pH of the buffer solution is approximately 10.550 calculated by using the Henderson-Hasselbalch equation.


To find the pH of the buffer solution, we can use the Henderson-Hasselbalch equation: pH = pKa + log([A-]/[HA]).

First, we need to calculate the pKa from the given Kb (5.9 x 10^(-4)) for dimethylamine. pKa = -log(Ka), where Ka = Kw/Kb.

After calculating the Ka, the pKa is approximately 4.748.  

Next, we will plug the concentrations of the base (0.270 M) and its conjugate acid (0.449 M) into the equation: pH = 4.748 + log(0.270/0.449).

The resulting pH is approximately 10.550, which corresponds to option E.

Learn more about buffer here:

https://brainly.com/question/31847096

#SPJ11

A CHM 126 student must separate an organic compound with a boiling point of 130°C from another that has a boiling point of 135°C. The two molecules have similar sizes, masses, and polarities. Which separation technique would be the most effective? 1. recrystallization 2. simple distillation 3. fractional distillation 4. steam distillation 5. thin layer chromatography 6. extraction

Answers

The most effective separation technique for the given scenario would be fractional distillation. Fractional distillation is a separation technique used for separating two or more liquids with boiling points close to each other. In this case, the boiling points of the two organic compounds are 130°C and 135°C, respectively, which are relatively close.

Fractional distillation can effectively separate these two compounds because it involves a process of repeated distillation cycles, which separates the compounds based on their vaporization and condensation properties. As the mixture is heated, the compound with the lower boiling point will vaporize first and pass through the fractionating column, while the compound with the higher boiling point will remain in the flask. By repeating this process, the two compounds can be separated with high precision.
Recrystallization, simple distillation, steam distillation, thin layer chromatography, and extraction are not suitable for this specific separation as they are better suited for other types of separations. Recrystallization is used to purify solids, while simple and steam distillation are used to separate liquids with large differences in boiling points. Thin layer chromatography is used to separate and analyze small amounts of different compounds in a mixture, while extraction is used to separate compounds from mixtures based on their solubility in different solvents.

To know more about  fractional distillation visit :

https://brainly.com/question/31829958

#SPJ11

A 4.22 mol sample of Ar has a pressure of 1.21 atm and a temperature of
34 °C. What is its volume?
O87.9 L
79.8 L
O89.7 L
O97.8 L

Answers

We can use the ideal gas law equation to get the volume of the sample:

PV = nRT

Where:

P = pressure (in atm)

V = volume (in liters)

n = number of moles

R = ideal gas constant (0.0821 L·atm/mol·K)

T = temperature (in Kelvin)

The temperature must first be converted from Celsius to Kelvin:

T(K) = T(°C) + 273.15

T(K) = 34 + 273.15 = 307.15 K

The values ​​can now be entered into the ideal gas law equation as follows:

1.21 atm * V = 4.22 mol * 0.0821 L·atm/mol·K * 307.15 K

Simplifying the equation:

V = (4.22 mol * 0.0821 L·atm/mol·K * 307.15 K) / 1.21 atm

V = 87.886 L

The volume is roughly 87.9 L, rounded to three significant numbers.

Therefore, the correct option is A.

Learn more about ideal gas law equation, here:

https://brainly.com/question/11544185

#SPJ1

fill in the blank : The presence of ________ bonds between some of the carbon atoms in the hydro carbon chains of a fat influences whether it is a solid or a liquid at room temperature.

Answers

The presence of double bonds between some of the carbon atoms in the hydrocarbon chains of a fat influences whether it is a solid or a liquid at room temperature.

Fats are composed of long hydrocarbon chains called fatty acids. Fatty acids can be either saturated or unsaturated. Saturated fatty acids have single bonds between all carbon atoms, while unsaturated fatty acids have one or more double bonds between carbon atoms.

The presence of double bonds introduces kinks in the hydrocarbon chain, preventing the molecules from closely packing together. This results in a less dense arrangement, making unsaturated fats liquid at room temperature. In contrast, saturated fats with only single bonds allow for closer packing, leading to a solid state at room temperature.

In summary, the presence of double bonds in the hydrocarbon chains of a fat influences its physical state at room temperature. Saturated fats, with no double bonds, are solid, while unsaturated fats, with one or more double bonds, are liquid. This property has significant implications for the nutritional value, texture, and shelf life of fats in various food products.

To know more about molecules visit :

https://brainly.com/question/475709

#SPJ11

determine the molecular formula of the ionic compound. a 3.70 gram sample contains 0.0141 moles.

Answers

The molecular formula of the ionic compound is AlCl3, with aluminum and chloride in a molar ratio of 1:3.

To determine the molecular formula of the ionic compound, we need to know the molar mass of the compound. We can find the molar mass by dividing the mass of the sample by the number of moles present in the sample:

Molar mass = Mass of the sample / Number of moles

Molar mass = 3.70 g / 0.0141 mol

Molar mass = 262.41 g/mol

Once we know the molar mass, we can determine the molecular formula of the compound. Let's assume that the compound has the formula MX, where M is the cation and X is the anion.

The molar mass of MX can be expressed as:

Molar mass of MX = Molar mass of M + Molar mass of X

We can rearrange this equation to solve for the ratio of the cation and anion in the compound:

Molar mass of M / Molar mass of X = (Molar mass of MX - Molar mass of X) / Molar mass of X

Substituting the values, we get:

Molar mass of M / Molar mass of X = (262.41 g/mol - Molar mass of X) / Molar mass of X

Let's assume that the anion X is chloride (Cl-), which has a molar mass of 35.45 g/mol. Substituting this value, we get:

Molar mass of M / 35.45 g/mol = (262.41 g/mol - 35.45 g/mol) / 35.45 g/mol

Simplifying this equation, we get:

Molar mass of M / 35.45 = 6.41

Molar mass of M = 227.5 g/mol

This means that the cation has a molar mass of 227.5 g/mol. We can now use this information to determine the molecular formula of the compound.

Let's assume that the cation M is aluminum, which has a molar mass of 26.98 g/mol. We can calculate the ratio of aluminum to chloride by dividing the molar mass of aluminum by the molar mass of chloride:

Molar ratio of Al to Cl = Molar mass of Al / Molar mass of Cl

Molar ratio of Al to Cl = 26.98 g/mol / 35.45 g/mol

Molar ratio of Al to Cl = 0.761

This means that the molecular formula of the compound is [tex]AlCl_3[/tex].

To learn more about ionic compound

https://brainly.com/question/9167977

#SPJ4

starting with lead(II)oxide describe how you would prepare a solid sample of lead(II)Carbonate ​

Answers

The reaction involved is the reaction of PbO with sodium carbonate (Na2CO3) to produce lead(II) carbonate (PbCO3) and sodium oxide (Na2O).

To prepare a solid sample of lead(II) carbonate, we can start with lead(II) oxide (PbO) as the starting material. The chemical equation for the reaction is:

PbO + Na2CO3 → PbCO3 + Na2O

To carry out the reaction, we first need to weigh out the required amount of PbO and Na2CO3 based on the stoichiometry of the reaction. The PbO and Na2CO3 are then mixed thoroughly and placed in a crucible. The mixture is heated in a furnace at a temperature of around 600-700°C for a few hours until the reaction is complete and the mixture has turned into a solid mass.

Once the reaction is complete, the crucible is removed from the furnace and allowed to cool to room temperature. The solid mass of PbCO3 is then carefully removed from the crucible, crushed to a fine powder, and stored in an airtight container for further use. This method is a simple and efficient way to prepare a solid sample of lead(II) carbonate from lead(II) oxide.

For more such questions on reaction

https://brainly.com/question/29470602

#SPJ11

design your own flow chart of the separation scheme for a mixture that contains three components: nacl, nh4cl, and sio2. (b) a student found that her mixture was 13% nh4cl, 18% nacl, and 75% sio2. assuming that her calculations were correct, what did she most likely do incorrectly in her experiment?

Answers

Alternatively, it is possible that there was a mistake in the mixing of the components, resulting in an incorrect concentration of each component in the mixture.  

(a) A flow chart for the separation scheme of a mixture containing three components: NACL, NaCl, and [tex]SiO_2[/tex], is as follows:

         |                       |

         |       Separation      |

         |      Method: HPLC      |

         |                       |

         +--------+--------+--------+

         |       |       |       |

         |   Na   |   Cl   |   Si   |

         |    +   +   +   +   |   +   +   +

         |   H   |   H   |   H   |   H   |

         |   +   +   +   +   |   +   +   +

         |   O   |   O   |   O   |   O   |

         +--------+--------+--------+

In this flow chart, the mixture is first dissolved in a suitable solvent, which is then passed through a column packed with an adsorbent material. The adsorbent material selectively adsorbs one of the components, while the other two components pass through the column and are collected separately.

(b) If a student found that her mixture was 13% NH4Cl, 18% NaCl, and 75%  [tex]SiO_2[/tex], and her calculations were correct, then she most likely made an error in the volume of the solution or in the volume of the sample that was taken. It is possible that she did not accurately measure the volume of the solution or the volume of the sample, resulting in a different concentration of each component in the mixture. Alternatively, it is possible that there was a mistake in the mixing of the components, resulting in an incorrect concentration of each component in the mixture.  

Learn more about components visit: brainly.com/question/1080253

#SPJ4

a 20.00 ml sample of 0.150 m nh3 is titrated with 0.200 m hcl. what is the ph after 0.00 ml of hcl has been added? hint: the kb of nh3 is 1.8 x 10-5.

Answers

To determine the pH after adding 0.00 mL of HCl to a 20.00 mL sample of 0.150 M NH3, we need to calculate the concentration of NH4+ ions formed and then determine the pH using the dissociation constant of NH4+ (Ka) and the concentration of NH4+.

The calculation involves using the equilibrium expression for the reaction between NH3 and HCl and considering the equilibrium concentrations of NH3 and NH4+.

The reaction between NH3 and HCl can be represented as NH3 + HCl ⇌ NH4+ + Cl-. Given that the initial volume of HCl added is 0.00 mL, there is no reaction yet. Therefore, the concentration of NH4+ at this point is 0. Since pH is defined as -log[H+], and NH4+ is a weak acid, we need to calculate the concentration of H+ ions from NH4+.

Using the equilibrium expression for the reaction, we can write: Ka = [NH4+][OH-] / [NH3]. Given the value of Kb for NH3 (1.8 x 10^-5), we can calculate Kw (the ion product of water) using Kw = Ka * Kb.

Next, we can calculate the concentration of NH4+ using the initial concentration of NH3 and the volume change after adding 0.00 mL of HCl.

Finally, using the concentration of NH4+, we can calculate the concentration of H+ ions. From the concentration of H+, we can determine the pH using the equation pH = -log[H+].

By following these steps, we can determine the pH after adding 0.00 mL of HCl to the NH3 solL

Learn more about pH here:

https://brainly.com/question/10825137

#SPJ11

Q425 L container of ammonia gas exerts a pressure of 652 mm Hg at a temperature of 243 K.
Calculate the pressure of this same amount of gas in a 2.50 L container at a temperature of 221 K.

Answers

The pressure of this same amount of gas in a 2.50 L container at a temperature of 221 K is 1.008 × 10⁵ mmHg.

How to calculate pressure?

The pressure of a gas can be calculated using the combined gas law equation as follows;

PaVa/Ta = PbVb/Tb

Where;

Pa, Va and Ta = initial pressure, volume and temperaturePb, Vb and Tb = final pressure, volume and temperature

According to this question, 425 L container of ammonia gas exerts a pressure of 652 mm Hg at a temperature of 243 K. The final pressure can be calculated as follows;

652 × 425/243 = 2.5 × Pb/221

1,140.33 × 221 = 2.5Pb

Pb = 1.008 × 10⁵ mmHg

Learn more about pressure at: https://brainly.com/question/24189159

#SPJ1

Which is NOT a source that can be used to produce biodiesel?
a
Waste Cooking Oil
b
Seed Press Oil
c
Processed Vegetable Oil
d
Petroleum Oil

Answers

The answer should be C processed vegetable oil

In the form of heat, 6.052 J of energy is transferred to a 1.0 L sample of air (d=1.204mg/cm3) at 20.0 ∘C. The final temperature of the air is 25.0 ∘C. What is the heat capacity of air in J/K?

Answers

The heat capacity of air is 1.006 J/g·K.

First, we need to calculate the mass of the air sample using its density:

density = mass / volume

Rearranging this equation gives us:

mass = density x volume

mass = 1.204 mg/cm3 x 1000 cm3 = 1.204 g

Next, we can use the formula for heat capacity to calculate the heat capacity of the air:

Q = mcΔT

where Q is the heat transferred, m is the mass of the air, c is the specific heat capacity of air, and ΔT is the change in temperature.

We know Q = 6.052 J, m = 1.204 g, ΔT = 5.0 °C, and we want to solve for c.

Plugging in the values, we get:

6.052 J = (1.204 g) c (5.0 °C)

Solving for c gives:

c = 1.006 J/g·K

Therefore, the heat capacity of air is 1.006 J/g·K.

Learn more about heat  here:

https://brainly.com/question/1429452

#SPJ11

a sample containing 33.42g of metal pellet is poured into a graduated cylinder initially containing 12.7 ml of water, causing the water level in the cylinder to rise to 21.6ml. calculate the density of the metal in g/cm^3

Answers

Mass of metal pellet=33.42g
Volume of water only=12.7ml
Volume of water and metal pellet=21.6ml
Volume of metal pellet only=21.6ml-12.7ml=8.9ml
Iml=1cm^3
Mass=33.42g
Volume=8.9cm^3
Density=mass/volume=33.42/8.9=3.755g/cm^3

use retrosynthetic analysis to suggest a way to synthesize 3-hexanol using the grignard reaction. identify the aldehyde and grignard reagents needed.

Answers

To synthesize 3-hexanol using the Grignard reaction, we need to perform retrosynthetic analysis and work backwards. 3-hexanol can be synthesized by the reduction of 3-hexanal. Therefore, we need to identify the aldehyde required for this reaction. The aldehyde required for the synthesis of 3-hexanol can be obtained from the cleavage of the C-C bond present in 2-methylpentane.

This will give us 2-methylpentanal, which can then be used as a starting material. To form the Grignard reagent, we need magnesium and the halogenated compound. Therefore, we need to react magnesium with 2-bromo-3-methylpentane to obtain the Grignard reagent required for the reaction. In summary, to synthesize 3-hexanol using the Grignard reaction, we need 2-methylpentanal and the Grignard reagent formed from the reaction between magnesium and 2-bromo-3-methylpentane.


To synthesize 3-hexanol using the Grignard reaction and retrosynthetic analysis, we first identify the target molecule's functional group. In this case, it is an alcohol. We then perform a disconnection at the carbon-oxygen bond, yielding an aldehyde and a Grignard reagent. The aldehyde needed for the synthesis of 3-hexanol is butanal (C4H8O) and the Grignard reagent needed is ethylmagnesium bromide (C2H5MgBr). The reaction between butanal and ethylmagnesium bromide will yield 3-hexanol, as the Grignard reagent will attack the carbonyl group of the aldehyde, resulting in the formation of the desired alcohol.

To know more about  reagents visit-

https://brainly.com/question/31228572

#SPJ11

If the equilibrium constant for a two-electron redox reaction at 298 KK is 2.0×10−4, calculate the corresponding ΔG∘ and E∘cel under standard conditions.

Answers

If we have the mentioned equilibrium constant, The corresponding ΔG∘ is -20.7 kJ/mol, and the E∘cel is 0.16 V under standard conditions.

To calculate ΔG∘, we can use the equation

ΔG∘ = -RT ln(K)

where R is the gas constant (8.314 J/(mol·K)), T is the temperature in Kelvin (298 K), and K is the equilibrium constant (2.0×10⁻⁴).

Plugging in the values, we get

ΔG∘ = -(-8.314 J/(mol·K) × 298 K × ln(2.0×10⁻⁴))

≈ -20.7 kJ/mol.

To find E∘cel, we can use the relationship ΔG∘ = -nF E∘cel, where n is the number of electrons transferred (in this case, 2), and F is Faraday's constant (96,485 C/mol). Rearranging the equation, we have

E∘cel = -ΔG∘ / (nF)

= -(-20.7 kJ/mol) / (2 × 96,485 C/mol)

≈ 0.16 V.

Learn more about equilibrium constant

https://brainly.com/question/3159758

#SPJ4

What information do you need to determine if a vibrational degree of freedom will contribute to the total internal energy?A) Temperature onlyB) Both temperature and vibrational frequency.C) Vibrational frequency only.D) Pressure and temperature.

Answers

Vibrational frequency refers to the frequency at which the atoms or molecules in a substance vibrate.

If the frequency is high enough, it means that the vibrational energy can contribute significantly to the total internal energy. However, the temperature of the substance also plays a role in determining whether or not the vibrational energy will contribute to the total internal energy. At low temperatures, the vibrational energy may not be significant enough to contribute, while at higher temperatures, the vibrational energy can contribute significantly.

Therefore, both temperature and vibrational frequency are important factors in determining whether or not a vibrational degree of freedom will contribute to the total internal energy. To determine if a vibrational degree of freedom will contribute to the total internal energy, you need both temperature and vibrational frequency (Option B). Temperature provides information about the system's thermal energy, while vibrational frequency indicates the specific energy levels associated with molecular vibrations. Together, these factors help you understand if the vibrational degree of freedom contributes to the total internal energy.

To know more about Vibrational frequency visit :-

https://brainly.com/question/141640

#SPJ11

balance the following reaction in basic solution: mno4−(aq) al(s)⟶mno2(s) al(oh)4−(aq)

Answers

Balance chemical reaction in the basic solution :

Al(s) + MnO⁴⁻(aq) + 2H₂O → Al(OH)⁴⁻(aq) + MnO₂(s)

The chemical equation is :

Al + MnO⁴⁻  →  MnO₂ + Al(OH)⁴⁻

The Oxidation half equation :

Al + 4H₂O + 4OH⁻ → l(OH)⁴⁻ + 4H₂O + 3e⁻

The Reduction half equation:

MnO⁴⁻ + 4H₂O  + 3e⁻  → MnO₂ + 2H₂O  + 4OH⁻

By adding the two half reactions we get :

Al + MnO⁴⁻ + 8H₂O   + 4OH⁻ + 3e⁻ → Al(OH)⁴⁻ +  MnO₂ + 6H₂O   + 3e⁻ + 4OH⁻

On simplifying the equation we get the complete balance equation :

Al(s) + MnO⁴⁻(aq) + 2H₂O → Al(OH)⁴⁻(aq) + MnO₂(s)

To learn more about basic solution here

https://brainly.com/question/32091144

#SPJ4


1. How many grams are contained in 0.44 moles of calcium? 1 conversion

Answers

the answer is 17.63 grams

what was the purpose of rinsing with water in the cyalume synthesis procedure? (2)

Answers

Answer:

Hey people. In this question, there was a question about the importance of Ah woeller synthesis of Yuria. The early 18 hundreds, organic chemistry was

what is the percent yield when a reaction vessel that initially contains 66.5 kg ch4 and excess steam yields 14.9 kg h2?

Answers

The percent yield of the reaction, when a reaction vessel initially containing 66.5 kg of CH4 and excess steam yields 14.9 kg of H2, is approximately 44.48%.

To determine the percent yield, we need to compare the actual yield of the desired product (H2) to the theoretical yield that could be obtained based on the stoichiometry of the reaction.

The balanced equation for the reaction between CH4 (methane) and steam (H2O) to produce H2 (hydrogen) is:

CH4 + 2H2O -> CO2 + 4H2

From the balanced equation, we can see that one mole of CH4 reacts with two moles of H2O to produce four moles of H2. Let's calculate the theoretical yield of H2 based on the given amount of CH4.

Convert the mass of CH4 to moles:

molar mass of CH4 = 12.01 g/mol (C) + 1.01 g/mol (H) × 4 = 16.05 g/mol

moles of CH4 = mass of CH4 / molar mass of CH4

moles of CH4 = 66500 g / 16.05 g/mol = 4145.17 mol

Calculate the moles of H2 using the stoichiometry of the reaction:

moles of H2 = (moles of CH4) × (4 moles of H2 / 1 mole of CH4)

moles of H2 = 4145.17 mol × (4/1) = 16580.68 mol

Convert the moles of H2 to mass:

molar mass of H2 = 1.01 g/mol (H) × 2 = 2.02 g/mol

mass of H2 = (moles of H2) × (molar mass of H2)

mass of H2 = 16580.68 mol × 2.02 g/mol = 33496.84 g = 33.5 kg

The theoretical yield of H2, based on the given amount of CH4, is 33.5 kg.

Now let's calculate the percent yield using the actual yield provided:

percent yield = (actual yield / theoretical yield) × 100

percent yield = (14.9 kg / 33.5 kg) × 100

percent yield ≈ 44.48%

The percent yield of the reaction, when a reaction vessel initially containing 66.5 kg of CH4 and excess steam yields 14.9 kg of H2, is approximately 44.48%.

To know more about percent yield, visit;

https://brainly.com/question/2451706

#SPJ11

calculate the ph of the solution that results when 20.0 ml of 0.1750 m formic acid is diluted to 45 ml with distilled water

Answers

The pH of the solution after dilution is approximately 1.71.

moles of formic acid = concentration x volume

moles of formic acid = 0.1750 mol/L x 0.0200 L

moles of formic acid = 0.00350 mol

Next, we need to determine the final concentration of formic acid in the 45 mL solution:

final concentration = moles of formic acid / total volume of solution

final concentration = 0.00350 mol / 0.0450 L

final concentration = 0.0778 M

Now, we can use the dissociation constant of formic acid (Ka = 1.8 x [tex]10^{-4[/tex]) to calculate the pH of the solution:

Ka = [H+][HCOO-] / [HCOOH]

[H+] = √(Ka x [HCOOH] / [HCOO-])

[H+] =√(1.8 x [tex]10^{-4[/tex] x 0.0778 / 0.0000)

[H+] = 0.0193 M

pH = -log[H+]

pH = -log(0.0193)

pH = 1.71

pH is a measure of the acidity or basicity of a solution and is an important concept in chemistry. It stands for "potential of hydrogen" and is defined as the negative logarithm of the concentration of hydrogen ions (H+) in a solution. The pH scale ranges from 0 to 14, with 7 being neutral, values below 7 being acidic and values above 7 being basic or alkaline.

Acids are substances that donate hydrogen ions, increasing the concentration of H+ in a solution, while bases are substances that accept hydrogen ions, decreasing the concentration of H+. A solution with a pH of 7 is considered neutral because it has an equal concentration of H+ and OH- ions. A lower pH value indicates a higher concentration of H+ ions, making the solution more acidic, while a higher pH value indicates a lower concentration of H+ ions, making the solution more basic or alkaline.

To know more about pH refer to-

brainly.com/question/2288405

#SPJ4

morphine is an effective pain killer but is also highly addictive. calculate the ph of a 0.135 m solution of morphine if its pkb

Answers

To calculate the pH of a 0.135 M solution of morphine, we need to know its pKb. The pKb value represents the negative logarithm of the base dissociation constant, which characterizes the strength of the base.

By using the pKb value, we can determine the concentration of hydroxide ions in the solution and then calculate the pH.

To find the pH of the morphine solution, we first need to convert the pKb value to Kb by taking the antilogarithm. The Kb value represents the equilibrium constant for the dissociation of the base into hydroxide ions.

Once we have the Kb value, we can calculate the concentration of hydroxide ions (OH-) in the solution using the equation Kb = [OH-]^2 / [morphine]. Since morphine is a weak base, we can assume that the concentration of hydroxide ions is twice the concentration of morphine that dissociates.

With the concentration of hydroxide ions, we can calculate the pOH by taking the negative logarithm of the hydroxide ion concentration. Finally, we can find the pH by subtracting the pOH from 14, as pH + pOH = 14 for aqueous solutions at 25°C.

In this way, we can determine the pH of the 0.135 M solution of morphine using the pKb value and relevant calculations.

Learn more about morphine here:

https://brainly.com/question/10665765

#SPJ11

When solid NH4NO3 dissolves spontaneously in water, the resulting solution becomes cool. Which answer is consistent with this observation? a. I b. II c. III d. IV

Answers

The answer is (b) I. The dissolution of NH4NO3 is an endothermic process, meaning it absorbs heat from its surroundings. As a result, the temperature of the solution decreases, making it cool. Option I shows a solid NH4NO3 dissolving in water with a decrease in temperature, which is consistent with this observation.

For more question like NH4NO3 visit the link below:

https://brainly.com/question/25879634

#SPJ11

The correct answer which is consistent with this observation When solid NH4NO3 dissolves spontaneously in water is option II.

When NH4NO3 dissolves in water, it undergoes an endothermic process, meaning it absorbs heat from the surroundings, resulting in a decrease in temperature and a cool solution. Option II represents the dissolution of NH4NO3 in water, showing the solid NH4NO3 on the left side of the equation and aqueous NH4+ and NO3- ions on the right side.

This dissolution process is represented by an upward arrow, indicating that it is an endothermic process that absorbs heat. The other options do not represent the correct dissolution process and therefore cannot explain the observed cooling effect.

Option I represents the dissolution of KCl, which is an exothermic process, and options III and IV do not show the proper dissociation of NH4NO3 into its constituent ions. Therefore, option II is the only answer that is consistent with the observation of a cool solution when solid NH4NO3 dissolves spontaneously in water.

Learn more about thermodynamics:https://brainly.com/question/13059309

#SPJ11

enter your answer in the provided box. how many total moles of ions are released when the following sample dissolves completely in water? 0.56 mol of k3po4

Answers

When K3PO4 dissolves in water, it dissociates into three K+ ions and one PO4^3- ion.

Therefore, the total number of moles of ions released when 0.56 mol of K3PO4 dissolves completely in water can be calculated as follows:

Number of moles of K+ ions released = 3 x 0.56 mol = 1.68 mol

Number of moles of PO4^3- ions released = 1 x 0.56 mol = 0.56 mol

Thus, the total number of moles of ions released is 1.68 + 0.56 = 2.24 mol.

It is important to note that when ionic compounds dissolve in water, they dissociate into their respective ions, and the total number of moles of ions released can be calculated by multiplying the number of moles of the compound by the number of ions produced per mole of the compound. This is a fundamental concept in understanding the behavior of electrolytes in solution and is essential in many areas of chemistry, including electrochemistry and chemical equilibrium.

Learn more about dissolves here:

https://brainly.com/question/2364287

#SPJ11

6.16 classify each of the following solutes as an electrolyte or a nonelectrolyte a. nano3 b. c6h12o6 c. fecl3

Answers

a) NaNO3 is an electrolyte

b) . C6H12O6 (glucose) is a nonelectrolyte

c) FeCl3 is an electrolyte

a. NaNO3 is an electrolyte. When NaNO3 is dissolved in water, it dissociates into Na+ and NO3- ions, which are capable of conducting electricity. This is because the ions in the solution can move freely and carry an electric charge.

b. C6H12O6 (glucose) is a nonelectrolyte. When glucose is dissolved in water, it does not dissociate into ions, meaning that it is not capable of conducting electricity. This is because the electrons in the solution are not free to move and carry an electric charge.

c. FeCl3 is an electrolyte. When FeCl3 is dissolved in water, it dissociates into Fe3+ and Cl- ions, which are capable of conducting electricity. This is because the ions in the solution can move freely and carry an electric charge.

Electrolytes are substances that can dissociate into ions in a solution and conduct electricity. Nonelectrolytes, on the other hand, are substances that do not dissociate into ions in a solution and cannot conduct electricity. The ability to conduct electricity is dependent on the presence of charged particles in a solution. Therefore, substances that can dissociate into ions are electrolytes, while those that cannot dissociate into ions are nonelectrolytes.

Learn more about  electrolyte  here:

https://brainly.com/question/29771118

#SPJ11

for a chemical reaction, the rate constant at 237.2 °c is 0.00379 s-1, and the activation energy is 21.54 kj mol-1. calculate the value of the rate constant at 338.9 °c.

Answers

he value of the rate constant at 338.9 °c is 0.0523 s^-1. To calculate the value of the rate constant at 338.9 °c, we can use the Arrhenius equation which relates the rate constant (k) to the activation energy (Ea), temperature (T), and the gas constant (R):


k = Ae^(-Ea/RT)
Where A is the pre-exponential factor.
First, we need to calculate the pre-exponential factor (A). We can do this by using the rate constant value at 237.2 °c:
0.00379 = A * e^(-21.54/(8.314 * 510.35))
Here, we have converted the temperature to Kelvin (T = 237.2 + 273.15 = 510.35 K) and used the gas constant value (R = 8.314 J/K·mol).

Solving for A, we get:

A = 6.878 x 10^9 s^-1
Now, we can use this value of A and the activation energy to calculate the rate constant at 338.9 °c (T = 338.9 + 273.15 = 612.05 K):
k = 6.878 x 10^9 * e^(-21.54/(8.314 * 612.05))
k = 0.0523 s^-1 (rounded to four significant figures)

To know more  Arrhenius equation  visit:-

https://brainly.com/question/12907018

#SPJ11

For the following reaction, ΔP(C6H14)/Δt was found to be –6.2 × 10–3 atm/s.C6H14(g) → C6H6(g) + 4H2(g)Determine ΔP(H2)/Δt for this reaction at the same time–1.6 × 10–3 atm/s2.5 × 10–2 atm/s1.6 × 10–3 atm/s6.2 × 10–3 atm/s–2.5 × 10–2 atm/s

Answers

The rate of change of pressure of [tex]H_{2}[/tex] for the given reaction at the same time is –2.5 × 10–2 atm/s.

The given reaction is [tex]C_{6} H_{14}(g)[/tex]→ [tex]C_{6} H_{6}(g) + 4H_{2} (g)[/tex], and the value of [tex]\frac{ΔP(C_{6} 6H_{14} )}{Δt}[/tex] is –6.2 ×[tex]10^{-3}[/tex] atm/s. We need to determine [tex]\frac{ΔP(H_{2} )}{Δt}[/tex] for this reaction at the same time.

The balanced chemical equation shows that for every 1 mole of C6H14 that reacts, 4 moles of [tex]H_{2}[/tex] are produced. Therefore, we can use the stoichiometry of the reaction to relate the rate of change of pressure of [tex]H_{2}[/tex] to the rate of change of pressure of [tex]C_{6} H_{14}[/tex].

[tex]\frac{ΔP(H_{2} )}{Δt} =\frac{4}{1}×\frac{C_{6}H_{14}  }{Δt}[/tex]

After substituting we get:

= –2.5 ×  [tex]10^{-2}[/tex]  atm/s

Therefore, the answer is –2.5 × [tex]10^{-2}[/tex] atm/s.

In conclusion, the rate of change of pressure of [tex]H_{2}[/tex] for the given reaction at the same time is –2.5 × [tex]10^{-2}[/tex] atm/s.

Learn more about stoichiometry here:

https://brainly.com/question/14935523

#SPJ11

For which slightly soluble substance will the addition of perchloric acid to its solution have no effect on its solubility? (A) AgBr(s) (B) Cu(OH)2(s) (C) MgCO3(s) (D) PbFz(s)

Answers

The addition of perchloric acid (HClO₄) to a solution of a slightly soluble substance will have no effect on the solubility of AgBr(s), or silver bromide.

Silver bromide is a sparingly soluble ionic compound that dissolves in water to form Ag⁺ and Br⁻ ions. Perchloric acid is a strong acid that dissociates completely in water to form H⁺ and ClO₄⁻ ions.

When perchloric acid is added to a solution containing a slightly soluble substance, it increases the concentration of H⁺ ions. However, since there is no common ion between AgBr and HClO₄, Le Chatelier's principle dictates that the solubility equilibrium of AgBr will not be affected by the addition of perchloric acid.

In contrast, the other substances (Cu(OH)₂, MgCO₃, and PbF₂) contain ions that can interact with H⁺ ions, such as the hydroxide ion (OH⁻) or the carbonate ion (CO₃²⁻), which would cause shifts in their solubility equilibria. Therefore, the correct answer is AgBr(s).

Learn more about  silver bromide here:

https://brainly.com/question/28267239

#SPJ11

what has a greater solubility cd(oh)2 or znco3

Answers

In general, the solubility of ionic compounds is dependent on their respective solubility products.

The solubility product is a constant that relates to the maximum amount of a solute that can dissolve in a solvent at a given temperature. The higher the solubility product, the more soluble the compound is.

The solubility product of Cd(OH)2 is approximately 2.5 x 10^-14, while the solubility product of ZnCO3 is approximately 2.8 x 10^-10. This means that Cd(OH)2 has a lower solubility product than ZnCO3 and therefore, Cd(OH)2 is less soluble than ZnCO3.

Hence, ZnCO3 has greater solubility compared to Cd(OH)2.

Learn more about solubility here:

https://brainly.com/question/28170449

#SPJ11

Other Questions
Question 6 of 20Which principle must a government follow in order to be considered ademocracy?O A. Citizens must be able to vote directly on laws rather than relyingon representatives.B. Laws must be created to reflect the dominant religious beliefs in asociety.O C. Leaders must be selected by the citizens rather than inheritingpower.D. The government must have a written constitution that protectsindividual rights. engagement"" with a lightbox ad on a mobile phone or tablet is achieved when someone: exposure to a bloodborne pathogen is defined in part as:(a) splash contact onto ppe(b) contact of a mucous membrane/non-intact skin with a potentially infectious body fluid or secretion(c) dermal contact with a potentially infectious agent(d) failure to properly use ppe stockholders of a company may be reluctant to finance expansion through issuing more equity because group of answer choices leveraging with debt is always a better idea. their earnings per share may decrease. the price of the stock will automatically decrease. dividends must be paid on a periodic basis. explain why the short-run price elasticity of demand for movie tickets differs from the long-run price elasticity of demand for movie tickets. Which of the following are differences between interest groups and political parties?I. Political parties nominate candidates to run for elective office, interest groups do not.II. Political parties focus on a broader range of issues than do interest groupsIII. Political parties compete to control the legislative branch of government by gaining moreseats that the other party interest groups do notA. I onlyB. I and II onlyC. II onlyD. II and III onlyE. I, II, and III which of the following is an example of a variable input?select all that apply:labor with a contracta part-time worker with no contracta leased buildingoffice supplies used on a daily basisfeedbackmore instructionsubmitcontent attribution- opens a dialoglive chat:chat with an expert 6. find the inverse laplace transform of the function i(s) = ( 2 in the book of revelation, the church that received praise for its endurance was the church in 2. A linear model for the data in the table is shown in the scatter plot. X 1 2 5 6 7 9 y 2 6 9 9 13 Variable y 14 10 8 LT 5 4 321 0 1 2 3 4 5 6 7 8 9 10 11 Variable x (a) Which two points should you use to find the equation of the model? 6,9 and 10,13. (b) What is the slope of the linear model? 1 (c) What is the equation of the linear model in point-slope form? Y-9 =(x-6) (d) What is the slope-intercept form of the equation you wrote in Part (c)? y=x+3 (e) What is the equation for the least squares regression line? y = bx + a (f) decimal places. Answer: Y= 1.028x + 2.271pls check my answers correct any mistakes pls thanks! Write the equation for the parabola that has its x intercepts at (-2,0) and (-5,0) and its y intercept at (0,-4) Alcohols contain which functional group? amine thiol amide hydroxyl How many action potentials per minute for the SA node? which graph shows the image of the triangle reflected across the line of reflection shown 50 PointsIn the figure below ABC~YXZ. Find sinX, tanX, and cosX. Round your answers to the nearest hundredth. what are the two major initiatives of the world governments in terms of cargo security? for the galvanic (voltaic) cell cd(aq) fe(s) cd(s) fe(aq) (e = 0.0400 v), what is the ratio [fe]/[cd] when e = 0.000 v? assume t is 298 k for the reaction g 700k = 13.457 kj. what is kp for this reaction at 700. k? network 11.0.0.0/8 needs to support 3 customers each of which needs 600 ip addresses. what is a reasonable address allocation? when applying the securing layer of a distal limb bandage question 34 options: apply compression from the proximal portion of the limb to the distal portion apply compression from the distal portion of the limb to the proximal portion it makes no difference in which direction compression is applied compression is not applied in the securing layer